• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and optimization of terahertz waveguides with low loss and dispersion

Shiran, Vahid 01 September 2020 (has links)
Electromagnetic waves in the terahertz spectral range have gained significant research focus due to their applications in various fields of science. To effectively generate and integrate terahertz waves in systems, appropriate waveguide design is critical. Conventionally waveguides have been used to control the propagation of electromagnetic waves. A waveguide with low loss and dispersion is always preferred. But achieving these characteristics is quite challenging especially if operating in the terahertz spectral range. There are inherent material and geometric limitations that exist for terahertz waveguides. It is therefore important to optimize the design to enable their use in applications efficiently. This thesis investigates the characteristics of three primary terahertz waveguides based on the underlying theory and results obtained from simulations. The three waveguides are parallel-plate waveguides, two-wire waveguides, and coplanar striplines. The work in this thesis mostly focuses on coplanar striplines, optimal for building a highly efficient commercial and portable terahertz system-on-chip (TSOC). The contribution of the thesis is around the use of different types of passive components mounted on a thin commercial Silicon Nitride membrane. A bias tee is introduced which is a combination of interdigitated electrodes and a meander inductor. The length of the interdigitated electrodes and the gap between them are 55 um and 5 um, respectively. The S21 parameter for this structure ranges from -24 dB/mm at near-zero frequencies to -0.8 dB/mm at 1 THz. This indicates that the designed bias tee can appropriately block low frequencies. Split-ring resonators are also used to act as band-stop filters. The resonant frequency of the resonator depends on the radii of the split-rings. In the optimized design, the internal radius of the outer ring is 25 um and the external radius of the inner ring is 20 um. This results in a narrowband band-stop filter with its resonant frequency centered at 701 GHz. The optimized final TSOC design discussed in this work uses these passive components placed on the Silicon Nitride membrane and is shown to have a total loss that is 3 dB/mm less than any of the previous work for terahertz frequencies. / Graduate
2

FDFD Analysis of Hollow Terahertz Waveguides

Chan, Chih-yu 20 July 2010 (has links)
In most terahertz (THz) systems, the propagation of THz signals relies on metal or dielectric waveguides which suffer from high conductivity losses caused by the skin effect or dielectric losses resulted from the material absorption. Due to this reason, we propose and demonstrate a simple low-loss air-core tube strucutre for THz waveguiding. The simulation method we utilized is the finite-difference frequency-domain (FDFD) method with the perfectly matched layers (PMLs). The modal indices and propagation losses of the guided core modes on the THz tube waveguide are successfully obtained. The simulation results show that the guiding mechanism of the hollow tube waveguide is based on the antiresonant reflecting optical waveguide (ARROW) model. We also utilize a Fabry-Perot resonantor model to find out the resonance frequencies of the dielectric layer, which match well with the results of the FDFD method. By varying the core size, it is observed that the propagation losses are reduced when the core size is increased. The propagation losses can be reduced from 10-3 cm-1 (0.0043 dB/cm) to 10-4 cm-1 (4.34¡Ñ10-4 dB/cm). In addition, we can use the thin dielectric layer to provide a broad transmission band with £Gf = 0.13THz. We also propose a novel tube THz waveguide sensor. The influence of the thickness and material of the dielectric layer 2 are investigated. We can observe that the shift of the propagation loss peak is inversely proportional to the thickness of dielectric layer 2, which can be used as a thickness sensor with the sensing sensitivity being 0.125 GHz/£gm. On the other hand, the index of the dielectric layer 2 and the position of the propagation loss peak are in an exponential relationship. These properties of the tube waveguide can be applied in the dielectric-film sensing.
3

Magnetic Micro- and Nanostructures for Electrical Machinery

Ahmadi, Farzad 02 April 2019 (has links)
No description available.
4

Large Angle Plasmon Scattering in Metals and Ceramics

Colson, Tobias A., tobiascolson@gmail.com January 2007 (has links)
This investigation is primarily concerned with the low loss, or plasmon region of an electron energy loss spectrum. Specifically, why these spectra have the shape and form that they do; what the significance of the material is in determining the shape and form of these spectra; what can be done with plasmon excited electrons; and how all of this fits in with the current theory of plasmon excitation. In particular, the concept of plasmon scattering being an energy transfer process of a coupled wave in the material is explored. This gives rise to slightly different explanations of the plasmon scattering process to the status quo. Multiple scattering is typically pictured as a combination of separate and independent, elastic and inelastic scattering events interactively contributing to a final exit wave function. However, this investigation explores the idea of the elastic and inelastic components being a coupled event, and what the consequences of this idea are from a conceptual point of view. The energy transfer process itself, does not deviate from a virtual particle exchange description that is consistent with the standard model. However, the two significant points made throughout the chapters are one: that the elastic and inelastic scattering events are coupled rather than separate, and two: that each succussive higher order scattering event in multiple scattering scenarios, are dependant and connecte d rather than independent.
5

