Spelling suggestions: "subject:"1inear timeinvariant systems"" "subject:"1inear timevariant systems""
21 |
Controle quantizado h-infinito via realimentação de estadosFreire Junior, Vlademir Aparecido 23 May 2014 (has links)
CAPES / O objetivo desta dissertação é propor uma técnica para a síntese via realimentação de estados para sistemas lineares e invariantes no tempo, considerando que os estados realimentados são previamente quantizados. Para tanto, o erro de quantização é inicialmente modelado como um ruído externo. Assim, o problema de obter os ganhos de realimentação de estados, se torna um problema de projetar os ganhos que minimizem a norma H¥ do sistema controlado. Os ganhos de realimentação são calculados pela solução de um conjunto de condições descritas na forma de desigualdades matriciais lineares. A técnica é ilustrada pela aplicação da realimentação de estados quantizada em um servomecanismo. / The main objective of this dissertation is to propose a technique for synthesis by statefeedback for linear time-invariant systems, considering that the states are quantized before the feedback. To tackle such problem, the quantization error is initially modeled as an external noise. Therefore, the problem of getting the state-feedback gains, becomes a problem of designing the gains that minimize the H¥ norm of the system. The state-feedback gains are calculated by solving a set of conditions described in the form of linear matrix inequalities. The technique is illustrated by applying the of feedback of quantized states to a servo-mechanism.
|
22 |
Indirect adaptive control using the linear quadratic solutionGhoneim, Youssef Ahmed. January 1985 (has links)
No description available.
|
23 |
Direct Conversion RF Front-End Implementation for Ultra-Wideband (UWB) and GSM/WCDMA Dual-Band Applications in Silicon-Based TechnologiesPark, Yunseo 28 November 2005 (has links)
This dissertation focuses on wideband circuit design and implementation issues up to 10GHz based on the direct conversion architecture in the CMOS and SiGe BiCMOS technologies. The dissertation consists of two parts: One, implementation of a RF front-end receiver for an ultra-wideband system and, two, implementation of a local oscillation (LO) signal for a GSM/WCDMA multiband application. For emerging ultra-wideband (UWB) applications, the key active components in the RF front-end receiver were designed and implemented in 0.18um SiGe BiCMOS process. The design of LNA, which is the critical circuit block for both systems, was analyzed in terms of noise, linearity and group delay variation over an extemely wide bandwidth. Measurements are demonstrated for an energy-thrifty UWB receiver based on an MB-OFDM system covering the full FCC-allowed UWB frequency range.
For multiband applications such as a GSM/WCDMA dual-band application, the design of wideband VCO and various frequency generation blocks are investigated as alternatives for implementation of direct conversion architecture. In order to reduce DC-offset and LO pulling phenomena that degrade performance in a typical direct conversion scheme, an innovative fractional LO signal generator was implemented in a standard CMOS process. A simple analysis is provided for the loop dynamics and operating range of the design as well as for the measured results of the factional LO signal generator.
|
24 |
Frequency-weighted model reduction and error boundsGhafoor, Abdul January 2007 (has links)
This thesis investigates the frequency weighted balanced model reduction problem for linear time invariant systems. Both continuous and discrete time systems are considered, in one and two-dimensions. First the frequency weighted balanced model reduction problem is formulated, then a novel frequency weighted, balanced, model reduction method for continuous time systems is proposed. This method is based on the retention of frequency weighted Hankel singular values of the original system, and yields stable reduced order models even when two sided weightings are employed. An alternative frequency weighted balanced model reduction technique (applicable for controller reduction applications) is then developed. This is based on a parametrized combination of the frequency weighted partial fraction expansion technique with balanced truncation and the singular perturbation approximation techniques. This method yields stable models even when two sided weightings are employed. An a priori error bound for the model reduction method is derived. Lower frequency response errors and error bounds are obtained using free parameters and equivalent anti-stable weightings. Based on the same idea, a novel parameterized frequency weighted optimal Hankel norm model reduction method with a tighter a priori error bound is proposed. The proposed methods are extended to include discrete time systems. A frequency interval Gramians based stability preserving model reduction scheme with error bounds is also presented. In this case, frequency weights are not explicitly predefined. Discrete time system related results are also included. Several frequency weighted model reduction results for two-dimensional (2-D) systems are also proposed. The advantages of these schemes include error bounds, guaranteed stability and applicability to general stable (non-separable denominator) weighting functions. Finally, a novel 2-D identification based frequency weighted model reduction scheme is outlined. Numerically robust algorithms based on square root and balancing free techniques are proposed for frequency weighted balanced truncation techniques. Several practical examples are included to illustrate the effectiveness of the algorithms.
