• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 29
  • 8
  • 5
  • 1
  • Tagged with
  • 97
  • 97
  • 32
  • 27
  • 21
  • 17
  • 15
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

<b>HIGH SOLIDS LOADING AQUEOUS SLURRY FORMATION OFCORN STOVER BEFORE PRETREATMENT IN A FED-BATCH BIOREACTOR</b>

Diana M Ramirez Gutierrez (8158146) 17 April 2024 (has links)
<p dir="ltr">Feedstock variability represents a challenge in the adoption of lignocellulosic biomass for biofuels and biochemicals production, due to the differences in critical chemical and physical properties like lignin content, and water absorption respectively. Thus, difficult continuous manufacturing processes in biorefineries, hinder the transition from liquid feedstocks to renewable materials that consisting of solid particles. Modeling of flow properties based on rheological measurements of treated biomass is a quantitative metric for identifying if different feedstocks form pumpable slurries. Additionally, the correlation of yield stress to physical and chemical properties gives a measure that accounts for the variability in the processing design. This research models rheological properties and relates these to compositional data from different non-pretreated fractions of corn stover biomass slurries. Slurries were formed with solids concentrations of 300 g/L in a 6 hours fed-batch process using the commercial enzymes Celluclast 1.5L or Ctec-2 at 1FPU/g or 3 FPU/g of dry solids, basis to enable the liquefaction (i.e., slurry-forming) mechanism. We found that insoluble lignin content of the different fractions was related to water absorption in pellets and free water on slurries and that free water was a good indicator of the potential for a material to form slurry. Higher flowability (lower yield stress) was found at higher content of lignin, particularly for materials containing 26% lignin where yield stress was reduced to 254Pa when compared with mixtures of 14% lignin that presented yield stresses of around 4000 Pa. We show that rheology modeling linked to compositional characteristics for biomass slurries can be used to predict material flow behavior in a biorefinery to optimize and achieve high solids loadings that enhance the production of ethanol for biofuels. This insight and the ability to form high concentration slurries before pretreatment holds the potential to develop new processing strategies that could help to foster a more efficient and sustainable bio-based industry. </p>
92

Effect of pretreatment on the breakdown of lignocellulosic matrix in barley straw as feedstock for biofuel production

