Spelling suggestions: "subject:"ooi dde probabilité"" "subject:"ooi dee probabilité""
1 |
Étude de la combinaison de la technique quasi-Monte Carlo randomisé vectoriel avec l'échantillonnage exactSanvido, Charles January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Analyse par ondelettes de champs aléatoires stables harmonisables à accroissements stationnaires / Wavelet analysis of stationary increments harmonizable stable fieldsBoutard, Geoffrey 18 November 2016 (has links)
L’étude du comportement trajectoriel des champs/processus stochastiques est un sujet de recherche classique en théorie des probabilités et dans des domaines connexes comme la géométrie fractale. Dans cet objectif, plusieurs méthodes ont été développées depuis longtemps afin d’étudier le comportement des trajectoires de champs/processus gaussiens. Ces méthodes reposent souvent sur une structure hilbertienne « sympathique », et peuvent aussi nécessiter la finitude de moments d’ordre élevé. Ainsi, elles sont difficilement transposables dans des cadres de lois à queue lourde. Ces dernières sont importantes en probabilités et en statistique parce qu’elles constituent une contrepartie naturelle des lois gaussiennes. Dans le cas de certains champs/processus stables linéaires de type moyenne mobile non anticipative, tels que le drap fractionnaire stable linéaire et le mouvement multifractionnaire stable linéaire, des méthodes d’ondelettes, assez nouvelles, se sont déjà avérées fructueuses dans l’étude du comportement trajectoriel. Peut-on adapter cette méthodologie à certains champs/processus stables harmonisables ? Donner une réponse à cette question est un problème assez délicat car, de façon générale, de grandes différences séparent le cadre stable harmonisable de celui de type moyenne mobile. Le principal objectif de la thèse est d’étudier cette question dans le cadre d’un champ stable harmonisable symétrique à accroissement stationnaire de forme générale. / Studying sample path behaviour of stochastic fields/processes is a classical research topic in probability theory and related areas such as fractal geometry. To this end, many methods have been developed for a long time in order to study sample path behaviour of Gaussian fields/processes. They often rely on some underlying "nice" Hilbertian structure, and can also require finiteness of moments of high order. Therefore, they can hardly be transposed to frames of heavy-tailed stable probability distributions. Such distributions are very important in probability and statistics because they are a natural counterpart to the Gaussian ones. In the case of some linear non-anticipative moving average stable fields/processes, such as the linear fractional stable sheet and the linear multifractional stable motion, rather new wavelet methods have already proved to be successful in studying sample path behaviour. Can this methodology be adapted to some harmonizable stable fields/processes? Providing an answer to this question is a non trivial problem, since, generally speaking, there are large differences between an harmonizable stable setting and a moving average one. The main goal of the thesis is to study this issue in the case of a stationary increments symmetric stable harmonizable field of a general form.
