• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 11
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 101
  • 58
  • 41
  • 29
  • 23
  • 16
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

An examination of the nature of critical flux and membrane fouling by direct observation

Neal, Peter Ross, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Securing water in the right quantities at the right quality for the right price is a major issue around the world. Membranes are making an increasingly important contribution to meeting this need; however their performance is limited by fouling. This thesis reports on an investigation into the fouling of systems related to water treatment using the Direct Observation Through the Membrane (DOTM). The investigation focused on the measurement of critical flux and observation of particle behaviour under a variety of conditions and for a number of different particles. The range of meanings attributed to critical flux in the literature was analysed and several proposals made for the improved use of the concept. In particular, critical flux determination techniques were classified by whether they measure resistance changes or particle deposition; leading to the definition of Critical Resistance and Critical Deposition Fluxes. In this thesis the deposition definition is used exclusively. The effect of Reynolds number and spacer orientation on critical flux was correlated for spacer-filled channels. The heterogeneous deposition patterns observed with regions of heavy deposition next to areas of little or no deposition. This pattern was related to the local hydrodynamics of spacer cells (a few mm2 in size). The correlations developed for critical flux in spacer-filled channels were adjusted for submicron particle size and incorporated into a SpiralWound Module (SWM) leaf model and then used to simulate the fouling of SWM leaves under a range of operating conditions and operating policies. The Mass Balance technique of critical flux determination was also briefly assessed. The applicability of critical flux criteria to SWM arrays was discussed. Fouling, particle behaviour and critical flux were also investigated in air-sparged systems. The post-cleaning water flux was found to be enhanced when the membrane is fouled in the presence of bubbles. The rate of flux decline was reduced by bubbles. Critical flux increased with air flowrate, and decreased with increased liquid flowrate and concentration. Bubbles caused particles to periodically deposit on the membrane. Particles were observed to stream past the membrane under the influence of back-diffusive forces. Video clips of particulate fouling are provided.
72

Recovery And Reuse Of Indigo Dyeing Wastewater Using Membrane Technology

Uzal, Nigmet 01 November 2007 (has links) (PDF)
The objective of this study is to develop a membrane-based generic treatment scheme for wastewaters of indigo dyeing process of denim industry, based on water reuse. For this purpose, firstly the performances of microfiltration (MF), coagulation, and ultrafiltration (UF) processes were evaluated as pretreatment alternatives and the best pretreatment alternatives appeared to be single stage 5 &micro / m MF and sequential 5 &micro / m MF followed by 100 kDa UF providing high permeation rate and high color retention. These two pretreatment alternatives were compared based on the performance of nanofiltration (NF) using NF 270 membrane, and the best pretreatment process was evaluated as 5 &micro / m MF that provided 87-92% color and 10% chemical oxygen demand (COD) retention. After the pretreatment tests, three different NF (NF 270, NF 90, Dow Filmtec, USA and NF 99, Alfa Laval, Denmark) and two different reverse osmosis (RO) membranes (HR 98 PP and CA 995 PE, Alfa Laval, Denmark) were tested to produce reusable water. Permeate COD and color performances of the tested NF and RO membranes were similar and satisfactory in meeting the relevant reuse criteria, while permeate conductivity was satisfactory only for HR 98 PP RO membrane and for NF 90 membrane. On the other hand, NF 270 membrane was superior to the other membranes in terms of permeation rate. For NF 270 membrane / cumulative color, COD and conductivity retentions were found to be 93 %, 92 %, and 60 %, respectively. When the developed process chain (5&micro / m MF+ NF 270) was also tested for a dilute indigo dyeing wastewater, it was found out that the developed scheme works similarly and is generic for indigo dyeing wastewaters.
73

Indigo Dyeing Wastewater Treatment By The Membrane Based Filtration Process

Unlu, Meltem 01 April 2008 (has links) (PDF)
In the present study, the recovery of the indigo dyeing rinsing wastewater originating from a denim textile mill to the degree of reuse quality, which generally requires nanofiltration (NF), was investigated. In order to control flux decline and hence to maintain an efficient NF / coagulation, microfiltration (MF) and sequential MF plus ultrafiltration (UF) pretreatment process alternatives were tested. All pretreatment alternatives were optimized to reduce chemical oxygen demand (COD) and color load to NF. Coagulation process was investigated using the coagulants, aluminum sulfate (Al2(SO4)3.18H2O) and ferric chloride (FeCl3.6H2O) by running a series of jar tests. The results showed that coagulation process did not provide an effective and efficient pretreatment due to high dose of coagulant requirement. MF tests run by using 0.45, 2.5 and, 8 &micro / m membranes indicated that MF through 0.45 &micro / m pore-sized membrane is the best process providing 64% color and 29% COD removals, leading to a color value of 2493 Pt-Co and COD of 892 mg /L in the permeate. Application of sequential MF+UF filtration provided a significant benefit over single MF in terms of rejections and also permeate flux. UF applied after MF provided additional 62% color and 4% COD removals leading to 960 Pt-Co color and 856 mg/L COD. NF tests conducted using pretreated wastewater via single MF and sequential MF+UF indicated that single MF is the best pretreatment to NF and this treatment scheme provided 99% color, 97% COD and 80 % conductivity removals and satisfied reuse criteria.
74

