• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 46
  • 36
  • 25
  • 10
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 354
  • 354
  • 185
  • 154
  • 92
  • 80
  • 63
  • 55
  • 54
  • 38
  • 35
  • 34
  • 33
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Novel in operando characterization methods for advanced lithium-ion batteries

Petersburg, Cole Fredrick 11 January 2012 (has links)
Currently, automotive batteries use intercalation cathodes such as lithium iron phosphate (LiFePO4) which provide high levels of safety while sacrificing cell voltage and therefore energy density. Lithium transition metal oxide (LiMO2) batteries achieve higher cell voltages at the risk of releasing oxygen gas during charging, which can lead to ignition of the liquid electrolyte. To achieve both safety and high energy density, oxide cathodes must be well characterized under operating conditions. In any intercalation cathode material, the loss of positive lithium ions during charge must be balanced by the loss of negative electrons from the host material. Ideally, the TM ions oxidize to compensate this charge. Alarmingly, the stoichiometry of the latest LiMO2 cathode materials includes more lithium ions than the TM ions can compensate for. Inevitably, peroxide ions or dioxygen gas must form. The former mechanism is vital for lithium-air batteries, while the latter must be avoided. Battery researchers have long sought to completely characterize the intercalation reaction in working batteries. However, the volatile electrolytes employed in batteries are not compatible with vacuum-based characterization techniques, nor are the packaging materials required to contain the liquid. For the first time, a solid state battery (using exposed particles of Li1.17Ni0.25Mn0.58O2) was charged while using soft X-ray absorption spectroscopy to observe the redox trends in nickel, manganese and oxygen. This was combined with innovative hard X-ray absorption spectroscopic studies on the same material to create the most complete picture yet possible of charge compensation.
82

Modeling of Battery Degradation in Electrified Vehicles

Juhlin, Olof January 2016 (has links)
This thesis provides an insight into battery modeling in electric vehicles which includes degradation mechanisms as in automotive operation in electric vehicles. As electric vehicles with lithium ion batteries increase in popularity there is an increased need to study and model the capacity losses in such batteries. If there is a good understanding of the phenomena involved and an ability to predict these losses there is also a foundation to take measures to minimize these losses. In this thesis a battery model for lithium ion batteries which includes heat dissipation is used as groundwork. This model is expanded with the addition of capacity losses due to usage as well as storage. By combining this with a simple vehicle model one can use these models to achieve an understanding as to how a battery or pack of several batteries would behave in a specific driving scenario. Much of the focus in the thesis is put into comparing the different factors of degradation to highlight what the major contributors are. The conclusion is drawn that heat is the main cause for degradation for batteries in electric vehicles. This applies for driving usage as well as during storage. As heat is generated when a battery is used, the level of current is also a factor, as well as in which state of charge region the battery is used.
83

Iron Based Materials for Positive Electrodes in Li-ion Batteries : Electrode Dynamics, Electronic Changes, Structural Transformations

Blidberg, Andreas January 2017 (has links)
Li-ion battery technology is currently the most efficient form of electrochemical energy storage. The commercialization of Li-ion batteries in the early 1990’s revolutionized the portable electronics market, but further improvements are necessary for applications in electric vehicles and load levelling of the electric grid. In this thesis, three new iron based electrode materials for positive electrodes in Li-ion batteries were investigated. Utilizing the redox activity of iron is beneficial over other transition metals due to its abundance in the Earth’s crust. The condensed phosphate Li2FeP2O7 together with two different LiFeSO4F crystal structures that were studied herein each have their own advantageous, challenges, and scientific questions, and the combined insights gained from the different materials expand the current understanding of Li-ion battery electrodes. The surface reaction kinetics of all three compounds was evaluated by coating them with a conductive polymer layer consisting of poly(3,4-ethylenedioxythiophene), PEDOT. Both LiFeSO4F polymorphs showed reduced polarization and increased charge storage capacity upon PEDOT coating, showing the importance of controlling the surface kinetics for this class of compounds. In contrast, the electrochemical performance of PEDOT coated Li2FeP2O7 was at best unchanged. The differences highlight that different rate limiting steps prevail for different Li-ion insertion materials. In addition to the electrochemical properties of the new iron based energy storage materials, also their underlying material properties were investigated. For tavorite LiFeSO4F, different reaction pathways were identified by in operando XRD evaluation during charge and discharge. Furthermore, ligand involvement in the redox process was evaluated, and although most of the charge compensation was centered on the iron sites, the sulfate group also played a role in the oxidation of tavorite LiFeSO4F. In triplite LiFeSO4F and Li2FeP2O7, a redistribution of lithium and iron atoms was observed in the crystal structure during electrochemical cycling. For Li2FeP2O7, and increased randomization of metal ions occurred, which is similar to what has been reported for other iron phosphates and silicates. In contrast, triplite LiFeSO4F showed an increased ordering of lithium and iron atoms. An electrochemically induced ordering has previously not been reported upon electrochemical cycling for iron based Li-ion insertion materials, and was beneficial for the charge storage capacity of the material.
84