2014 October 1900 (has links)
Lignocellulosic biomass is composed of cellulose, hemicellulose, lignin and extraneous compounds (waxes, fats, gums, starches, alkaloids, resins, tannins, essential oils, silica, carbonates, oxalates, etc). The sugars within the complex carbohydrates (cellulose and hemicellulose) can be accessed for cellulosic bioethanol production through ethanologenic microorganisms. However, the composite nature of lignocellulosic biomass, particularly the lignin portion, presents resistance and recalcitrance to biological and chemical degradation during enzymatic hydrolysis/saccharification and the subsequent fermentation process. This leads to a very low conversion rate, which makes the process uneconomically feasible. Thus, biomass structure requires initial breakdown of the lignocellulosic matrix. In this study, two types of biomass pretreatment were applied on barley straw grind: radio-frequency (RF)-based dielectric heating technique using alkaline (NaOH) solution as a catalyst and steam explosion pretreatment at low severity factor. The pretreatment was applied on barley straw which was ground in hammer mill with a screen size of 1.6 mm, so as to enhance its accessibility and digestibility by enzymatic reaction during hydrolysis. Three levels of temperature (70, 80, and 90oC), five levels of ratio of biomass to 1% NaOH solution (1:4, 1:5, 1:6, 1:7, & 1:8), 1 h soaking time, and 20 min residence time were used for the radio frequency pretreatment. The following process and material variables were used for the steam explosion pretreatment: temperature (140-180oC), retention time (5-10 min), and 8-50% moisture content (w.b). The effect of both pretreatments was assessed through chemical composition analysis and densification of the pretreated and non-pretreated biomass samples. Results of this investigation show that lignocellulosic biomass absorbed more NaOH than water, because of the hydrophobic nature of lignin, which acts as an external crosslink binder on the biomass matrix and shields the hydrophilic structural carbohydrates (cellulose and hemicellulose). It was observed in the RF pretreatment that the use of NaOH solution and the ratio of biomass to NaOH solution played a major role, while temperature played a lesser role in the breakdown of the lignified matrix, as well as in the production of pellets with good physical quality. The heat provided by the RF is required to assist the alkaline solution in the deconstruction and disaggregation of lignocellulosic biomass matrix. The disruption and deconstruction of the lignified matrix is also associated with the dipole interaction, flip flop rotation, and friction generated between the electromagnetic charges from the RF and the ions and molecules from the NaOH solution and the biomass. The preserved cellulose from the raw sample (non-treated) was higher than that from the RF alkaline pretreated samples because of the initial degradation of the sugars during the pretreatment process. The same observation applies to hemicellulose. This implies that there is a trade-off between the breakdown of the biomass matrix/creating pores in the lignin and enhancing the accessibility and digestibility of the cellulose and hemicellulose. The use of dilute NaOH solution in biomass pretreatment showed that the higher the NaOH concentration, the lower was the acid insoluble lignin and the higher was the solubilized lignin moieties. The ratio of 1:6 at the four temperatures studied was determined to be the optimal. Based on the obtained data, it is predicted that this pretreatment will decrease the required amount and cost of enzymes by up to 64% compared to using non-treated biomass. However, the use of NaOH led to an increase in the ash content of biomass. The ash content increased with the decreasing ratio of biomass to NaOH solution. This problem of increased ash content can be addressed by washing the pretreated samples. RF assisted-alkaline pretreatment technique represents an easy to set-up and potentially affordable route for the bio-fuel industry, but this requires further energy analysis and economic validation, so as to investigate the significant high energy consumption during the RF-assisted alkaline pretreatment heating process. Data showed that in the steam explosion (SE) pretreatment, considerable thermal degradation of the energy potentials (cellulose and hemicellulose) with increasing acid soluble and insoluble lignin content occurred. The high degradation of the hemicellulose can be accounted for by its amorphous nature which is easily disrupted by external influences unlike the well-arranged crystalline cellulose. It is predicted that this pretreatment will decrease the required amount and cost of enzymes by up to 33% compared to using non-treated biomass.The carbon content of the solid SE product increased at higher temperature and longer residence time, while the hydrogen and oxygen content decreased. The RF alkaline and SE treatment combinations that resulted to optimum yield of cellulose and hemicellulose were selected and then enzymatically digested with a combined mixture of cellulase and β-glucosidase enzymes at 50oC for 96 h on a shaking incubator at 250 rev/min. The glucose in the hydrolyzed samples was subsequently quantified. The results obtained confirmed the effectiveness of the pretreatment processes. The average available percentage glucose yield that was released during the enzymatic hydrolysis for bioethanol production ranged from 78-96% for RF-alkaline pretreated and 30-50% for the SE pretreated barley straw depending on the treatment combination. While the non-treated sample has available average percentage glucose yield of just below 12%. The effects of both pretreatment methods (RF and SE) were further evaluated by pelletizing the pretreated and non-pretreated barley straw samples in a single pelleting unit. The physical characteristics (pellet density, tensile strength, durability rating, and dimensional stability) of the pellets were determined. The lower was the biomass:NaOH solution ratio, the better was the quality of the produced pellets. Washing of the RF-alkaline pretreated samples resulted in pellets with low quality. A biomass:NaOH solution ratio of 1:8 at the three levels of temperature (70, 80, and 90oC) studied are the RF optimum pretreatment conditions. The higher heating value (HHV) and the physical characteristics of the produced pellets increased with increasing temperature and residence time. The steam exploded samples pretreated at higher temperatures (180ºC) and retention time of 10 min resulted into pellets with good physical qualities. Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) was further applied on the RF alkaline and SE samples in light of the need for rapid and easy quantification of biomass chemical components (cellulose, hemicellulose, and lignin). The results obtained show that the FTIR-PAS spectra can be rapidly used for the analysis and identification of the chemical composition of biofuel feedstock. Predictive models were developed for each of the biomass components in estimating their respective percentage chemical compositions.
93

Relation structure/réactivité en conversion hydrothermale des macromolécules de lignocellulose / Correspondence between reactivity and structure during lignocellulose macromolecule hydrothermal conversion