|
3 |
Side-channel and fault analysis in the presence of countermeasures : tools, theory, and practice / Canaux cachés et attaques par injection de fautes en présence de contre-mesures : outils, théorie et pratiqueKorkikian, Roman 27 October 2016 (has links)
Dans cette thèse nous développons et améliorons des attaques de systèmes cryptographiques. Un nouvel algorithme de décomposition de signal appelé transformation de Hilbert-Huang a été adapté pour améliorer l’efficacité des attaques parcanaux auxiliaires. Cette technique permet de contrecarrer certaines contre-mesures telles que la permutation d’opérations ou l’ajout de bruit à la consommation de courant. La seconde contribution de ce travail est l’application de certaines distributions statistiques de poids de Hamming à l’attaque d’algorithmes de chiffrement par bloc tels que AES, DES ou LED. Ces distributions sont distinctes pour chaque valeur de sous-clef permettent donc de les utiliser comme modèles intrinsèques. Les poids de Hamming peuvent être découverts par des analyses de canaux auxiliaires sans que les clairs ni les chiffrés ne soient accessibles. Cette thèse montre que certaines contremesures peuvent parfois faciliter des attaques. Les contre-mesures contagieuses proposées pour RSA protègent contre les attaques par faute mais ce faisant et moyennant des calculs additionnels facilitent la découverte de la clef. Finalement, des contre-mesures à faible complexité calculatoire sont proposées. Elles sont basées sur le masquage antagoniste, c’est-à-dire, l’exécution d’une opération d’équilibrage sur des données sensibles pour masquer la consommation de courant. / The goal of the thesis is to develop and improve methods for defeating protected cryptosystems. A new signal decompositionalgorithm, called Hilbert Huang Transform, was adapted to increase the efficiency of side-channel attacks. This technique attempts to overcome hiding countermeasures, such as operation shuffling or the adding of noise to the power consumption. The second contribution of this work is the application of specific Hamming weight distributions of block cipher algorithms, including AES, DES, and LED. These distributions are distinct for each subkey value, thus they serve as intrinsic templates. Hamming weight data can be revealed by side-channel and fault attacks without plaintext and ciphertext. Therefore these distributions can be applied against implementations where plaintext and ciphertext are inaccessible. This thesis shows that some countermeasures serve for attacks. Certain infective RSA countermeasures should protect against single fault injection. However, additional computations facilitate key discovery. Finally, several lightweight countermeasures are proposed. The proposed countermeasures are based on the antagonist masking, which is an operation occurring when targeting data processing, to intelligently mask the overall power consumption.
|
4 |
Approche stochastique de l'analyse du « residual moveout » pour la quantification de l'incertitude dans l'imagerie sismique / A stochastic approach to uncertainty quantification in residual moveout analysisTamatoro, Johng-Ay 09 April 2014 (has links)
Le principale objectif de l'imagerie sismique pétrolière telle qu'elle est réalisée de nos jours est de fournir une image représentative des quelques premiers kilomètres du sous-sol. Cette image permettra la localisation des structures géologiques formant les réservoirs où sont piégées les ressources en hydrocarbures. Pour pouvoir caractériser ces réservoirs et permettre la production des hydrocarbures, le géophysicien utilise la migration-profondeur qui est un outil d'imagerie sismique qui sert à convertir des données-temps enregistrées lors des campagnes d'acquisition sismique en des images-profondeur qui seront exploitées par l'ingénieur-réservoir avec l'aide de l'interprète sismique et du géologue. Lors de la migration profondeur, les évènements sismiques (réflecteurs,…) sont replacés à leurs positions spatiales correctes. Une migration-profondeur pertinente requiert une évaluation précise modèle de vitesse. La précision du modèle de vitesse utilisé pour une migration est jugée au travers l'alignement horizontal des évènements présents sur les Common Image Gather (CIG). Les évènements non horizontaux (Residual Move Out) présents sur les CIG sont dus au ratio du modèle de vitesse de migration par la vitesse effective du milieu. L'analyse du Residual Move Out (RMO) a pour but d'évaluer ce ratio pour juger de la pertinence du modèle de vitesse et permettre sa mise à jour. Les CIG qui servent de données pour l'analyse du RMO sont solutions de problèmes inverses mal posés, et sont corrompues par du bruit. Une analyse de l'incertitude s'avère nécessaire pour améliorer l'évaluation des résultats obtenus. Le manque d'outils d'analyse de l'incertitude dans l'analyse du RMO en fait sa faiblesse. L'analyse et la quantification de l'incertitude pourrait aider à la prise de décisions qui auront des impacts socio-économiques importantes. Ce travail de thèse a pour but de contribuer à l'analyse et à la quantification de l'incertitude dans l'analyse des paramètres calculés pendant le traitement des données sismiques