Optimisation de nouvelles électrodes négatives énergétiques pour batteries lithium-ion : caractérisation des interfaces électrode/électrolyte / Optimisation of new powered electrodes for Li-ion batterie : interface electrode/electrolyte

Marino, Cyril 25 October 2012 (has links)
Ce mémoire est consacré à l'étude de deux matériaux d'électrodes négatives pour batteries Li-ion : NiSb2 et TiSnSb. Ces matériaux de conversion possèdent des capacités presque deux fois supérieures à celle du graphite, actuellement utilisé, mais ils souffrent i) d'une faible cyclabilité causée par les variations volumiques caractéristiques de ce type d'électrode et ii) d'une grande perte de lithium irréversible lors de la 1ère insertion due à la réactivité de surface avec l'électrolyte. Les mécanismes réactionnels avec le lithium ont été étudiés en profondeur par diffraction des rayons X, spectrométrie Mössbauer (119Sn et 121Sb). Les études in situ et ex situ en spectroscopie d'absorption X ont permis d'identifier la formation de nanoparticules de métal de transition très réactives et dont l'instabilité est probablement à l'origine des phénomènes de relaxation observés dans l'électrode à l'état déchargé. L'amélioration des performances a été réalisée grâce à l'élaboration d'électrodes composites contenant des fibres de carbone et de la CMC. Cette formulation d'électrodes permet d'atteindre une cyclabilité de 250 cycles pour TiSnSb à régimes variables entre 4C et C. L'ajout de FEC dans l'électrolyte apparait également comme une solution pour augmenter la durée de vie des électrodes.L'interface électrode/électrolyte a été analysée par Résonance Magnétique Nucléaire, Spectroscopie Photoéletronique à rayonnement X et spectroscopie infrarouge. Li2CO3 est l'espèce majoritairement formée lors de la réduction de l'électrolyte en 1ère décharge (lié à la création de nouvelles surfaces lors de la réaction et à expansion volumique). Lors de la charge, une restructuration (ou fragmentation) de la SEI (couche de passivation) est probable à cause de la contraction de l'électrode. L'épaisseur de la couche de SEI à l'interface continue de croitre après 15 cycles. / The thesis is devoted to the study of two negative electrode materials for Li-ion batteries: NiSb2 and TiSnSb. These conversion type materials have high capacities greater than graphite electrode used in current devices. However, these compounds suffer from i) a low cyclability caused by volumetric variations which are characteristic of this type of electrode, and ii) a loss of lithium (irreversible process) during the 1st insertion due to the reduction of the liquid electrolyte on the surface of active material.The mechanisms have been studied by X-Ray Diffraction, Mössbauer Spectroscopy (119Sn and 121Sb). The in situ and ex situ X-ray Absorption Spectroscopy analysis have allowed identifying both the formation of highly reactive Ti and Ni nanoparticles and a relaxation effect in the discharged electrode at 0V. The improvement of performances is based on the composite electrodes formulation using carbon fibers as conductive additive and Carboxymethyl cellulose CMC as binder. A cyclability of 250 cycles at C and 4C rate is reached for TiSnSb electrodes. The addition of Fluoro Ethylene Carbonate (FEC) in the electrolyte is another way to increase the life span of electrodes.The electrode/electrolyte interface has been analyzed by Nuclear Magnetic Resonance, X-ray Photoelectron Spectroscopy and Infrared Spectroscopy. During the discharge, among the species produced from the reduction of electrolyte Li2CO3 is in the majority because new surfaces are created (volumetric expansion). On charge, a fragmentation of the Solid Electrolyte Interphase (SEI) deposited on the surface of the active material grains is observed. Moreover, first XPS investigations have shown that the SEI thickness continuously increases on cycling.
85