Barbier, Jérémie Alain 09 December 2010 (has links)
Ce travail porte sur l'étude des voies réactionnelles accompagnant la liquéfaction desconstituants de la biomasse lignocellulosique dans un milieu aqueux proche du pointcritique. La stratégie expérimentale consiste à étudier la réaction en unité pilote decomposés lignocellulosiques modèles et à développer une approche analytiquemultitechnique originale afin de caractériser les structures et les masses moléculairesdes produits. Les résultats obtenus montrent que les schémas réactionnels sontcomplexes faisant intervenir de nombreuses voies de fragmentation et de condensationcompétitives. L'étude cinétique à différents temps de séjour montre que la fractionglucidique de la biomasse lignocellulosique a une réactivité très différente de sa fractionligneuse. / This work deals with the study of the reaction pathway during the lignocellulosicconstituent liquefaction by water near its critical point. Experimental method consists ininvestigation of lignocellulosic model compounds conversion in pilot plant combined withdevelopment of a new multitechnique analytical approach in order to characterizeproduct chemical structures and molecular weights. Results show that reaction pathwaysare very complex consisting to several fragmentation and condensation competitivereactions. The kinetic study with different reaction times reveals an important differenceof comportment for the glucidic fraction than the lignin fraction of biomass.
94

Study and Engineering of a GH11 endo-beta-xylanase, a biomass-degrading hemicellulase / Etude et ingénierie d’une endo-beta-1,4-xylanase de la famille GH11, une hémicellulase dégradant la biomasse lignocellulosique

Song, Letian 21 July 2011 (has links)
La création de nouvelles enzymes pour l’hydrolyse de la biomasse est une stratégie clé pour ledéveloppement du bioraffinage. Dans ce contexte, les xylanases de la famille GH11 sont déjàdéployées dans de nombreux procédés industriels et donc bien positionnées pour jouer un rôleimportant dans ces procédés. La cible de cette étude, la xylanase GH11 (Tx-Xyl) de la bactérieThermobacillus xylanilyticus, est une enzyme thermostable et donc une bonne candidate pour destravaux d’ingénierie visant l’amélioration de son activité sur des substrats ligno-cellulosiques.Dans cette étude, deux stratégies d’ingénierie des enzymes ont été employées afin d’obtenir denouvelles informations portants sur les relations structure-fonction au sein de Tx-Xyl. La premièrestratégie a consisté en l’utilisation d’une approche de mutagenèse aléatoire, couplée à l’emploi deméthodes de recombinaison in vitro. Ces travaux avaient pour objectif d’améliorer la capacitéhydrolytique de Tx-Xyl sur la paille de blé. La deuxième stratégie mise en oeuvre s’est appuyée surune approche semi-rationnelle visant la création d’une enzyme chimérique, qui bénéficierait d’uneamélioration des interactions enzyme-substrat au niveau du sous-site -3.Le premier résultat majeur de cette thèse concerne le développement d’une méthode de criblagequi permet l’analyse à haut débit de banques de mutants pour la détection de variants quiprésentent une activité hydrolytique accrue directement sur paille de blé. A l’aide de ce crible, nousavons pu analyser plusieurs banques de mutants, représentant un total de six générations demutants, et identifier une série de combinaisons de mutations différentes. D’un côté, un variant,comportant deux mutations silencieuses, permet une meilleure expression de Tx-Xyl, alors qued’autres enzymes mutées présentent des modifications intrinsèques de leurs aptitudes catalytiques.Comparés