Spelling suggestions: "subject:"lipogenèse"" "subject:"adipogenèse""
21 |
La chirurgie bariatrique dans le contrôle du syndrome métabolique : facteurs clinico-biologiques influençant les résultats / Impact of bariatric surgery on metabolic disorders control : identification of clinical and biological factors affecting clinical outcomesRobert, Maud 16 June 2014 (has links)
Les données de la littérature rapportent la supériorité de la chirurgie bariatrique sur le traitement médical optimisé concernant la perte pondérale et l'amélioration du diabète de type 2. Les facteurs prédictifs de bons résultats en terme pondéral et métabolique restent encore méconnus et des échecs sont constatés. Le phénotypage de l'obésité et de son retentissement métabolique semble essentiel afin d'adapter la procédure chirurgicale au cas par cas et améliorer les résultats. Dans ce travail de thèse, par une approche clinique, nous avons cherché à identifier les facteurs prédictifs d'amélioration des paramètres métaboliques et de succès pondéral après chirurgie bariatrique. Nous avons démontré le rôle majeur de la perte de poids après chirurgie dans l'amélioration du métabolisme glucidique et des paramètres métaboliques. Nous avons également montré l'impact positif de la masse musculaire initiale sur la perte pondérale, facteur également déterminant dans le contrôle du métabolisme glucidique. Les marqueurs du dysfonctionnement cellulaire Beta sont également apparus déterminants pour prédire la rémission du diabète de type 2 après chirurgie. Ainsi, l'efficacité de la chirurgie dans le contrôle du syndrome métabolique, au-delà de la technique opératoire, apparaît très dépendante de la perte de poids mais aussi du terrain, confirmant l'importance du phénotypage de l'obésité en préopératoire. Par une approche expérimentale, nous avons cherché à identifier l'impact du tissu adipeux sur les organes sièges de l'insulino-résistance (muscle et foie) impliqués dans le syndrome métabolique. La constitution de la tissuthèque DioMede et l'obtention de milieux conditionnés de tissu adipeux nous ont permis d'étudier l'impact des sécrétions de ce tissu sur les tissus insulino-sensibles en se rapprochant des conditions physiologiques. Nous avons identifié un effet direct du tissu adipeux sur le métabolisme musculaire des acides gras (AG) par la régulation négative du facteur de transcription SREBP-1c. Nos résultats identifient les acides gras insaturés comme les médiateurs de l'inhibition de SREBP-1, conduisant à une diminution de la lipogenèse par l'intermédiaire des gènes cibles de ce facteur de transcription. La composition et les proportions respectives d'AG mono ou poly insaturés et d'AG saturés dans le tissu adipeux, leur niveau de sécrétion, et leur taux circulant apparaissent donc déterminants dans la régulation de la lipogenèse des tissus insulino-sensibles (foie et muscle), et pourraient être un marqueur des obésités avec désordres métaboliques / Literature data reported the superiority of bariatric surgery on optimized medical treatment concerning weight loss outcomes and improvement of type 2 diabetes. Predictive factors of good weight loss results and metabolic control are still unrecognized and failures are recorded. Phenotyping obesity and its metabolic consequences seem essential to tailor the surgical procedure to each patient and to improve the outcomes. In this work, by a clinical approach, we have tried to identify predictive factors of metabolic control and weight loss after bariatric surgery. We have demonstrated the major role of weight loss to achieve glucose homeostasis and metabolic control. We have also reported the positive impact of initial Fat Free Mass on weight loss outcomes and glucose metabolism control. Beta cell dysfunction markers appeared to also have a major impact on Type 2 Diabetes remission after surgery. Thus, the efficacy of surgery on metabolic control, beyond the surgical technique, seems highly related to weight loss and patients history, which underlines the importance of phenotyping obesity before surgery. By an experimental approach, we have tried to identify the impact of adipose tissue on muscle and liver, organs that are involved in the metabolic syndrome. By means of a tissue collection (Diomede) and the use of conditioned media of adipose tissue, we studied the impact of adipose tissue secretions on insulin sensitive tissues, close to physiological conditions. We found a direct effect of adipose tissue on fatty acid metabolism in muscle through SREBP-1c down regulation. Unsaturated Fatty Acids were identified as the mediators of SREBP-1 inhibition, leading to a decrease in lipogenesis through target genes of this transcriptional factor. The composition and the respective proportion of mono or poly unsaturated fatty acids and saturated fatty acids in adipose tissue, their level of secretion, and their circulation rate appear to be determinant in lipogenesis regulation in insuline sensitive tissues (muscle and liver), and could be markers of metabolic disorders in obese patients
