• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Observing molecular interactions that determine stability, folding, and functional states of single Na+/H+ antiporters

Kedrov, Alexej 02 February 2007 (has links) (PDF)
Selective ion and solute transport across cell membranes is a vital process occurring in all types of cells. Evolutionarily developed transport proteins work as membrane-embedded molecular machines, which alternately open a gate on each side of the membrane to bind and translocate specific ions. Sodium/proton exchange plays a crucial role in maintaining cytoplasmic pH and membrane potential, while, if not regulated, the process causes severe heart diseases in humans. Here I applied single-molecule force spectroscopy to investigate molecular interactions determining the structural stability of the sodium/proton antiporter NhaA of Escherichia coli, which serves as a model system for this class of proteins. Mechanical pulling of NhaA molecules embedded in the native lipid bilayer caused a step-wise unfolding of the protein and provided insights into its stability. Modified experiments allowed observing refolding of NhaA molecules and estimating folding kinetics for individual structural elements, as well as detecting eventual misfolded conformations of the protein. The activity of NhaA increases 2000fold upon switching pH from 6 to 8. Single-molecule force measurements revealed a reversible change in molecular interactions within the ligand-binding site of the transporter at pH 5.5. The effect was enhanced in the presence of sodium ions. The observation suggests an early activation stage of the protein and provides new insights into the functioning mechanism. When studying interactions of NhaA with the inhibitor 2-aminoperimidine, I exploited single-molecule force measurements to validate the binding mechanism and to describe quantitatively formation of the protein:inhibitor complex. The ability of single-molecule force measurements to probe structurally and functionally important interactions of membrane proteins opens new prospects for using the approach in protein science and applied research.
2

Molekulare Ähnlichkeiten und deren biologische Bedeutung

Lorenzen, Stephan 06 March 2006 (has links)
Die vorliegende Arbeit untersucht mit bioinformatischen Methoden die biologische Bedeutung von Ähnlichkeiten in Kleinstrukturen und peptidischen Sequenzmotiven sowie lokaler und globaler Sequenzähnlichkeit. Der erste Teil der Arbeit behandelt chemische Ähnlichkeiten. Ausgehend von bekannten Inhibitoren der Fehlfaltung des Prionproteins wurde eine Datenbank pharmakologischer Wirkstoffe nach chemisch und strukturell ähnlichen Substanzen durchsucht und 16 Substanzen als neue potentielle Inhibitoren der Fehlfaltung vorgeschlagen. Der nächste Teil untersucht Ähnlichkeiten in Sequenzmotiven, die eine Interaktion mit Pex19, dem Importrezeptor für peroxisomale Membranproteine, vermitteln. In Zusammenarbeit mit einer experimentellen Arbeitsgruppe konnte die Bindestelle charakterisiert und Präferenzen für bestimmte Aminosäuren herausgearbeitet werden. Das Bindemotiv ist eine vermutlich helikale Region mit verzweigtkettigen aliphatischen und basischen Aminosäuren. Aus experimentellen Daten konnte eine positionsabhängige Vorhersagematrix erstellt und validiert werden. Die Beziehung zwischen lokalen Sequenzähnlichkeiten und der Konformation von Prolylbindungen in Proteinen ist Thema des dritten Teils. Die Aminosäurepräferenzen in der Nachbarschaft von cis- und trans-Prolylresten unterscheiden sich, und beide zeigen unterschiedliche Austauschpräferenzen bei Mutationen. Im Gegensatz zu lokaler Sequenzähnlichkeit ist eine globale Sequenzähnlichkeit von nur 20% ein wesentlich besserer Indikator für das Auftreten von cis-Prolylbindungen. Der letzte Teil befaßt sich mit inverser Sequenzähnlichkeit zwischen Proteinen, die wesentlich öfter auftritt als erwartet. Proteine aus einem nichtredundanten Datensatz wurden gleich- und gegenläufig aligniert und strukturelle Ähnlichkeiten zwischen den aufgefundenen Proteinpaaren untersucht. Es konnte gezeigt werden, daß bis auf kurze Sekundärstruktur-Einheiten eine inverse Sequenzähnlichkeit zwischen Proteinen keine strukturelle Ähnlichkeit impliziert. / This work is dealing with the biological impact of similarities between chemical structures, protein sequence motifs and local sequence surrounding as well as global sequence similarity. All four aspects are analyzed by computational methods. The first part is dealing with chemical similarities. Based on a recently published set of prion protein misfolding inhibitors, a data base of approved drugs has been screened for compounds with chemical and structural similarities to these substances. 16 drugs are proposed as new potential inhibitors of prion protein aggregation. The next part addresses similarities of sequence motifs which mediate the interaction with the peroxisomal membrane protein import receptor Pex19. In cooperation with an experimental group, the binding site could be characterized, and amino acid preferences of the different positions of the motif have been determined. The binding motif is a probably helical region of target proteins bearing branched aliphatic and basic residues. A position specific scoring matrix for the prediction of Pex19 binding sites could be generated and validated. The relation between local sequence similarity and prolyl bond conformation is examined in the third part. Amino acid preferences of neighboring residues differ between cis and trans prolyl residues, and both species show different amino acid exchange patterns upon mutation. In contrast to local sequence similarity, overall sequence similarity between proteins as low as 20% is a much better indicator for the occurrence of cis prolyl bonds. The last part focuses on inverse sequence similarity between proteins which occurs far more often than expected by chance. Proteins from a nonredundant data set have been aligned in parallel and antiparallel, and structural similarities between the detected protein pairs have been examined. It could be shown that, with the exception of short secondary structural elements, inverse sequence similarity does not imply structural similarity.
3

