Spelling suggestions: "subject:"eie, algebra dde"" "subject:"eie, algebra dee""
21 |
Desenvolvimento em teoria de representaçãoes de grupos quanticosMoura, Adriano Adrega de, 1975- 03 August 2018 (has links)
Orientadores:Alcibiades Rigas e Pavel I. Etingof / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T14:05:29Z (GMT). No. of bitstreams: 1
Moura_AdrianoAdregade_D.pdf: 703067 bytes, checksum: d855f6d5b3cf742836b17cd716f46a33 (MD5)
Previous issue date: 2003 / Doutorado / Doutor em Matemática
|
22 |
Equivalencias e representantes canonicos de ideais abelianos e estruturas quase-complexasDiniz, Adélia Conceição 15 April 2004 (has links)
Orientadores: Luiz Antonio Barrera San Martin, Nir Cohen, Caio Jose Colletti Negreiros / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T20:12:25Z (GMT). No. of bitstreams: 1
Diniz_AdeliaConceicao_D.pdf: 2611715 bytes, checksum: a2dfb5e9fb4df60703628170361642a9 (MD5)
Previous issue date: 2004 / Resumo: Um dos problemas que ficaram em aberto em [15], foi o de determinar representantes canônicos para as classes de equivalência das estruturas quase-complexas invariantes (1,2)-admissíveis, sob a ação do grupo de Weyl. Seja IF uma variedade de flags maximal associada a uma álgebra de Lie semi-simples complexa de dimensão finita. Uma estrutura quase-complexa invariante sobre IF é dita (1,2)-admissível, se existir uma métrica invariante tal que a estrutura, juntamente com a métrica, forma um par invariante (1,2)-simplético. O artigo acima mostra que todo par invariante (1,2)-simplético pode ser colocado na forma de ideal abeliano. Portanto, cada classe de equivalência das estruturas (1,2)-admissíveis, admite um representante que está na forma de ideal abeliano. Além disso, o subgrupo de Weyl que preserva a forma de ideal abeliano dentro de cada classe, coincide com o subgrupo que deixa invariante o diagrama de Dynkin estendido. Deste modo, para encontrar representantes canônicos, é necessário entender melhor a ação do subgrupo no conjunto dos ideais abelianos. A descrição inicial dessa ação, a que foi dada em [15], é muito complicada, o que tem dificultado o entendimento completo das órbitas. Por isso, é conveniente procurar uma outra descrição dessa ação, isto é, outra maneira de representar o conjunto dos ideais abelianos e a ação do sub_upo nesse conjunto. O objetivo desse trabalho é apresentar uma descrição alternativa dessa ação e, em seguida, exibir representantes canônicos para as classes de equivalência, segundo essa nova descrição, bem como o número de classes / Abstract: One of the problems left open in [15] was the determination of canonical representatives for the equivalence classes of invariant (1, 2)-admissible almost complex structures, under the action of the Weyl group. Let JF be a maximal fiag manifold, associated with a finite-dimensional complex semi-simple Lie algebra. An invariant almost complex structure over JF is called (1,2)-admissible if there exists an invariant metric so that the structure, together with the metric, forms an invariant (1, 2)-symplectic pairo The above mentioned paper shows that every invariant (1,2)-symplectic pair can be transformed, under the action of the Weyl group, to another pair in abelian ideal formo This way, every equivalence class of (1,2)-admissible structures admits a representative in abelian ideal formo Moreover, the subgroup of the Weyl group which preserve the abelian ideal form in each class, coincides with the subgroup which leave invariant the extended Dynkin diagram. Thus, in order to find canonical representatives it is necessary to better understand the action of this subgroup on the set of abelian ideaIs. The original description given for this action in the [15], is quite complicated and does not permit an easy analysis of the orbits. It is, therefore, tempting to find other descriptions of this action, namely, other ways of representing the set of abelian ideaIs and the action of the subgroup on this set. The objective of this work is to provide alternative descriptions of this action and subsequently, find canonical representative for the equivalence classes, according to the new descriptions, as well as calculating the number of these classes / Doutorado / Doutor em Matemática