|
22 |
Amino acids regulate hepatic intermediary metabolism-related gene expression via mTORC1-dependent manner in rainbow trout (Oncorhynchus mykiss) / Les acides aminés régulent l'expression des gènes du métabolisme intermédiaire chez la truite par le biais de mTORC1 (Oncorhynchus mykiss)Weiwei, Dai 12 October 2015 (has links)
Au cours de ma thèse, nous avons utilisé la truite arc-en-ciel, un poisson carnivore et modèle potentiellement pertinent du diabète, pour étudier des mécanismes de régulation du métabolisme intermédiaire hépatique par les nutriments (acides aminés (AA) et le glucose). Nous nous sommes plus particulièrement intéressés aux voies de signalisation de l’insuline et des acides aminés (Akt et mTORC1). Grâce à l’utilisation de rapamycine, un inhibiteur pharmacologique de mTORC1, nous avons montré que l'activation de mTORC1 stimule l'expression de gènes de la lipogenèse, de la glycolyse et du catabolisme des acides aminés, tandis que la voie de signalisation Akt inhibe celle des gènes impliqués dans la néoglucogenèse. Ces études ont été conduites dans le foie de truite ou en culture primaire d’hépatocytes de truite arc-en-ciel. En outre, nous avons démontré lors de stimulations à court terme in vivo et in vitro que l'expression hépatique des gènes de la lipogenèse est plus sensible à l'apport de protéines alimentaires ou d’AA qu’à l'apport de glucides ou de glucose. De plus, nous avons observé que des taux élevés d’AA conduisent, par le biais de l’activation de la voie de signalisation mTORC1, à une augmentation de l'expression des gènes lipogéniques mais surtout à une répression de l’inhibition de l’expression des gènes de la néoglucogenèse induite par l’insuline. Cet effet s’accompagne d’une augmentation de la phosphorylation de IRS-1 sur le résidu Ser302 qui pourrait être responsable de la baisse de phosphorylation d'Akt et par conséquent d’une inhibition de l’action de l'insuline. Enfin, en réalisant un test de tolérance au glucose chez des truites préalablement traitées avec de la rapamycine, nous avons conclu que la néoglucogenèse hépatique joue un rôle probablement majeur dans le contrôle de l'homéostasie glucidique chez la truite. Ainsi, une absence d’inhibition de la néoglucogenèse pourrait contribuer au maintien de l'hyperglycémie prolongée et au phénotype d’intolérance au glucose caractéristique des poissons carnivores. Cette thèse met en avant le rôle des protéines/AA dans la régulation du métabolisme intermédiaire de la truite et identifie certaines voies de signalisation cellulaire sollicités par les acides aminés pour réguler le métabolisme. Elle permet ainsi d’éclaircir certaines particularités nutritionnelles de la truite. / During my doctoral study, we used rainbow trout, a representative carnivorous fish and relevant diabetic model, to study the mechanisms underlying the regulation of hepatic intermediary metabolism by nutrients (amino acids (AAs) and glucose), and determine the potential involvement of insulin/Akt and mTORC1 signaling pathways in these regulations. Using acute administration of rapamycin, a pharmacological inhibitor of TOR, we first identified that mTORC1 activation promotes the expression of genes related to fatty acid biosynthesis, glycolysis and amino acid catabolism, while Akt negatively regulates gluconeogenic gene expression in rainbow trout liver and primary hepatocytes. Furthermore, we demonstrated hepatic fatty acid biosynthetic gene expression is more responsive to dietary protein intake/AAs than dietary carbohydrate intake/glucose during acute stimulations in vivo and in vitro. Moreover, we further showed that high levels of AAs up-regulate hepatic fatty acid biosynthetic gene expression through an mTORC1-dependent manner, while excessive AAs attenuate insulin-mediated repression of gluconeogenesis through elevating IRS-1 Ser302 phosphorylation, which in turn impairs Akt phosphorylation and dampens insulin action. Finally, using glucose tolerance test and acute inhibition of rapamycin, we concluded that hepatic gluconeogenesis probably plays a major role in controlling glucose homeostasis, which maybe account for the prolonged hyperglycemia and glucose intolerance phenotype of carnivorous fish. The present thesis brings forward our understandings about the roles of protein/AAs in the regulation of hepatic intermediary metabolism in trout and identifies relevant cellular signaling pathways mediating the action of amino acids on metabolism. It also clarifies some nutritional characteristics of the trout.