GRAPHENE BASED RF/MICROWAVE IMPEDANCE SENSING and Low Loss conductor for RF applications

Iramnaaz, Iramnaaz January 2011 (has links)
No description available.
6

Low Loss Substrate Integrated Waveguide N-way Power Divider

Mohammadi, Pejman 01 January 2013 (has links) (PDF)
Substrate Integrated Waveguide (SIW) technology has been used in designing and fabricating SIW n-way power dividers. In this thesis employing this technology three-port and
7

High-Q Integrated Inductors on Trenched Silicon Islands

Raieszadeh, Mina 12 April 2005 (has links)
This thesis reports on a new implementation of high quality factor (Q) copper (Cu) inductors on CMOS-grade (10-20ohm.cm) silicon (Si) substrates using a fully CMOS-compatible process. A low-temperature (less than300C) fabrication sequence is employed to reduce the loss of Si wafers at RF frequencies by trenching the Si substrate. The high aspect-ratio (30:1) trenches are subsequently bridged over or refilled with a low-loss material to close the open areas and to create a rigid low-loss island (Trenched Si Island) on which the inductors can be fabricated. The method reported here does not require air suspension of the inductors, resulting in mechanically-robust structures that are compatible with any packaging technology. The metal loss of inductors is reduced by electroplating thick (~20m) Cu layer. Fabricated inductors are characterized and modeled from S-parameter measurement. Measurement results are in good agreement with SONNET electromagnetic simulations. A one-turn 0.8nH Cu inductor fabricated on a Trenched Silicon Island (TSI) exhibits high Q of 71 at 8.75 GHz. Whereas, the identical inductor fabricated on a 20um thick silicon dioxide (SiO2) coated standard Si substrate has a maximum Q of 41 at 1.95GHz. Comparing the Q of inductors on TSI with that of other micromachined Si substrates reveals the significant effect of trenching the Si in reduction of the substrate loss. This thesis outlines the design, fabrication, characterization and modeling of spiral type Cu inductors on the TSIs.
8

Low Loss Articulated Hauler Axle : A Conceptual Study / Lågförlustaxel till ramstyrd dumper : En konceptstudie

Andersson, Patrik, Wallin, Morgan January 2017 (has links)
Volvo Construction Equipment is highly regarded for robust products, but with an increasing competition in their market, development of the product portfolio is more important than ever. One step being carried out is to reduce losses in powertrains and increase the fuel efficiency for solutions such as articulated haulers and wheel loaders. This would eventually lower the fuel costs and emissions for the end customer. With this development, Volvo CE could strengthen their position in the market while also contributing to reducing the construction industry's environmental impact. By investigating the front bogie axle of the recently introduced hauler, Volvo A60H, important information about possible reductions and the distribution of the current losses were found. The investigation focused on a front bogie axle, but some of the results are applicable for other applications such as wheel loaders as well, since a lot of the technology in the axles are similar. A conceptual study was performed where completely new ideas were generated, such as implementing a dry sump system in the axle, as well as ideas for improving the subcomponents currently found in the axle. Two cases were presented for the evaluation of concepts, one with a fully loaded dump body and low speeds, and one with an unloaded dump body and a wider speed interval. The concepts were later evaluated using calculation tools such as MATLAB and a Simulink-model was created for the losses in the axle. When combining concepts that reduces load dependent losses, a potential reduction of 64% of the axle's total losses was achieved for the case with a full dump body. The largest improvement found for the load independent losses was 8% with an unloaded hauler and the highest speed investigated, 50 km/h. A dry sump system improves the axle's efficiency with 45% in optimal working conditions, but was found to lower the efficiency at other conditions. Room for improvement of axle losses currently exists both for load dependent and load independent losses. The evaluation performed pointed towards the load dependent losses being the largest influence on the total losses, even with an unloaded dump body and high speeds. This is an interesting observation since a lot of work at Volvo CE has revolved around reducing the load independent losses since these are easier to affect with different lubrication levels and rotational speeds. A test methodology for load dependent losses should be implemented in order to validate the results of this thesis work, and also to aid further development at Volvo CE.
9