|
23 |
Spinors e twistors no modelo paravetorial : uma formulação via algebras de CliffordRocha Junior, Roldão da 04 June 2001 (has links)
Orientador: Jayme Vaz Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-09-24T19:00:48Z (GMT). No. of bitstreams: 1
RochaJunior_Roldaoda_M.pdf: 4478856 bytes, checksum: 633cef106ddf91dc74b9d11ae74d1372 (MD5)
Previous issue date: 2001 / Resumo: Nesta dissertação o formalismo dos spinors e twistors de Penrose são formulados em termos das álgebras de Clifi'ord. Para tal utilizamos o modelo paravetorial do espaço-tempo, onde um vetor do espaço-tempo é escrito em termos da soma de escalares e vetores da álgebra de Cli:fford do espaço euclideano tridimensional. Com isso construímos um formalismo que utiliza a menor estrutura algébrica capaz de descrever teorias físicas relativísticas, como as teorias eletromagnética e de Dirac. Os spinors são definidos algebricamente como elementos de um ideal lateral mínimal da álgebra de Clifi'ord. Utilizamos o teorema de periodicidade (1,1) das álgebras de Clifi'ord para descrever de maneira linear, em termos da complexificação da álgebra de Clifi'ord do espaço-tempo, as transformações conformes desse espaço-tempo. Os twistors aparecem como uma classe particular de spinors algébricos. Consideramos ainda algumas possíveis generalizações / Abstract: In this dissertation the Penrose theory of spinors and twistors is formulated from the point of view of the Clifi'ord algebras. We use the paravector model of spacetime, where a spacetime vector is written as a sum of scalars and vectors of the Clifi'ord algebra associated with the three-dimensional euclidean space. From this we construct a formalism that uses the least algebraic structure that describes relativistic physical theories, such as the electromagnetic and the Dirac ones. Spinors are defined algebraically as elements of a minimallateral ideal of a Cli:fford algebra. We use the modulo (1,1) periodicity theorem of Clifi'ord algebras to describe the conformal transformations as linear transformations, using the method of complexmcation of the spacetime Clifi'ord algebra. Twistors are defined as a particular class of algebraic spinors. We consider some possible generalizations / Mestrado / Mestre em Matemática Aplicada
|
24 |
Modelo de Gross-Neveu e simetrias : soluções analíticas e dinâmica de campos térmicosRocha, Paulo Magalhães Marciano da 22 December 2015 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Física, 2015. / Submitted by Kathryn Cardim Araujo (kathryn.cardim@gmail.com) on 2016-04-27T16:30:59Z
No. of bitstreams: 1
2015_PauloMagalhãesMarcianoDaRocha.pdf: 595260 bytes, checksum: d0dd827f80029b5f52a2d26e668d2b5c (MD5) / Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2016-04-28T13:07:36Z (GMT) No. of bitstreams: 1
2015_PauloMagalhãesMarcianoDaRocha.pdf: 595260 bytes, checksum: d0dd827f80029b5f52a2d26e668d2b5c (MD5) / Made available in DSpace on 2016-04-28T13:07:36Z (GMT). No. of bitstreams: 1
2015_PauloMagalhãesMarcianoDaRocha.pdf: 595260 bytes, checksum: d0dd827f80029b5f52a2d26e668d2b5c (MD5) / Nesta tese são discutidos dois aspectos do modelo de Gross-Neveu através da óptica de Simetria: Soluções analíticas são encontradas através da análise sistemática de simetrias das equações geradas pelo modelo e transição de fase é estudada a partir da restauração da simetria quiral por meio de efeitos de compactificação. / Within this thesis, two aspects of the Gross-Neveu model are considered in the backdrop of symmetry analysis: Analytical solutions of the model are obtained through systematic symmetry analysis of the differential equations of the model and phase transistion is studied from the point of view of the chiral symmetry restoration through compactification effects.