|
23 |
Nouvelles stratégies d’étude et de prévention des complications hépatorénales de la glycogénose de type Ia / New strategies to study and prevent hepatorenal complications of glycogen storage disease type IaClar, Julie 15 September 2014 (has links)
La glycogénose de type Ia (GSDIa) est une maladie métabolique rare causée par un déficit en glucose-6- phosphatase (G6Pase), menant à l'absence de production endogène de glucose. Cette pathologie est caractérisée par des hypoglycémies sévères, une hépatomégalie et une stéatose hépatique ainsi qu'une néphromégalie. En absence de traitement curatif, la prise en charge de cette maladie repose actuellement sur des mesures diététiques très strictes. Cependant, des complications apparaissent avec l'âge comme le développement de tumeurs hépatiques et la progression de la néphropathie vers l'insuffisance rénale. Afin d'étudier l'évolution de cette pathologie à long terme, nous avons utilisé des modèles murins originaux présentant une invalidation du gène de la sous-unité catalytique de la G6Pase spécifiquement au niveau du foie ou des reins. Dans ce travail, nous avons démontré que la déficience en G6Pase uniquement au niveau des reins est suffisante pour entrainer le développement de la pathologie rénale de la GSDIa. Les souris déficientes en G6Pase hépatique nous ont permis de mettre en évidence les effets délétères d'une consommation modérée de fructose ou de galactose et d'une alimentation riche en lipides, de type « cafétéria », sur la pathologie hépatique de la GSDIa, en particulier sur le développement tumoral. Nous avons également démontré chez ces souris l'efficacité et l'innocuité d'un traitement par thérapie génique ciblant le foie. Le transfert de gène avec un vecteur lentiviral, permettant l'intégration du transgène au génome, semble plus efficace qu'avec un vecteur AAV pour prévenir le développement de la pathologie hépatique de la GSDIa et l'apparition des tumeurs / Glycogen storage disease type Ia (GSDIa) is a rare metabolic disease caused by glucose-6-phosphatase (G6Pase) deficiency, leading to the absence of endogenous glucose production. This pathology is characterized by severe hypoglycemia, hepatomegaly, hepatic steatosis and nephromegaly. In the absence of a curative therapy, the current treatments available consist in strict dietary management. However, various complications occur with aging, such as hepatic tumor development and progressive chronic renal disease leading to renal failure. In order to study the long term pathology development, we used original mouse models, presenting an invalidation of the gene encoding the G6Pase catalytic subunit, specifically in the liver or in the kidneys. In this work, we demonstrated that renal G6Pase deficiency alone is sufficient to induce the development of the GSDIa nephropathy. Mice with liver-specific G6Pase deficiency allowed us to highlight the deleterious effects of high-fat diet, such as « fast-food » diet, as well as moderate consumption of fructose or galactose on the hepatic GSDIa pathology, particularly on tumor development. Furthermore, we demonstrated the efficiency and innocuity of gene therapies targeting the liver in these mice. Gene transfer with a lentiviral vector, allowing transgene integration into the genome, seems to be more efficient than an AAV vector in preventing the development of hepatic GSDIa pathology and tumor formation
|
24 |