à l’enzyme parentale Tx-Xyl, certains mutants solubilisent davantage les arabinoxylanes dela paille et, lorsqu’ils sont déployés avec un cocktail de cellulases, participent à une réactionsynergique qui permet un accroissement du rendement des pentoses et du glucose libérés.A l’aide d’une approche semi-rationnelle, une séquence de 17 acides aminés en provenance d’unexylanase GH11 fongique a été ajoutée à l’extrémité N-terminale de Tx-Xyl, afin de créer de nouveauxbrins β. L’enzyme chimérique a pu être exprimée avec succès et caractérisée. Néanmoins, l’analysede ses propriétés catalytiques a révélé que celle-ci ne présente pas davantage d’interactions avec sonsubstrat dans le sous-site -3, mais les résultats obtenus fournissent de nombreux renseignements surles relations structure-fonction au sein de l’enzyme. De plus, ces travaux nous permettent depostuler que Tx-Xyl posséderait un site de fixation secondaire pour les xylanes, un élement jusqu’iciinsoupçonné dans cette enzyme. Par ailleurs, l’analyse de nos résultats nous permet de proposer uneexplication rationnelle pour l’échec de notre stratégie initiale / Engineering new and powerful enzymes for biomass hydrolysis is one area that will facilitate thefuture development of biorefining. In this respect, xylanases from family GH11 are already importantindustrial biocatalysts that can contribute to 2nd generation biorefining. The target of this study, theGH11 xylanase (Tx-Xyl) from Thermobacillus xylanilyticus is thermostable, and is thus an interestingtarget for enzyme engineering, aiming at increasing its specific activity on lignocellulosic biomass,such as wheat straw. Nevertheless, the action of xylanases on complex biomass is not yet wellunderstood, and thus the use of a rational engineering approach is not really feasible.In this doctoral study, to gain new insight into structure-function relationships, two enzymeengineering strategies have been deployed. The first concerns the development of a randommutagenesis and in vitro DNA shuffling approach, which was used in order to improve the hydrolyticpotency of Tx-Xyl on wheat straw, while the second strategy consisted in the creation of a chimericenzyme, with the aim of probing and improving -3 subsite binding, and ultimately improvinghydrolytic activity.The first key results that has been obtained is the development of a novel high-throughputscreening method, which was devised in order to reliably pinpoint mutants that can better hydrolyzewheat straw. Using this screening method, several generations of mutant libraries have beenanalyzed and a series of improved enzyme variants have been identified. One mutant, bearing silentmutations, actually leads to higher gene expression, while others have intrinsically altered catalyticproperties. Testing of mutants has shown that some of the enzyme variants can improve thesolubilization of wheat straw arabinoxylans and can work in synergy with cellulose cocktails torelease both pentose sugars and glucose.Using a semi-rational approach, 17 amino acids have been added to the N-terminal of Tx-Xyl, withthe aim of adding two extra β-strands coming from a GH11 fungal xylanase. A chimeric enzyme hasbeen successfully expressed and purified and its catalytic properties have been investigated.Although this approach has failed to create increased -3 subsite binding, the data presented revealsimportant information on structure-function relationships and suggest that Tx-Xyl may possess ahitherto unknown secondary substrate binding site. Moreover, a rational explanation for the failureof the original strategy is proposed.
95