Framtida installationskrav på Electronic Flight Bags (EFB) : Med hänsyn till litiumbatterier / Future regulations for the installation of Electronic Flight Bags (EFB)

Al Hamrani, Emad, Al-Dulaimi, Anmar January 2017 (has links)
This degree project studies the future regulations for the installation of electronic flight bags (EFB) with focus on the hardware and its safety implications in which the task was given by Bromma Air Maintenance (BAM). The aim is to ease the operator to handle issues dealing with EFB; such as lithium battery fire in the cockpit, placement of EFB in the cockpit, etc. This also addresses flight safety, flight controls, emergency evacuation and solutions in dealing with such issues. Flight safely is a vital factor to be considered since it jeopardizes lives. As recent reports indicate an increase in lithium battery powered devices incidents on aircrafts, this paves the way to find new solutions and procedures to mitigate them. By studying the current regulations, Acceptable Means of Compliance (AMC), Advisory Circular (AC) regarding the usage/installation of EFB and future regulation draft (NPA) this study analyzed the changes, which indicated that there were not many significant changes made to the future regulation (new AMC). Although many chapter of the current AMC have been removed and introduced into a new section under AMC & GM (Guidance Material). Different placement of the EFB in cockpit has also been studied in this degree project, which has shown that depending on the placement choice of the aircraft operator there are advantages and disadvantages. This follows by studying the lithium (Li-ion) batteries: technology, mitigation of fire and procedures for lithium battery fire while also studying the recent incidents regarding lithium batteries fire and explosion in commercial and cargo flights. The solutions consist of using the latest technology to propose a new approach to charge the batteries, and store the burning batteries as well. This lead to a smart inductive charger and a smart fire contamination bag to be integrated into the procedures. / Detta examensarbete studerar de framtida installationskrav för Electronic Flight Bag (EFB) med fokus på hårdvaran och dess påverkan på säkerheten. Rapporten kan användas som manual som tydliggör vilka procedurer och rekommendationer operatören kan ta hänsyn till vid installation och användning av EFB. I flygbranschen har de flesta flygbolag redan börjat använda surfplattor istället för dokument och manualer. EFB är ett elektroniskdisplaysystem som i första hand används i flygplanets cockpit. EFB:s funktion är att förse piloten med en mängd olika data om flygplanet t.ex. prestanda, balans och vikt beräkningar, bränsle mm. Displayen är en ersättning av det traditionella ”Flight Bag” som för i tiden var i pappersform och innehöll alla kartor och manualer skriftligt. Som alla andra teknologier har EFB sina begränsningar såsom batteriproblem, påverkan på säkerheten och ”Flight Controls” i flygplanets cockpit. Genom studier och sammanfattning av skillnaden mellan nuvarande och framtida regelverk har man kommit fram till att inga märkbara förändringar har skett. Fältstudien var till nytta för att analysera vilka säkerhetsproblem varje installationstyp har. Utrustningar som smart induktiv laddare och smart brandskyddsväska har fåtts som resultat i arbetet. Dessa utrustningar är till att motverka faror som är möjliga att ske under användning av EFB i cockpit.
86