Le stress oxydatif d’origine nutritionnelle en période néonatale chez le cochon d’Inde et son impact à l’âge adulte sur l’homéostasie redox, le métabolisme énergétique et la méthylation géniqueTeixeira Nascimento, Vitor 06 1900 (has links)
Problématique : Durant la période fœtale, le métabolisme global du fœtus fonctionne en hypoxie, ce qui limite la phosphorylation oxydative dans la mitochondrie, et par conséquent la production d’adénosine triphosphate (ATP). Ces conditions sont nécessaires pour le développement intra-utérin. Lors de la naissance, l’augmentation des concentrations d’oxygène et un stress oxydatif permettent une transition métabolique. Une charge oxydative supplémentaire en période néonatale pourrait perturber cette transition métabolique et causer des complications. La nutrition parentérale (NP) administrée aux nouveau-nés prématurés apporte un triple fardeau oxydatif : une exposition à des peroxydes oxydants autogénérés par l’interaction des composants de la NP, une carence en vitamine C (instable en solution), et une déficience en glutathion, vu la charge oxydative élevée. Cette charge oxydative excessive affecte l’homéostasie redox au foie et aux poumons, ainsi que le métabolisme énergétique hépatique, et ce, par des effets immédiats et à long-terme. La méthylation de l’ADN est un possible mécanisme qui explique les effets à long terme. Le but de ce travail était de caractériser l’impact à court- et long-terme de la NP néonatale sur l’homéostasie redox, la méthylation de l’ADN, et le métabolisme des glucides et lipides, en isolant chacun des facteurs nutritionnels.
Méthodes : Des cochons d’Inde ont été divisés dans les groupes suivants 1) NP : nutrition intraveineuse complète ; 2) NP+ glutathion disulfure (GSSG) (6 ou 12µM- substrat pour la synthèse intra-cellulaire de glutathion); 3) Diète complète : nutrition orale complète 4) Diète déficiente en Vitamine C; 5) Diète déficiente en Cystéine; 6) Diète double déficiente; ou. À 1 semaine de vie, la moitié des animaux était sacrifié et l’autre moitié a commencé à manger une diète complète jusqu’à l’âge adulte.
Résultats et discussion : Les animaux ayant reçu une NP néonatale ont un métabolisme énergétique permettant la synthèse de nicotinamide adénine dinucléotide phosphate (NADPH) par l’augmentation de l’activité de la glucokinase (captation de glucose), et diminution de celles de la phosphofructokinase-1 (PFK-1) (glycolyse) et acétyl-CoA-carboxylase-1 (ACC)(lipogenèse). À l’âge adulte, les animaux ont une diminution des niveaux de GSSG, indiquant un débalancement de l’homéostasie redox vers le côté réducteur programmé par la NP néonatale. L’activité augmentée de l’ACC suggère une tendance à accumuler les lipides au foie à la suite d’une diète riche en glucides. L’ajout de glutathion à la NP ne prévient pas ces perturbations, car les déficiences en glutathion et vitamine C jouent un rôle sur la modulation des niveaux protéiques de l’ACC.
Les diètes néonatales déficientes en vitamine C et cystéine augmentent l’activité de la PFK-1. Cette augmentation se maintient jusqu’à l’âge adulte chez les mâles, mais pas chez les femelles. Les niveaux protéiques de la glucokinase et ACC sont diminués à 1 semaine, et ceux de l’ACC sont élevés à 3 mois dans les groupes ayant reçu une des diètes déficientes. Ces effets sont similaires à ceux trouvés dans les animaux nourris avec la NP, suggérant que la déficience de la NP en ces nutriments et non les peroxydes cause ces effets.