|
25 |
Network Reconstruction and Vulnerability Analysis of Financial NetworksWoodbury, Nathan Scott 01 May 2017 (has links)
Passive network reconstruction is the process of learning a structured (networked) representation of a dynamic system through the use of known information about the structure of the system as well as data collected by observing the inputs into a system along with the resultant outputs. This work demonstrates an improvement on an existing network reconstruction algorithm so that the algorithm is capable of consistently and perfectly reconstructing a network when system inputs and outputs are measured without error. This work then extends the improved network reconstruction algorithm so that it functions even in the presence of noise as well as the situation where inputs into the system are unknown. Furthermore, this work demonstrates the capability of the new extended algorithms by reconstructing financial networks from stock market data, and then performing an analysis to understand the vulnerabilities of the reconstructed network to destabilization through localized attacks. The creation of these improved and extended algorithms has opened many theoretical questions, paving the way for future research into network reconstruction.
|
26 |
Signal Structure for a Class of Nonlinear Dynamic SystemsJin, Meilan 01 May 2018 (has links)
The signal structure is a partial structure representation for dynamic systems. It characterizes the causal relationship between manifest variables and is depicted in a weighted graph, where the weights are dynamic operators. Earlier work has defined signal structure for linear time-invariant systems through dynamical structure function. This thesis focuses on the search for the signal structure of nonlinear systems and proves that the signal structure reduces to the linear definition when the systems are linear. Specifically, this work: (1) Defines the complete computational structure for nonlinear systems. (2) Provides a process to find the complete computational structure given a state space model. (3) Defines the signal structure for dynamic systems in general. (4) Provides a process to find the signal structure for a class of dynamic systems from their complete computational structure.
|
27 |
A novel parametrized controller reduction technique based on different closed-loop configurationsHoulis, Pantazis Constantine January 2009 (has links)
This Thesis is concerned with the approximation of high order controllers or the controller reduction problem. We firstly consider approximating high-order controllers by low order controllers based on the closed-loop system approximation. By approximating the closed-loop system transfer function, we derive a new parametrized double-sided frequency weighted model reduction problem. The formulas for the input and output weights are derived using three closed-loop system configurations: (i) by placing a controller in cascade with the plant, (ii) by placing a controller in the feedback path, and (iii) by using the linear fractional transformation (LFT) representation. One of the weights will be a function of a free parameter which can be varied in the resultant frequency weighted model reduction problem. We show that by using standard frequency weighted model reduction techniques, the approximation error can be easily reduced by varying the free parameter to give more accurate low order controllers. A method for choosing the free parameter to get optimal results is being suggested. A number of practical examples are used to show the effectiveness of the proposed controller reduction method. We have then considered the relationships between the closed-loop system con gurations which can be expressed using a classical control block diagram or a modern control block diagram (LFT). Formulas are derived to convert a closed-loop system represented by a classical control block diagram to a closed-loop system represented by a modern control block diagram and vice versa.
|
28 |
Controle e filtragem de sistemas lineares variantes no tempo por meio de funções de Lyapunov dependentes de parametros / Control and filtering of time-varying linear systems via parameter dependent Lyapunov functionsBorges, Renato Alves 13 August 2018 (has links)
Orientador: Pedro Luis Dias Peres / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-13T19:35:14Z (GMT). No. of bitstreams: 1
Borges_RenatoAlves_D.pdf: 1110575 bytes, checksum: 60707903258309c73eb16c6b81e8e7ba (MD5)
Previous issue date: 2009 / Resumo: A principal contribuição desta tese é a proposta de condições de sintese de filtros e controladores lineares, tanto robustos quanto dependentes de parametros, para sistemas discretos variantes no tempo.Os controladores, ou filtros, são obtidos solucionando problemas de otimização formulados em termos de desigualdades matriciais bililineares, por meio de um metodo que se baseia na alternancia de problemas convexos descritos por desigualdades matriciais lineares. Para obtenção das condiçoes de sintese foram utilizadas tanto funções de Lyapunov afins nos parâmetros quanto ametros, alem de variáveis multi-afins em diferentes instantes de tempo dos parâmetros, alem de variaveis extras introduzidas pelo lema de Finsler. Nesse contexto, sao tratados problemas de sintese com custo garantido H, assegurando robustez em relação a incertezas não estruturadas. Simulaçoes numéricas ilustram a eficiencia dos metodos propostos em termos de desempenho H quando comparados com outros metodos da literatura / Abstract: The main contribution of this dissertation is to propose conditions for linear filter and controller design, considering both robust and parameter dependent structures, for discrete time-varying systems. The controllers, or filters, are obtained through the solution of optimization problems, formulated in terms of bilinear matrix inequalities, using a method that alternates convex optimization problems described in terms of linear matrix inequalities. Both affine and multi-affine in different instants of time (path dependent)Lyapunov functions were usedto obtain the design conditions, as wellas extra variables introduced bythe Finsler's lemma.Design problems that take into account an H guaranteed cost were investigated, providing robustness with respect to unstructured uncertainties. Numerical simulations show the effciency of the proposed methods in terms of H performance when compared with other strategies from the literature / Doutorado / Automação / Doutor em Engenharia Elétrica
|
29 |
Parameter-Dependent Lyapunov Functions and Stability Analysis of Linear Parameter-Dependent Dynamical SystemsZhang, Xiping 27 October 2003 (has links)
The purpose of this thesis is to develop new stability conditions for several linear dynamic systems, including linear parameter-varying (LPV), time-delay systems (LPVTD), slow LPV
systems, and parameter-dependent linear time invariant (LTI) systems. These stability conditions are less conservative and/or computationally easier to apply than existing ones.