|
25 |
Grupos de Lie compactos / Compact Lie groupsLacerda, Conrado Damato de, 1986- 18 August 2018 (has links)
Orientador: Luiz Antonio Barrera San Martin / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-18T06:52:41Z (GMT). No. of bitstreams: 1
Lacerda_ConradoDamatode_M.pdf: 1208692 bytes, checksum: 167da419a80e3fe06963795a1b3fea2d (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho apresentamos os principais resultados da teoria dos grupos de Lie compactos e provamos o Teorema de Weyl sobre os seus grupos fundamentais / Abstract: In this work we present the main results about compact Lie groups and prove Weyl's Theorem on their fundamental groups / Mestrado / Teoria de Lie / Mestre em Matemática
|
26 |
Estruturas quase hermitianas invariantes e ideais abelianosSantos, Edson Carlos Licurgo 24 January 2003 (has links)
Orientador : Caio José Colletti Negreiros / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-02T17:25:14Z (GMT). No. of bitstreams: 1
Santos_EdsonCarlosLicurgo_M.pdf: 2595415 bytes, checksum: 38a710205b6367e40e55e80505413993 (MD5)
Previous issue date: 2003 / Resumo: Iniciamos o trabalho tomando uma álgebra de Lie g complexa semi-simples e considerando sua variedade bandeira maximal F = G/P, onde G é um grupo de Lie complexo com álgebra de Lie g. P um subgrupo (parabólico minimal) de Borel de G. Se U é um subgrupo compacto maximal de G pode-se escrever F =U /T onde T U é um toro maximal. Com o objetivo de estudar as estruturas quase Hermitianas U-invariantes sobre F, isto é, pares (J, ) com J uma estrutura quase complexa invariante e uma métrica Riemanniana invariante, no primeiro capítulo provamos que as estruturas quase Hermitiana quase Kähler invariantes são também Kähler. Para cada alcova A associamos uma estrutura quase complexa invariante J (A), dita afim. e mostramos que esta admite uma métrica , que torna (1, 2)-simplético o par (J , ). A recíproca, isto é. a prova de que se o par (J, ) é (1, 2)-simplético. então J é afim, passa pela construção fundamental deste trabalho, a saber a construção dos ideais abelianos. Desenvolvemos, a seguir uma fórmula que relaciona dois ideais abelianos diferentes representando a mesma classe de equivalência. Com esta preparação, reduzimos as dezesseis classes de estruturas quase Hermitianas invariantes dadas por Gray e Hervella em [GH] a apenas quatro. Grande parte das demonstrações envolvidas nesta redução são conseqüência direta das condições definidas para as classes. O único caso que requer os resultados sobre as estruturas (1, 2)-simpléticas, é a prova de que estruturas "near" Kähler invariantes são Kähler se a álgebra de Lie não é A2 / Abstract: Let G be a complex semi-simple Lie group and form its maximal flag manifold F = G/P = U/T where P is a minimal parabolic subgroup, U a compact real form and T = U P a maximal torus of U. We study U -invariant almost Hermitian structures on F. The (1, 2)-symplectic (or quasi-Kähler) structures are naturally related to the affine Weyl groups. A special form for them, involving abelian ideals of a Borel subalgebra, is derived. From the (1, 2)-symplectic structures a classification of the whole set of invariant structures is provided, showing, in particular, that near Kähler invariant structures are Kähler. except in the A case / Mestrado / Mestre em Matemática
|
27 |
Formas normais de sistemas dinamicos reversiveisSilva, Gilmar Fernandes da 31 July 2018 (has links)
Orientador : Marco Antonio Teixeira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-07-31T17:48:20Z (GMT). No. of bitstreams: 1
Silva_GilmarFernandesda_M.pdf: 1433686 bytes, checksum: 54ba2222e30e00cfe70b08c08d864af0 (MD5)
Previous issue date: 2002 / Mestrado / Meste em Matemática
|
28 |
Um problema de transitividade da teoria do controleAstorga Tapia, Gonzalo 24 November 1995 (has links)
Orientador: Luiz Antonio Barreira San Martin / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Ciêntítica / Made available in DSpace on 2018-07-20T19:22:43Z (GMT). No. of bitstreams: 1
AstorgaTapia_Gonzalo_M.pdf: 1518186 bytes, checksum: 589e40b28ac1dea84f8aa237d54fa3b4 (MD5)
Previous issue date: 1995 / Resumo: Não informado / Abstract: Not informed / Mestrado / Mestre em Matemática
|
29 |
Grupos algebricos e hiperalgebras / Algebraic groups and hyperalgebrasMacedo, Tiago Rodrigues, 1985- 11 September 2018 (has links)