Dans tous les groupes, un stress oxydatif a été démontré à 1 semaine de vie, soit par l’augmentation des niveaux de GSSG, ou la diminution du GSH. Cet effet est vrai pour le foie et le poumon. Une réponse de Nrf2 est observée aussi au foie, ce qui caractérise un niveau bas de stress oxydatif. La baisse de GSH pulmonaire chez les animaux déficients est secondaire à l’inhibition oxydative de la voie de transméthylation au foie. Une diminution des niveaux d’ARNm de glutathion réductase et glutarédoxine sont observées, ce qui favorise encore le stress oxydatif pulmonaire. À long terme, les effets sont les opposés, soit débalancement de l’homéostasie redox vers le côté réducteur au foie et poumon.
La méthylation de l’ADN était diminuée au foie des animaux nouveau-nés recevant les diètes déficientes, mais aucun changement n’a été observé aux poumons. Cette diminution est en accord avec les hauts niveaux d’ARNm des gènes de la protéine régulatrice de la glucokinase, et AMPK. À long-terme, l’effet inverse est observé pour la méthylation de l’ADN
Conclusion : La NP modifie le flot d’énergie au foie à 1 semaine visant favoriser le métabolisme redox en détriment du métabolisme énergétique. Cet effet semble créer une déficience énergétique fonctionnelle, qui se développe en une lipogenèse accrue en âge adulte. Cela peut représenter un exemple de la plasticité développementale. Bien qu’un stress oxydatif en âge néonatal ne soit pas létal, il affecte le métabolisme énergétique et redox à long-terme, probablement par la méthylation de l’ADN. Les résultats de ce travail démontrent que ces animaux adultes ont une capacité accrue d’entreposer de l’énergie, soit par une lipogenèse plus élevée, soit par une accumulation d’énergie redox (glutathion). Aucune maladie métabolique n’était observée chez les animaux, mais il est attendu à ce que ces animaux développent ces maladies plus facilement suite à l’exposition à des insultes (habitudes de vie malsaines, tabagisme, etc.). / Problematic: During the fetal period, the general metabolism works under hypoxia, limiting oxidative phosphorylation in mitochondria and adenine triphosphate (ATP) synthesis. These conditions are necessary for intrauterine development. After birth, the increasing oxygen concentrations and the associated oxidative stress induce a metabolic transition. An excessive oxidative load during the neonatal period could perturb this transition. Parenteral nutrition (PN) administered to premature newborns comes with a triple oxidative burden: contaminating peroxides generated in solution, vitamin C deficiency (unstable in solution), and glutathione deficiency (caused by the high oxidative load). This oxidative load affects redox homoeostasis in the liver and lungs, as well as energy metabolism in the liver. These effects are not only immediate, but they are also delayed. DNA methylation is a candidate mechanism explaining the long-term effects. The objective of this work was to characterize the short- and long-term impacts of neonatal PN over redox homoeostasis, DNA methylation and carbohydrate and lipid metabolism by isolating each of these factors.
Methods: Six groups of three-day-old guinea pigs received for 4 days either: 1) Total PN; 2) PN+glutathione disulfide (GSSG) (6 or 12µM-anti-peroxide);3) Vitamin C deficient; 4) Cysteine deficient; 5) Double deficient; or 6) Complete diets. At 1 week of life, half of the animals were sacrificed, and the other half started eating nutritionally complete diets until adulthood.
Results and discussion: NP animals had energy metabolism shifted favouring nicotinamide adenine dinucleotide phosphate (NADPH) synthesis, as evidenced by the increase in glucokinase activity (glucose trapping in hepatocytes) and decrease in phosphfuctokinase-1 (PFK-1) (glycolysis) and acetyl-CoA-carboxyalase-1 (ACC) (lipogenesis) activities. Adding GSSG to parenteral nutrition prevents these changes. During adulthood, ACC activity is increased, suggesting a tendency to accumulate lipids after a diet rich in carbohydrates. Adding GSSG to PN does not prevent these changes as they seem to be caused by the nutritional deficiencies in vitamin C and cysteine.
Neonatal diets deficient in vitamin C and cysteine increase PFK-1 activity. This increase is maintained until adulthood in males but not in females. Protein levels of glucokinase and ACC are decreased at 1 week of life and ACC levels are increased at adulthood in deficient groups. These effects are like the ones observed in PN animals.