Déformulation de matrices complexes : vers une méthodologie raisonnée adaptée aux matrices issues des procédés de valorisation de la biomasse / Reverse engineering on complex matrices : towards a rationalized methodology dedicated to biomass conversion samples

Dubuis, Alexis 07 November 2019 (has links)
La conversion de la biomasse lignocellulosique en biocarburants et molécules biosourcées produit des matrices liquides complexes thermosensibles qui couvrent une large gamme de polarités et de masses moléculaires. Les outils analytiques développés dans la littérature donnent une description partielle de ces matrices oxygénées. Pour en comprendre la réactivité et mieux guider le développement des procédés de conversion, une meilleure caractérisation est nécessaire. L’objectif de cette thèse est de démontrer l’apport d’une dimension de fractionnement pertinente en amont de techniques séparatives pour accéder à la caractérisation à l’échelle moléculaire d’échantillons ex-biomasse. Une déformulation complète et structurée par familles chimiques est visée, sans perte ni modification des composés. Deux voies de fractionnement ont été investiguées : (1) fractionnement par solubilité à l’aide de l’extraction liquide-liquide (LLE) et de la chromatographie de partage centrifuge (CPC) et (2) fractionnement par taille avec la chromatographie d’exclusion stérique (SEC). Ces techniques se veulent complémentaires à une analyse par chromatographie liquide à polarité de phase inversée avec détection par spectroscopie ultraviolet-visible et spectrométrie de masse haute résolution (RPLC-UV/HRMS). Des méthodes de fractionnement LLE, CPC et SEC ont été développées sur molécules modèles afin d’identifier les mécanismes et la sélectivité chimique mis en jeu. Des cartographies 2D inédites ont ainsi été obtenues, assurant un gain important en pouvoir résolutif et une structuration nouvelle des chromatogrammes en comparaison à l’approche RPLC-UV/HRMS. Dans un second temps, le potentiel des couplages SECxRPLC-UV/HRMS et CPCxRPLC-UV/HRMS pour la description de matrices complexes a été illustré via l’étude de deux échantillons issus d’expérimentations en unités pilotes et de compositions chimiques très différentes, représentant deux voies possibles de transformation (biochimique et thermochimique) de biomasse lignocellulosique. La complémentarité entre les approches de séparation mises au point a ainsi permis de doubler le nombre de pics détectés tout en bénéficiant de l’organisation chimique des composés. Cette aide précieuse à l’identification a été renforcée par les informations structurales délivrées via les différents modes de détection, en particulier l’HRMS. La compréhension de la structuration des cartographies 2D a été présentée et discutée afin de proposer la stratégie la plus adaptée pour déformuler complètement un échantillon en s’appuyant sur la mesure de descripteurs pertinents. Enfin, l’une des approches développée dans cette thèse a été mise en œuvre pour l’isolement sélectif et l’élucidation structurale de molécules clefs au sein d’une matrice complexe à l’aide d’expériences en fragmentation MS et spectroscopie de résonance magnétique nucléaire (RMN) / The conversion of lignocellulosic biomass into biofuels and biosourced molecules produces complex thermosensitive liquid matrices which cover a wide range of polarity and molecular weight. Analytical tools developed in the literature only give a partial description of these oxygenated matrices. To understand the reactivity of these samples and optimize the development of conversion processes, a better characterization is required. The objective of this thesis is to demonstrate the interest of a relevant fractionation step prior to separation techniques to help the molecular characterization of biomass samples. The reverse engineering proposed for the sample is desired complete and chemically controlled (without loss or sample modification). Two fractionation pathways were investigated: (1) solubility fractionation with liquid-liquid extraction (LLE) and centrifugal partition chromatography (CPC) and (2) size fractionation with size exclusion chromatography (SEC). These techniques intend to be complementary to reversed-phase liquid chromatography hyphenated to ultraviolet-visible spectroscopy detection and high resolution mass spectrometry (RPLC-UV/HRMS). LLE, CPC and SEC methods were developed on model molecules to understand mechanisms involved and control the chemical selectivity. 2D contour plots were obtained, improving the resolving power and structuring chromatograms in comparison with RPLC-UV/HRMS. Then, SECxRPLC-UV/MS and CPCxRPLC-UV/MS hyphenations were applied to describe two complex samples from different substrates produced on experimental pilot units from two possible conversion pathways of lignocellulosic biomass (biochemical and thermochemical). The complementarity of separation modes allows to double the number of peaks detected, benefiting from the chemical organization of compounds. This constitute a support to identification also enhanced by multi-detection which provide additional structural information on compound detected, especially HRMS. Chemical organization in 2D contour plots were presented and discussed to propose the most adapted strategy to fully fractionate a sample based on the measurement of relevant descriptors. Finally, one of the fractionation approach developed in this thesis was used to isolate and structurally elucidate key molecules of a complex sample through MS fragmentation experiments and nuclear magnetic resonance spectroscopy (NMR)
96

Développement de nouveaux milieux et catalyseurs acides pour la transformation de biomasse lignocellulosique en molécules plateformes / New catalytic systems for the production of platform chemicals from lignocellulosic biomass