Electrochemical Studies of Aging in Lithium-Ion Batteries

Klett, Matilda January 2014 (has links)
Lithium-ion batteries are today finding use in automobiles aiming at reducing fuel consumption and emissions within transportation. The requirements on batteries used in vehicles are high regarding performance and lifetime, and a better understanding of the interior processes that dictate energy and power capabilities is a key to strategic development. This thesis concerns aging in lithium-ion cells using electrochemical tools to characterize electrode and electrolyte properties that affect performance and performance loss in the cells.   A central difficulty regarding battery aging is to manage the coupled effects of temperature and cycling conditions on the various degradation processes that determine the lifetime of a cell. In this thesis, post-mortem analyses on harvested electrode samples from small pouch cells and larger cylindrical cells aged under different conditions form the basis of aging evaluation. The characterization is focused on electrochemical impedance spectroscopy (EIS) measurements and physics-based EIS modeling supported by several material characterization techniques to investigate degradation in terms of properties that directly affect performance. The results suggest that increased temperature alter electrode degradation and limitations relate in several cases to electrolyte transport. Variations in electrode properties sampled from different locations in the cylindrical cells show that temperature and current distributions from cycling cause uneven material utilization and aging, in several dimensions. The correlation between cell performance and localized utilization/degradation is an important aspect in meeting the challenges of battery aging in vehicle applications.   The use of in-situ nuclear magnetic resonance (NMR) imaging to directly capture the development of concentration gradients in a battery electrolyte during operation is successfully demonstrated. The salt diffusion coefficient and transport number for a sample electrolyte are obtained from Li+ concentration profiles using a physics-based mass-transport model. The method allows visualization of performance limitations and can be a useful tool in the study of electrochemical systems. / <p>QC 20140512</p>
87

High Voltage Electrolyte Based on Fluorinated Compounds for High Energy Li-ion Chemistry

He, Meinan 08 December 2016 (has links)
"Lithium ion batteries have dominated the portable electronics market and have the potential to dominate large-scale battery applications including hybrid and electric vehicles, as well as grid storage, because of their high energy and power densities1,2. It is well known that conventional electrolytes show poor anodic stabilities above 4.5 V versus Li/Li+.3 As a result, high voltage electrolytes are essential for the development of next generation high energy lithium ion batteries. Both fluorinated electrolytes and additives can be introduced into the electrolyte system.4 In this work, fluorinated electrolytes were used in both graphite-LiNi0.5Co0.2Mn0.3O2 (NCM523) (operated between 3.0 - 4.6 V) and graphite- LiNi0.5Mn1.5O4 (LNMO) (operated between 3.5 - 4.9 V) full cell systems. The baseline electrolyte for all cells (referred to as Gen2) was composed of 1.2M LiPF6 dissolved in a mixture of EC and EMC (3:7 in weight ratio). After a series of electrochemical tests, compared to the baseline electrolyte, the fluorinated electrolytes displayed significantly enhanced performance under both high cut off voltage and high temperature (55 oC). The post test analysis results showed that the cycled electrode can not only reach a much more stable interface but also overcome the crystal structure change after long term cycling when the fluorinated electrolyte system was used. In addition to changing the solvent, a series of additives were designed, synthesized and evaluated for high-voltage Li-ion battery cells using a Ni-rich layered cathode materials LiNi0.5Co0.2Mn0.3O2 (NCM523). The repeated charge/discharge cycling for NCM523/graphite full cells using Gen2 with 1 wt % of these additives as electrolytes was performed. Electrochemical performance testing and post analysis result demonstrated that our as selected or designed cathode additives could passivate the cathode and prevent the cathode from side reactions. The developed methodology could provide fundamental direction in the design and investigation of better electrolytes for the next generation lithium ion batteries."
88

Optimizacija i karakterizacija elektrolita na bazi jonskih tečnosti pogodnih za litijum jonske baterije / Optimization and characterization of ionic liquid based electrolytes for Li-ion batteries