In all groups, oxidative stress is demonstrated in 1-week-old animals, either by an increase in GSSG levels, or a decrease in GSH. This is true for the liver and lungs. An Nrf2 response is also observed in the liver, suggesting a low level of oxidative stress. The decrease in lung GSH is secondary to the oxidative inhibition of the transmethylation pathway in the liver. Decreased levels of glutathione reductase and glutaredoxin mRNA levels are observed in lungs, favouring pulmonary oxidative stress. At adulthood, an imbalance in redox homeostasis towards a reducing state is observed in lungs and liver.
DNA methylation was decreased in the liver of deficient animals at 1-week, but no changes were observed in lungs. This decrease is in accordance with the decrease in mRNA levels of glucokinase regulatory protein and AMPK. At adulthood, the opposite effect was observed for DNA methylation.
Conclusion: Parenteral nutrition alters the energy flow in the liver of 1-week-old animals, favouring redox metabolism over energy metabolism. This effect seems to create a phenotype of functional energy deficiency which translates into an increased lipogenesis at adult age. This may be an example of developmental plasticity. Although neonatal oxidative stress is not lethal, it affects energy and redox metabolism at adulthood, probably through DNA methylation. The presented results demonstrate these animals have an increased capacity of storing energy, either through increased lipogenesis, or by an increase in redox energy accumulation (glutathione). No metabolic disease was observed. Although it would be expected that these animals would develop these diseases more easily after exposure to insults, such as unhealthy lifestyle habits, smoking, and others.
|
25 |
Physiopathologies cardiométaboliques associées à l'obésité : mécanismes sous-jacents et thérapie nutritionnelleSpahis, Schohraya 05 1900 (has links)
Le tractus digestif et le foie interagissent continuellement, non seulement à travers les connexions anatomiques, mais également par des liens physiologiques/fonctionnels. Le déséquilibre de l’axe intestin-foie apparait de plus en plus comme un facteur primordial dans les désordres cardiométaboliques, à savoir l’obésité, le syndrome métabolique, le diabète de type 2 et la stéatose hépatique non alcoolique (NAFLD), pour lesquels la prévalence demeure alarmante, les mécanismes moléculaires encore méconnus, et les traitements peu efficaces.
L’hypothèse centrale du présent projet de recherche est que la combinaison d’anomalies génétiques et nutritionnelles affecte la sensibilité de l’insuline intestinale, ce qui conduit à une surproduction des chylomicrons, à une dyslipidémie, une insulinorésistance systémique et des répercussions sur le foie. Dans cet agencement, le foie développe une NAFLD progressive, impliquant plusieurs sentiers métaboliques intrinsèques et des mécanismes comprenant le stress oxydatif, l’inflammation et l’insulinorésistance. En revanche, des nutriments, comme les acides gras polyinsaturés (AGPI) n-3, peuvent présenter des effets bénéfiques en ciblant plusieurs circuits pathogéniques.
L’objectif central de cette thèse consiste à : (i) Démontrer que des gènes codant pour les protéines intestinales clés associées au transport des lipides, comme c’est le cas du Sar1b GTPase, peuvent interagir avec l’environnement nutritionnel pour produire l’obésité et des dérangements cardiométaboliques, incluant la NAFLD ; (ii) Explorer les mécanismes hépatiques sous-jacents à la NAFLD; et (iii) Identifier les effets et les cibles thérapeutiques des AGPI n-3 sur la NAFLD. Ces objectifs seront soutenus par une prospection de la littérature scientifique disponible dans les champs du syndrome métabolique et de la NAFLD afin d’en disséquer les forces et les faiblesses au bénéfice de la communauté scientifique.
À ces fins, nous avons utilisé des modèles animaux et cellulaires manipulés génétiquement, des animaux exposés de façon chronique à des diètes riches en lipides, des spécimens de tissus hépatiques obtenus durant la chirurgie bariatrique d’obèses morbides, et une cohorte d’adolescents obèses souffrant de NAFLD et qui seront traités avec les AGPI n-3.