Chappaz, Alban 08 October 2014 (has links)
L'objectif de la thèse est d'étudier la transformation de la fraction cellulosique de la biomasse en acide lévulinique. Cet acide est une molécule plateforme permettant un accès à de multiples produits, tels que des solvants, des monomères ou encore des molécules à plus forte valeur ajoutée.Nous proposons d'étudier la transformation de la cellulose en acide lévulinique catalysée par des solutions aqueuses concentrées en acides de Brønsted. La forte acidité de ces milieux et leur capacité à rompre les liaisons hydrogène de la cellulose rendent possible des réactions à température modérée (80°C), ce qui laisse espérer la production sélective d'acide lévulinique.L'état de l'art concernant la production d'acide lévulinique à partir de glucose ou de cellulose est d’abord présenté, ainsi qu’une étude bibliographique sur les techniques permettant la mesure d’acidité de milieux concentrés.La caractérisation de l’acidité des milieux semblant être un point clé pour contrôler la réaction, la seconde partie concernera les mesures d’acidité des milieux concentrés utilisés. La méthodologie expérimentale pour identifier et quantifier les produits de réaction de la cellulose ainsi que les paramètres critiques qui la régissent sont ensuite détaillés.Enfin l’étude s’achèvera par deux chapitres traitant de la transformation du glucose ou la cellulose en acide lévulinique dans des milieux comportant une forte acidité de Brønsted combinée, ou non, avec des sels métalliques. La transformation du glucose conduit à des sélectivités en acide lévulinique de 50 mol% dans l’acide sulfurique 65 % et supérieures à 70 mol% dans l'acide sulfurique 48 % en présence de chlorure d'aluminium hydraté. La transformation de la cellulose conduit à des sélectivités en acide lévulinique d'environ 43 mol% dans les milieux acides de Brønsted concentrés et 60 mol% lorsque des sels métalliques sont ajoutés. De telles sélectivités en acide lévulinique n'ont jamais été décrites dans les milieux concentrés. / The thesis presented in this document aims at converting lignocellulosic biomass into levulinic acid. This target is a valuable building block which can lead to various products.This platform intermediate can be obtained by acid-catalyzed conversion of cellulose contained in raw biomass. However, the state of the art concerning this acid-catalyzed reaction revealed that the current conditions (diluted acids in harsh temperature conditions) result in numerous by-products formation. The selectivity issue often deals with process control, in particular with reaction time optimization.Our approach lies in using concentrated Brønsted acids as alternative media to catalyze cellulose conversion. Indeed, the high acidity level allow the interaction with hydrogen bonds in cellulose fibrils and favor cellulose decristallization. This property should promote the transformation of cellulose into levulinic acid at lower temperature thus limiting the formation of by-products. Therefore, acidity measurements in such media have been developed and performed. An extensive study on glucose and Avicel cellulose conversion in concentrated aqueous solutions of sulfuric acid was performed at 80°C. Levulinic acid yields, up to 50 mol%, were determined by HPLC analysis and a special attention was dedicated to the identification and quantification of soluble or insoluble by-products, allowing the characterization of new species never described in aqueous solutions. Referring to the acidity levels previously determined, a comparison between acidity and catalytic results will be setted.Finally, the effect of metallic chloride addition on the transformation of glucose and cellulose in sulphuric acid solutions has been investigated, revealing improvements yielding up to 70 mol% levulinic acid. This range of selectivity is unprecedented at such a low temperature.
97

Bifunctionalised pretreatment of lignocellulosic biomass into reducing sugars:use of ionic liquids and acid-catalysed mechanical approach