Excursions in Electron Energy-Loss Spectroscopy

January 2020 (has links)
abstract: Recent improvements in energy resolution for electron energy-loss spectroscopy in the scanning transmission electron microscope (STEM-EELS) allow novel effects in the low-loss region of the electron energy-loss spectrum to be observed. This dissertation explores what new information can be obtained with the combination of meV EELS energy resolution and atomic spatial resolution in the STEM. To set up this up, I review nanoparticle shape effects in the electrostatic approximation and compare the “classical” and “quantum” approaches to EELS simulation. Past the electrostatic approximation, the imaging of waveguide-type modes is modeled in ribbons and cylinders (in “classical" and “quantum" approaches, respectively), showing how the spatial variations of such modes can now be imaged using EELS. Then, returning to the electrostatic approximation, I present microscopic applications of low-loss STEM-EELS. I develop a “classical” model coupling the surface plasmons of a sharp metallic nanoparticle to the dipolar vibrations of an adsorbate molecule, which allows expected molecular signal enhancements to be quantified and the resultant Fano-type asymmetric spectral line shapes to be explained, and I present “quantum” modelling for the charged nitrogen-vacancy (NV-) and neutral silicon-vacancy (SiV0) color centers in diamond, including cross-sections and spectral maps from density functional theory. These results are summarized before concluding. Many of these results have been previously published in Physical Review B. The main results of Ch. 2 and Ch. 4 were packaged as “Enhanced vibrational electron energy-loss spectroscopy of adsorbate molecules” (99, 104110), and much of Ch. 5 appeared as “Prospects for detecting individual defect centers using spatially resolved electron energy loss spectroscopy” (100, 134103). The results from Ch. 3 are being prepared for a forthcoming article in the Journal of Chemical Physics. / Dissertation/Thesis / Doctoral Dissertation Physics 2020
10

L4S in 5G networks / L4S i 5G-nätverk

Brunello, Davide January 2020 (has links)
Low Latency Low Loss Scalable Throughput (L4S) is a technology which aims to provide high throughput and low latency for the IP traffic, lowering also the probability of packet loss. To reach this goal, it relies on Explicit Con- gestion Notification (ECN), a mechanism to signal congestion in the network avoiding packets drop. The congestion signals are then managed at sender and receiver side thanks to scalable congestion control algorithms. Initially, in this work the challenges to implement L4S in a 5G network have been analyzed. Using a proprietary state-of-the-art network simulator, L4S have been imple- mented at the Packed Data Convergence Protocol layer in a 5G network. The 5G network scenario represents a context where the physical layer has a carrier frequency of 600 MHz, a transmission bandwidth of 9 MHz, and the proto- col stack follows the New Radio (NR) specifications. L4S has been adopted to support Augmented Reality (AR) video gaming traffic, using the IETF ex- perimental standard Self-Clocked Rate Adaptation for Multimedia (SCReAM) for congestion control. The results showed that when supported by L4S, the video gaming traffic experiences lower delay than without L4S support. The improvement on latency comes with an intrinsic trade-off between throughput and latency. In all the cases analyzed, L4S yields to average application layer throughput above the minimum requirements of high-rate latency-critical ap- plication, even at high system load. Furthermore, the packet loss rate has been significantly reduced thanks to the introduction of L4S, and if used in combi- nation with a Delay Based Scheduler (DBS), a packet loss rate very close to zero has been reached. / Low Latency Low Loss Scalable Throughput (L4S) är en teknik som syftar till att ge hög bittakt och låg fördröjning för IP-trafik, vilket också minskar sanno- likheten för paketförluster. För att nå detta mål förlitar det sig på Explicit Cong- estion Notification (ECN), en mekanism för att signalera "congestion", det vill säga köuppbyggnad i nätverket för att undvika att paketet kastas. Congestion- signalerna hanteras sedan vid avsändare och mottagarsida där skalbar anpass- ning justerar bittakten efter rådande omständigheter. I detta arbete har utma- ningarna att implementera L4S i ett 5G-nätverk analyserats. Sedan har L4S implementerats på PDCP lagret i ett 5G-nätverkssammanhang genom att an- vända en proprietär nätverkssimulator. För att utvärdera fördelarna med imple- menteringen har L4S-funktionerna använts för att stödja Augmented Reality (AR) videospelstrafik, med IETF-experimentella standard Self-Clocked Rate Adaptation for Multimedia (SCReAM) för bitrate-kontroll. Resultaten visade att med stöd av L4S upplever videospelstrafiken lägre latens än utan stöd av L4S. Förbättringen av latens kommer med nackdelen av en minskning av bit- takt som dikteras av den inneboende avvägningen mellan bittakt och latens. I vilket fall som helst är kapacitetsminskningen med L4S rimlig, eftersom goda kapacitetsprestanda har uppnåtts även vid hög systembelastning. Vidare har paketförlustfrekvensen reducerats avsevärt tack vare införandet av L4S, och om den används i kombination med en Delay baserad schemaläggare (DBS) har en paketförluster mycket nära noll uppnåtts.

Page generated in 0.1505 seconds