et particulièrement dans l'analyse du RMO. Pour atteindre ces objectifs plusieurs étapes ont été nécessaires. Elles sont entre autres :- L’appropriation des différents concepts géophysiques nécessaires à la compréhension du problème (organisation des données de sismique réflexion, outils mathématiques et méthodologiques utilisés);- Présentations des méthodes et outils pour l'analyse classique du RMO;- Interprétation statistique de l’analyse classique;- Proposition d’une approche stochastique;Cette approche stochastique consiste en un modèle statistique hiérarchique dont les paramètres sont :- la variance traduisant le niveau de bruit dans les données estimée par une méthode basée sur les ondelettes, - une fonction qui traduit la cohérence des amplitudes le long des évènements estimée par des méthodes de lissages de données,- le ratio qui est considéré comme une variable aléatoire et non comme un paramètre fixe inconnue comme c'est le cas dans l'approche classique de l'analyse du RMO. Il est estimé par des méthodes de simulations de Monte Carlo par Chaîne de Markov.L'approche proposée dans cette thèse permet d'obtenir autant de cartes de valeurs du paramètre qu'on le désire par le biais des quantiles. La méthodologie proposée est validée par l'application à des données synthétiques et à des données réelles. Une étude de sensibilité de l'estimation du paramètre a été réalisée. L'utilisation de l'incertitude de ce paramètre pour quantifier l'incertitude des positions spatiales des réflecteurs est présentée dans ce travail de thèse. / The main goal of the seismic imaging for oil exploration and production as it is done nowadays is to provide an image of the first kilometers of the subsurface to allow the localization and an accurate estimation of hydrocarbon resources. The reservoirs where these hydrocarbons are trapped are structures which have a more or less complex geology. To characterize these reservoirs and allow the production of hydrocarbons, the geophysicist uses the depth migration which is a seismic imaging tool which serves to convert time data recorded during seismic surveys into depth images which will be exploited by the reservoir engineer with the help of the seismic interpreter and the geologist. During the depth migration, seismic events (reflectors, diffractions, faults …) are moved to their correct locations in space. Relevant depth migration requires an accurate knowledge of vertical and horizontal seismic velocity variations (velocity model). Usually the so-called Common-Image-Gathers (CIGs) serve as a tool to verify correctness of the velocity model. Often the CIGs are computed in the surface offset (distance between shot point and receiver) domain and their flatness serve as criteria of the velocity model correctness. Residual moveout (RMO) of the events on CIGs due to the ratio of migration velocity model and effective velocity model indicates incorrectness of the velocity model and is used for the velocity model updating. The post-stacked images forming the CIGs which are used as data for the RMO analysis are the results of an inverse problem and are corrupt by noises. An uncertainty analysis is necessary to improve evaluation of the results. Dealing with the uncertainty is a major issue, which supposes to help in decisions that have important social and commercial implications. The goal of this thesis is to contribute to the uncertainty analysis and its quantification in the analysis of various parameters computed during the seismic processing and particularly in RMO analysis. To reach these goals several stages were necessary. We began by appropriating the various geophysical concepts necessary for the understanding of:- the organization of the seismic data ;- the various processing ;- the various mathematical and methodological tools which are used (chapters 2 and 3). In the chapter 4, we present different tools used for the conventional RMO analysis. In the fifth one, we give a statistical interpretation of the conventional RMO analysis and we propose a stochastic approach of this analysis. This approach consists in hierarchical statistical model where the parameters are: - the variance which express the noise level in the data ;- a functional parameter which express coherency of the amplitudes along events ; - the ratio which is assume to be a random variable and not an unknown fixed parameter as it is the case in conventional approach. The adjustment of data to the model done by using smoothing methods of data, combined with the using of the wavelets for the estimation of allow to compute the posterior distribution of given the data by the empirical Bayes methods. An estimation of the parameter is obtained by using Markov Chain Monte Carlo simulations of its posterior distribution. The various quantiles of these simulations provide different estimations of . The proposed methodology is validated in the sixth chapter by its application on synthetic data and real data. A sensitivity analysis of the estimation of the parameter was done. The using of the uncertainty of this parameter to quantify the uncertainty of the spatial positions of reflectors is presented in this thesis.
|
Page generated in 0.0965 seconds