Zec Nebojša 08 November 2017 (has links)
<p>U ovoj doktorskoj disertaciji ispitivani su elektroliti na bazi jonskih tečnosti pogodni za<br />primenu u litijum&nbsp; jonskim baterijama. Fizičko-hemijska svojstva binarnih sme&scaron;a<br />jonskih tečnosti sa dicijanamidnim i bis(trifluorometilsulfonil)imidnim anjonima i<br />molekulskih rastvarača ispitana su u celom opsegu molskih udela i na različitim<br />temperaturama. Na osnovu izmerenih gustina, viskoznosti i električne provodljivosti<br />izračunati su različiti fizičko hemijski parametri i diskutavne interakcije između komponenata sme&scaron;a. Ispitana je termička i elektrohemijska stabilnost odabranih<br />elektrolita. Dodatkom litijumove soli u odabrane binarne sme&scaron;e dobijeni su ternarni<br />sistemi koji su okarakterisani u zavisnoti od koncentracije litijumove soli. Odabrani<br />elektroliti upotrebljeni su za&nbsp; ispitivanje performansi litijum&nbsp; jonske ćelije sa anatas<br />TiO2&nbsp; nanotubularnim elektrodama.Cikličnom voltametrijom i galvanostatskim<br />cikliranjem su ispitane performanse ćelije u toku 150 ciklusa punjenja i pražnjenja. Na<br />osnovu ciklovoltametrijskih merenja izračunati su koeficijenti difuzije i energija aktivacije za difuziju.</p> / <p>In this doctoral dissertation, Ion liquid-based electrolytes were tested for use in&nbsp; lithium-ion batteries. The physicochemical properties of binary mixtures of ionic&nbsp; liquids with dicyanamide and bis (trifluoromethylsulfonyl) imide anions and&nbsp; molecular solvents were examined throughout the range of molar proportions and at different temperatures. Based on the measured densities, viscosity and electrical conductivity, various physical chemical parameters and discrete interactions between&nbsp; the components of the mixture are calculated. Thermal and electrochemical stability of selected electrolytes was examined. By addition of lithium salt to the selected binary mixtures, ternary systems were characterized which were characterized by the concentration of lithium salt. The selected electrolytes were used to test the performance of the lithium-ion cell with anatomic TiO2 nanotubular electrodes. Cyclic voltammetry and galvanostatic cycling tested the cell&#39;s performance during the 150 charge and discharge&nbsp; cycles. Based on cyclotoltametric&nbsp; measurements, the diffusion coefficients and activation energies for diffusion were calculated.</p>
89

Contribution à l'évaluation du vieillissement des batteries de puissance utilisées dans les véhicules hybrides selon leurs usages

Montaru, Maxime 06 July 2009 (has links) (PDF)
Face à la raréfaction du pétrole et aux contraintes environnementales fixées dans le cadre du protocole de Kyoto, le domaine des transports tend à évoluer vers des technologies moins consommatrices et moins émettrices de gaz à effet de serre. À ce jour, dans le domaine de l'automobile, une solution technologique fortement envisagée est l'hybridation électrique des véhicules. Le développement de ces véhicules reste néanmoins limité à cause de l'incertitude concernant la durée de vie des batteries. Cette étude porte sur la préparation de tests de vieillissement accélérés et s'articule autour de deux axes : l'évaluation des performances des batteries à un instant de vie donné et la détermination de profils de sollicitations représentatifs de l'usage réel à utiliser pour les tests de cyclage. L'étude se focalise sur deux des technologies les plus prometteuses pour les véhicules hybrides électriques, c.-a-d. le nickel métal hydrure (NiMH) et le Lithium-ion (Li-ion).
90

Surface Phenomena in Li-Ion Batteries

Andersson, Anna January 2001 (has links)
<p>The formation of surface films on electrodes in contact with non-aqueous electrolytes in lithium-ion batteries has a vital impact on battery performance. A basic understanding of such films is essential to the development of next-generation power sources. The surface chemistry, morphology and thermal stability of two typical anode and cathode materials, graphite and LiNi<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub>, have here been evaluated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, scanning electron microscopy and differential scanning calorimetry, and placed in relation to the electrochemical performance of the electrodes. </p><p>Chemical and morphological information on electrochemically formed graphite surface films has been obtained accurately by combining XPS measurements with Ar<sup>+</sup> ion etching. An improved picture of the spatial organisation, including thickness determination of the surface film and characterisation of individual component species, has been established by a novel sputtering calibration procedure. The stability of the surface films has been shown to depend strongly on temperature and choice of lithium salt. Decomposition products from elevated-temperature storage in different electrolyte systems were identified and coupled to effects such as capacity loss and increase in electrode resistance. Different decomposition mechanisms are proposed for surface films formed in electrolytes containing LiBF<sub>4</sub>, LiPF<sub>6</sub>, LiN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub> and LiCF<sub>3</sub>SO<sub>3</sub> salts.</p><p>Surface film formation due to electrolyte decomposition has been confirmed on LiNi<sub>0.8</sub>Co<sub>0.2</sub>O<sub>2</sub> positive electrodes. An overall surface-layer increase with temperature has been identified and provides an explanation for the impedance increase the material experiences on elevated-temperature storage. </p><p>Surface phenomena are clearly major factors to consider in selecting materials for practical Li-ion batteries.</p>

Page generated in 0.0576 seconds