Orientadores: Adriano Adrega de Moura, Marcos Benevenuto Jardim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-09-11T21:13:21Z (GMT). No. of bitstreams: 1
Macedo_TiagoRodrigues_M.pdf: 809265 bytes, checksum: 0f4ecb72bd6a8b221a3514e62b63fd41 (MD5)
Previous issue date: 2009 / Resumo: Apresentaremos resultados relacionando a álgebra de distribuições de grupos de Chevalley com as chamadas hiperálgebras. Estas últimas são álgebras de Hopf construídas por redução módulo p da forma integral de Kostant para álgebras de Lie simples. Em seguida, tentamos, a partir de uma certa classe de álgebras de Hopf, a saber, álgebras de Hopf que são álgebras de distribuições de grupos algébricos, reconstruir esses grupos algébricos. / Abstract: We present some results which relate the algebra of distributions of a Chevalley group and the so called hyperalgebras. The latter are Hopf algebras obtained by reduction modulo p of the Kostant integral form of a simple Lie algebra. Then we try to rebuild algebraic groups from Hopf algebras which are their algebras of distribution. / Mestrado / Algebra / Mestre em Matemática
|
30 |
Estruturas complexas comauto-espaços nilpotentes e soluveis / Complex structures having nilpotent and solvable eigenspacesSantos, Edson Carlos Licurgo 25 June 2007 (has links)
Orientador: Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T11:48:47Z (GMT). No. of bitstreams: 1
Santos_EdsonCarlosLicurgo_D.pdf: 405695 bytes, checksum: 334d5172d85f7bc35539dbd900fbef67 (MD5)
Previous issue date: 2007 / Resumo: Seja (g; [·,·]) uma álgebra de Lie com uma estrutura complexa integrável J. Os ± i-auto-espaços de J são subálgebras complexas de gC isomorfas a álgebra (g; [*]J ) com colchete [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). Consideramos, no capítulo 2, o caso onde estas subálgebras são nilpotentes e mostramos que a álgebra de Lie original (g, [·,·]) é solúvel. Consideramos também o caso 6-dimensional e determinamos explicitamente a única álgebra de Lie possível (g; [*]J ). Finalizamos esse capítulo pruduzindo vários exemplos ilustrando diferentes situações, em particular mostramos que para cada s existe g com estrutura complexa J tal que (g; [*]J ) é s-passos nilpotente. Exemplos similares para estruturas hipercomplexas são também construidos. No capítulo 3 consideramos o caso onde os ±i-auto-espaços de J são subálgebras complexas solúveis e a álgebra complexa é uma álgebra de Lie semi-simples. Mostramos que, se a álgebra real é compacta, uma tal estrutura complexa depende unicamente de um subespaço da subálgebra de Cartan. Finalizamos esse capítulo considerando o caso em que as subálgebras solúveis complexas estão contidas em subálgebras de Borel de uma órbita aberta da ação dos automorfismos internos da álgebra real. Mostramos que, assim como no caso compacto, as estruturas complexas são determinandas, de modo único, por subespaços da subálgebra de Cartan. Ao final da tese apresentamos um procedimento, elaborado em MAPLE, que possibilita testar a identidade de Jacobi quando os colchetes de Lie são dados pelas constantes de estrutura / Abstract: Let (g; [·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g; [*]J )with bracket [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). We consider, in chapter three, thecase where these subalgebras are nilpotent and prove that the original Lie algebra(g, [·,·]) must be solvable. We consider also the 6-dimensional case and determineexplicitly the possible nilpotent Lie algebras (g; [*]J ). We finish this chapter byproducing several examples illustrating different situations, in particular we showthat for each given s there exists g with complex structure J such that (g; [*]J ) iss-step nilpotent. Similar examples of hypercomplex structures are also built.In Chapter 3 we consider the case where the ± i eigenspaces of J are solvablecomplex subalgebras and gC is a semisimple Lie algebra. We prove that, if g is compact, such a complex structure comes from a subspace of the Cartan subalgebra.We finish this chapter by considering the case where the solvable complex subalgebras are contained in Borel subalgebras of an open orbit of the action of inner automorphisms of the real algebra.At the end of the thesis we present an algorithm, made in MAPLE, that allowus to verify the Jacobi identity when the Lie brackets are defined by the structureconstants / Doutorado / Mestre em Matemática
|
Page generated in 0.0525 seconds