L’ensemble de nos expériences ont soutenu nos hypothèses et ont mis en évidence les concepts et mécanismes suivants : (i) L’abondance d’un gène crucial (notamment Sar1b GTPase) au niveau de l’intestin, en synergie avec une alimentation obésogène, perturbe l’homéostasie locale et mène à des dérangements cardiométaboliques, défiant même l’axe intestin-foie ; (ii) Les causes développementales de la NAFLD comprennent les dérangements du métabolisme des acides gras, du statut redox et inflammatoire, de la sensibilité à l’insuline, des sentiers métaboliques (lipogenèse, β-oxydation, gluconéogenèse) et de l’expression des facteurs de transcription; et (iii) Les AGPI n-3 représentent un robuste arsenal thérapeutique des dérangements cardiométaboliques, notamment la NAFLD, en agissant sur plusieurs cibles pathogéniques.
Globalement, nos résultats montrent le rôle indéniable de l’intestin comme organe insulino-sensible interagissant de près avec les aliments et capable de déclencher des troubles métaboliques. Plusieurs mécanismes gouvernant les désordres métaboliques ont été dévoilés par nos travaux. En outre, nos études cliniques ont pointé la force thérapeutique des AGPI n-3 qui interviennent dans de nombreux processus de régulation métaboliques et notamment dans le stress oxydatif et l’inflammation. / The digestive tract and liver interact continuously, not only through anatomical connections, but also through physiological / functional links. The imbalance of the intestine-liver axis is increasingly emerging as a key factor in cardiometabolic disorders (CMD), namely obesity, metabolic syndrome, type 2 diabetes, and non alcoholic fatty liver disease (NAFLD), for which prevalence remains alarmingly high, molecular mechanisms are poorly understood, and treatments are largely inefficient.
The central hypothesis of this research project is that the combination of genetic and nutritional abnormalities affect intestinal insulin sensitivity, leading to overproduction of chylomicrons, dyslipidemia, systemic insulin resistance and dysregulated intestine-liver axis. In this situation, the liver develops progressive NAFLD, implicating several intrinsic metabolic pathways and mechanisms, including oxidative stress, inflammation and insulin resistance. In contrast, functional foods, such as omega-3 polyunsaturated fatty acids (n-3 PUFA), may have beneficial effects by targeting several pathogenic pathways.
The central objective of this thesis is to: (i) Demonstrate that genes coding for key intestinal proteins associated with lipid transport, as is the case with Sar1b GTPase, can interact with the nutritional environment to produce obesity and CMD, including hepatic steatosis; (ii) explore the mechanisms underlying NAFLD; and (iii) identify the effects and therapeutic targets of n-3 PUFA. These objectives will be supported by a critical review on metabolic syndrome and NAFLD in order to dissect their strengths and weaknesses for the benefit of the scientific community.
For these purposes, we used genetically engineered animal and cell models, chronic exposure of animals to high-fat diets, liver tissue specimens obtained during bariatric surgery of morbidly obese patients, and treatment of obese NAFLD adolescents with n-3 PUFA.
All of our experiments supported our hypotheses and highlighted the following concepts and mechanisms: (i) The abundance of a crucial gene (notably Sar1b GTPase) in the intestine, in synergy with an obesogenic diet, disrupts local homeostasis and leads to CMD, challenging even the intestine-liver axis; (ii) Developmental causes of NAFLD include disturbances of fatty acid metabolism, redox and inflammatory status, insulin sensitivity, metabolic pathways (lipogenesis, β-oxidation, gluconeogenesis), and expression of transcription factors; and (iii) n-3 PUFA represent a robust therapeutic arsenal of CMD, including NAFLD, by acting on several pathogenic targets.
Overall, our results show the undeniable role of the intestine, as an insulin-sensitive organ, interacting closely with obesogenic food, and capable of triggering CMD, including perturbations of the intestine-liver axis. Several mechanisms governing metabolic disorders have been unveiled by our work. In addition, our clinical studies have pointed to the therapeutic potential of n-3 PUFA involved in many regulatory processes, including oxidative stress and inflammation.
|
Page generated in 0.0306 seconds