Dong, Y. (Yue) 27 October 2017 (has links)
Abstract Lignocellulosic biomass is the most abundant renewable raw material on the earth and it is so far the most suitable and promising resource for the production of biofuels to replace long-term use of fossil oil. This research aims to convert lignocellulose-based industrial residuals, fibre sludge (FS) from a pulp mill and pine sawdust (PSD) from a sawmill, into platform sugars by two different bifunctionalised pretreatments of lignocellulosic biomass. The bifunctionalised pretreatment combines the ordinary pretreatment (deconstruction) of lignocellulosic biomass with lignocellulosic polysaccharides saccharification. The outcome from both pretreatments can be further transformed into biofuels and chemicals. PSD and FS were converted into platform sugars by acid-catalysed mechanical depolymerisation in a planetary ball mill in the first part of this research. The efficiency of the conversion was mainly affected by the transferred energy caused by collisions, the total milling time, acid concentration and moisture content in the reaction. Approximately 30 wt% of the sugars was yielded from PSD and FS both in the short milling process with a low acid/substrate (A/S) concentration without any prior treatment. The second part of this research focuses upon the conversion of FS into platform sugars using hydroxyalkylimidazolium hydrogen sulphate ionic liquids (ILs). Around 29 wt% of the sugars was produced from FS using an IL/water mixture. The added water acted as a co-solvent and played a critical role in the utilisation of these ILs. The blended water reduced the viscosity of the ILs and enhanced the mass transfer between solvent and solute. In addition, the anions of the ILs provided their acidic property in an aqueous solution and offered an acidic environment for hydrolysis simultaneously. / Tiivistelmä Lignosellulossapohjainen biomassa on runsaimmin saatavilla oleva ja yksi lupaavimmista raaka-aineista biopolttoaineiden valmistukseen korvaamaan fossiilisia polttoaineita. Väitöskirjassa tutkitaan teollisuuden lignoselluloosapohjaisten sivutuotteiden, selluteollisuuden kuitulietteen ja sahateollisuuden sahanpurun (mäntypuru), muuntamista sokereiksi kahdella erilaisella ns. bifunktionaalisella esikäsittelyllä, joissa yhdistyvät lignoselluloosabiomassan perinteinen esikäsittely (hajotus) ja polysakkaridien sokeroituminen. Muodostuneet sokerit voidaan edelleen muuntaa biopolttoaineiksi ja -kemikaaleiksi. Tutkimuksen ensimmäisessä vaiheessa sahanpuru ja kuituliete muunnettiin sokereiksi happokatalysoidussa mekaanisessa käsittelyssä, joka tehtiin kuulamyllyssä. Reaktiossa katalyyttisen käsittelyn tehokkuuteen vaikuttivat erityisesti jauhatuksen kineettinen energia, jauhatusaika, happokonsentraatio ja reaktioseoksen kosteus. Tulosten perusteella todettiin, että ilman lähtöaineen esikäsittelyä sekä sahanpurun että kuitulietteen sokerisaanto oli noin 30 massa% lyhyen, matalassa happokonsentraatiossa tehdyn jauhatuksen jälkeen. Tutkimuksen toisessa vaiheessa kuituliete muutettiin sokereiksi käyttämällä ionista liuotinta (IL), hydroksialkyyli-imidatsoliumvetysulfaattia. Sokerisaanto kuitulietteestä oli noin 29 massa% IL-vesiseoksessa. Vesi toimi reaktiossa apuliuottimena ja sen rooli on keskeinen ionisten liuottimien käytössä. Sekoittunut vesi laski ionisen liuottimen viskositeettia sekä edisti aineensiirtoa liuottimen ja liukenevan aineen välillä. IL:n anionit lisäsivät happamuutta vesiliuoksessa ja mahdollistivat happamat olosuhteet samanaikaiselle hydrolyysille. / Abstract Biomasse aus Lignocellulose ist der am häufigsten vorkommende nachwachsende Rohstoff der Erde und wird aktuell als eine der besten Alternativen für die Produktion von Biokraftstoffen gesehen. Diese sollen langfristig die fossilen Öl-basierten Produkte ersetzen. Diese Forschungsarbeit untersucht die Herstellung von Zucker aus Lignocellulose basierten Abfällen. Faserschlamm aus der Zellstoffindustrie und Kiefern-Sägemehl aus der Holzverarbeitung wurden durch zwei unterschiedliche Bifunktionelle Vorbehandlungen aufgespalten. Diese Bifunktionelle Vorbehandlung kombiniert zwei Schritte in einem Prozess; die gewöhnliche Dekonstruktion der Biomasse und die Verzuckerung von Polysacchariden aus der Lignocellulose. Das so erzeugte Produkt dient als Ausgangsstoff für die weitere Herstellung von Biokraftstoffen und Chemikalien. Im ersten Teil dieser Forschungsarbeit wurden Kiefern-Sägemehl und Faserschlamm in einer Planeten-Kugelmühle zermahlen und gleichzeitig durch eine Säure depolymerisiert. Der Wirkungsgrad dieser säurekatalysierten mechanischen Depolymerisation wurde hauptsächlich durch die Übertragung der Reibungsenergie, der Mahldauer der Zerkleinerung, der Konzentration der Säure und der Feuchtegehalt der Proben beeinflusst. Etwa 30 wt% Zucker wurde so durch den kurzen Zermahlungsprozess aus Kiefern-Sägemehl und Faserschlamm gewonnen. Dabei wurden die Proben nicht vorbehandelt und enthielten eine geringe Säure/Probe Konzentration. Der zweite Teil der Forschungsarbeit untersucht die Umwandlung von Faserschlamm in Zucker mittels der Ionischen Flüssigkeit (ILs) Hydroxyalkyl Imidazolium Hydrogensulfat. Aus den Faserschlamm Proben konnte 29 wt% Zucker durch eine Mischung von ILs und Wasser gewonnen werden. Das zugesetzte Wasser spielte als Co-Lösemittel eine wichtige Rolle in der Nutzung der Ionischen Flüssigkeit, dessen Viskosität so reduziert wurde. Dies führte zu einem erhöhten Stoffübergang zwischen dem Lösemittel und dem Solvat. Zusätzlich sorgten die Anionen der Ionischen Flüssigkeit für ein saures Milieu in der wässrigen Lösung und ermöglichten so eine gleichzeitige Hydrolyse.

Page generated in 0.0657 seconds