This dissertation is composed of four parts. In the first part of this thesis, the complete stability domain for LTI parameter-dependent (LTIPD) systems is synthesized by extending existing results in the literature. This domain is calculated through a guardian map which involves the determinant of the Kronecker sum of a matrix with itself. The stability domain is
synthesized for both single- and multi-parameter dependent LTI systems. The single-parameter case is easily computable, whereas the multi-parameter case is more involved. The determinant of the
bialternate sum of a matrix with itself is also exploited to reduce the computational complexity.
In the second part of the thesis, a class of parameter-dependent Lyapunov functions is proposed, which can be used to assess the stability properties of single-parameter LTIPD systems in a non-conservative manner. It is shown
that stability of LTIPD systems is equivalent to the existence of a Lyapunov function of a polynomial type (in terms of the parameter) of known, bounded degree satisfying two matrix inequalities. The bound of polynomial degree of the Lyapunov functions is then reduced by taking advantage of the fact that the Lyapunov matrices are symmetric. If the matrix multiplying the parameter is not full rank, the polynomial order
can be reduced even further. It is also shown that checking the feasibility of these matrix
inequalities over a compact set can be cast as a convex optimization problem. Such Lyapunov functions and stability conditions for affine single-parameter LTIPD systems are then generalized to single-parameter polynomially-dependent LTIPD systems and affine multi-parameter LTIPD systems.
The third part of the thesis provides one of the first attempts to derive computationally tractable criteria for analyzing the stability of LPV time-delayed systems. It presents both
delay-independent and delay-dependent stability conditions, which are derived using appropriately selected Lyapunov-Krasovskii functionals. According to the system parameter dependence, these functionals can be selected to obtain increasingly non-conservative results. Gridding techniques may be used to cast these tests as Linear Matrix Inequalities (LMI's). In cases when
the system matrices depend affinely or quadratically on the parameter, gridding may be avoided. These LMI's can be solved efficiently using available software. A numerical example of a
time-delayed system motivated by a metal removal process is used to demonstrate the theoretical results.
In the last part of the thesis, topics for future
investigation are proposed. Among the most interesting avenues for research in this context, it is proposed to extend the existing stability analysis results to controller synthesis, which will be based on the same Lyapunov functions used
to derive the nonconservative stability conditions. While designing the dynamic ontroller for linear and parameter-dependent systems, it is desired to take the advantage of the rank deficiency of the system matrix multiplying the parameter such that the controller is of lower dimension, or rank deficient without sacrificing the performance of closed-loop systems.
|
30 |
Une contribution à l'observation et à l'estimation des systèmes linéaires / A contribution to the observation and estimation of linear systemsTian, Yang 08 December 2010 (has links)
Ce mémoire est dédié à l’étude de la synthèse de l’estimation d’état en temps fini par une approche algébrique (les techniques développées au sein de l’équipe ALIEN) pour les systèmes linéaires à paramètres invariant dans le temps (LTI) sujets à des perturbations extérieures inconnues, les systèmes linéaires à paramètres variant dans le temps (LTV) et les systèmes linéaires à commutation en temps continu (SLC). Pour les systèmes LTI et LTV, une expression formelle de l’état en fonction des intégrales itérées des sorties et de l’entrée a été donnée. Pour les systèmes linéaires à commutation, en combinant les résultats de l’estimation d’état pour les systèmes LTI et de la détection de l’instant de commutation en temps réel présentée dans le chapitre 4, nous donnons la démarche principale de l’estimation en temps réel du mode courant et l’état continu du système. Pour ce faire, on applique certains outils mathématiques : la transformation de Laplace, les outils issus du calcul opérationnel et la théorie des distributions / This PhD thesis is dedicated to the synthesis of the state estimation in a finite time by an algebraic approach (the techniques developed within the ALIEN group) for the linear time-invariant systems (LTI) subject to the external unknown disturbances, the linear time-varying systems (LTV) and the switched linear systems (SLC) in continuous time. For the LTI and LTV systems, a formal expression of state as a function of iterated integrals of the output and the input is obtained. For switched linear systems, combining the results of state estimation for LTI systems and switch instant detection presented in Chapter 4, we give the main approach of current mode estimation and the continuous state estimation in real time. To do this, one applies some mathematical tools: Laplace transforms, the operational calculus and the theory of distribution
|
Page generated in 0.0617 seconds