Observing molecular interactions that determine stability, folding, and functional states of single Na+/H+ antiporters

Kedrov, Alexej 20 November 2006 (has links)
Selective ion and solute transport across cell membranes is a vital process occurring in all types of cells. Evolutionarily developed transport proteins work as membrane-embedded molecular machines, which alternately open a gate on each side of the membrane to bind and translocate specific ions. Sodium/proton exchange plays a crucial role in maintaining cytoplasmic pH and membrane potential, while, if not regulated, the process causes severe heart diseases in humans. Here I applied single-molecule force spectroscopy to investigate molecular interactions determining the structural stability of the sodium/proton antiporter NhaA of Escherichia coli, which serves as a model system for this class of proteins. Mechanical pulling of NhaA molecules embedded in the native lipid bilayer caused a step-wise unfolding of the protein and provided insights into its stability. Modified experiments allowed observing refolding of NhaA molecules and estimating folding kinetics for individual structural elements, as well as detecting eventual misfolded conformations of the protein. The activity of NhaA increases 2000fold upon switching pH from 6 to 8. Single-molecule force measurements revealed a reversible change in molecular interactions within the ligand-binding site of the transporter at pH 5.5. The effect was enhanced in the presence of sodium ions. The observation suggests an early activation stage of the protein and provides new insights into the functioning mechanism. When studying interactions of NhaA with the inhibitor 2-aminoperimidine, I exploited single-molecule force measurements to validate the binding mechanism and to describe quantitatively formation of the protein:inhibitor complex. The ability of single-molecule force measurements to probe structurally and functionally important interactions of membrane proteins opens new prospects for using the approach in protein science and applied research.
4

The role of water in the kinetics of hydrophobic molecular recognition investigated by stochastic modeling and molecular simulations

Weiß, Richard Gregor 21 February 2018 (has links)
Die Assoziation kleiner Moleküle (Liganden) in hydrophobe Bindungstaschen spielt eine fundamentale Rolle in der Biomolekularerkennung und den Selbstassemblierungsprozessen der physikalischen Chemie wässriger Lösungen. Während der Einfluss des Wassers auf die freie Energie der Bindung (die Bindungsaffinität) im thermischen Gleichgewicht in den letzten Jahren auf immer stärkere Aufmerksamkeit stößt, ist die Rolle des Wassers in der Kinetik und der Bestimmung der Bindungsraten noch weitestgehend unverstanden. Welche nanoskaligen Effekte des Wassers beeinflussen die Dynamik des Liganden in der Nähe der Bindungstasche, und wie lassen sie sich durch die chemischen Eigenschaften der Tasche steuern? Neuste Forschungen haben mithilfe von molekularen Computersimulationen eines einfachen Modells gezeigt, dass Hydrationsfluktuationen in der hydrophoben Bindungstasche an die Dynamik des Liganden koppeln und damit seine Bindungsrate beeinflussen. Da die Wasserfluktuationen wiederum durch die Geometrie und Hydrophobizität der Bindungstasche beeinflusst werden, entsteht die Möglichkeit, kontrollierte Fluktuation zu kreieren, um die Bindungsraten des Liganden zu steuern. In dieser Arbeit wird diese Perspektive mithilfe eines theoretischen Multiskalenansatzes für prototypische Schlüssel-Schloss-Systeme aufgegriffen. Wir untersuchen den Einfluss der physikochemischen Eigenschaften der Bindungstasche auf die Diffusivität und die Bindungsraten des Liganden, und wie die Orientierung eines anisotropen Liganden an die Hydrationsfluktuationen der Tasche koppelt. Damit stellen wir fest, dass kleine Änderungen der Taschentiefe eine extreme Beschleunigung der Bindungsraten bewirken kann und, dass gleichzeitig die Bindung in konkave Taschen vorteilhaft für die Reorientierungsdynamik des Liganden ist. Die Resultate dieses Projekts sollen somit helfen, maßgeschneiderte Lösungen für funktionale „Host-Guest“-Systeme sowie pharmazeutische Moleküle in biomedizinischen Anwendungen zu entwickeln. / The association of small molecules (ligands) to hydrophobic binding pockets plays an integral role in biochemical molecular recognition and function, as well as in various self-assembly processes in the physical chemistry of aqueous solutions. While the investigation of water contributions to the binding free energy (affinity) in equilibrium has attracted a great deal of attention in the last decade, little is known about the role of water in determining the rates of binding and kinetic mechanisms. For instance, what are the nanoscale water effects on ligand diffusion close to the hydrophobic docking site, and how can they be steered by the chemical composition of the pocket? Recent studies used molecular simulations of a simple prototypical pocket-ligand model to show that hydration fluctuations within the binding pocket can couple to the ligand dynamics and influence its binding rates. Since the hydration fluctuations, in turn, can be modified by the pocket’s geometry and hydrophobicity, the possibility exists to create well-controlled solvent fluctuations to steer the ligand’s binding rates. In this work, we pick up this appealing notion employing a theoretical multi-scale approach of a generic key-lock system in aqueous solution. We explore the influence of the physicochemical properties of the pocket on local ligand diffusivities and binding rates and demonstrate how the orientation of a (non-spherical) ligand couples to a pocket’s hydration fluctuations. We find that minor modulation in pocket depth can drastically speed up the binding rate and that, concurrently, binding to molded binding sites is advantageous for the rotational dynamics of the ligand. The results and discussion of this work shall, therefore, imply generic design principles for tailored solutions of functional host-guest systems as well as optimized drugs in biomedical applications.

Page generated in 0.0803 seconds