PEG hydrogels as anti-fouling coatings for reverse osmosis membranes

Sagle, Alyson Conner 16 October 2012 (has links)
Water is becoming increasingly scarce as the demand for fresh water continues to rise. One potential new water resource is purified produced water. Produced water is generated during oil and gas production, and it is often contaminated with emulsified oil, high levels of salt, and particulate matter. Produced water purification using polymer membranes has been investigated, but its implementation is limited by membrane fouling. This study focused on the preparation and application of poly(ethylene glycol) (PEG) hydrogels as fouling-resistant coatings for commercial reverse osmosis (RO) membranes. To prepare fouling-resistant coatings for RO membranes, three series of copolymer hydrogel networks were synthesized using poly(ethylene glycol) diacrylate (PEGDA) as the crosslinker and acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), or poly(ethylene glycol) acrylate (PEGA) as comonomers, and their transport properties were evaluated. The hydrogels have high water uptake and high water permeability, and crosslink density strongly influences water uptake and water permeability. For example, a 100 mol% PEGDA hydrogel contained 61% water by volume, but 80PEGA, which has essentially the same chemical composition but lower crosslink density, contained 72% water by volume. Hydrogel water permeability ranged from 10 to 26 (L [mu]m)/(m² hr bar) and correlates well with water uptake; high water uptake often leads to high water permeability. Additionally, the copolymers have hydrophilic surfaces with a low affinity for oil, based on contact angle measurements using n-decane in water. Commercial RO membranes (AG RO membrane from GE Water and Process Technologies) were coated with PEG hydrogels, and the desalination and fouling resistance properties of the coated membranes were tested. The water flux of coated membranes and a series-resistance model were used to estimate coating thickness; the coatings were approximately 2 [mu]m thick. NaCl rejection for both uncoated and coated membranes was 99.0% or greater. As determined by zeta potential measurements, both uncoated and coated RO membranes are negatively-charged, but coated membranes are less negatively-charged than uncoated RO membranes. Model oil/water emulsions, prepared with either a cationic or an anionic surfactant, were used to probe membrane fouling. In the absence of oil, surfactant charge, and therefore, electrostatic interactions play a significant role in membrane fouling. In the presence of DTAB, a cationic surfactant, the AG RO membrane water flux immediately dropped to 30% of its initial value, but in the presence of SDS, an anionic surfactant, its water flux gradually decreased to 74% of its initial value after 24 hours. However, in both cases, coated membranes exhibited less flux decline than uncoated membranes. Coated membranes also experienced little fouling in the presence of an n-decane/DTAB emulsion. After 24 hours, the water flux of a PEGDA-coated AG RO membrane was 73% of its initial value, while the water flux of an AG RO membrane fell to 26% of its initial value. Conversely, both coated and uncoated membranes fouled significantly in the presence of an n-decane/SDS emulsion, indicating that oil fouling is controlled both by electrostatic and hydrophobic interactions. Overall, this work provides answers to some of the fundamental questions posed regarding the viability of using modified membranes for produced water treatment. / text
75

Colloidal Fouling of Salt Rejecting Nanofiltration Membranes: Transient Electrokinetic Model and Experimental Study

Mamun, Md. Abdullaha-Al- Unknown Date
No description available.
76

Avaliação dos efeitos da adição de L-cistina e sais biliares na técnica de H2S na detecção de contaminação fecal em ambientes aquáticos. / Effect evaluation of L-cystine and bile salts in H2S method for fecal contamination detection in water environment.

Thiago Nepomuceno Silva 13 June 2016 (has links)
As fontes hídricas disponíveis para o consumo humano vêm sendo comprometidas. Para resolver este problema, várias técnicas de detecção de contaminação fecal foram desenvolvidas. Em 1982, Manja e colegas desenvolveram método H2S que é simples, rápida e de baixo custo e detecta bactérias produtoras de H2S e, assim, a contaminação fecal. Neste trabalho foi analisada a eficácia de detecção de micro-organismos produtores de H2S frente a adição de L-cistina (125mg/L e 250mg/L) e desoxicolato de sódio (DS) (0,1% e 0,3%) e na presença de bactérias não produtoras de H2S para verificar se a presença destas bactérias interferem na detecção dos isolados H2S+. Assim, comparou-se o teste H2S com a membrana filtrante e o Colilert®. Os resultados deste estudo indicam que o meio H2S com adição de 0,3% de desoxicolato de sódio se mostrou mais rápido e sensível. Quando comparado com outras metodologias clássicas, o meio com 0,3% apresentou uma ligeira queda na sensibilidade mas o método H2S se mostrou mais sensível que o Colilert. / Water supply for human consumption have been compromised. Several detection methods for fecal contamination have been developed to solve this problem. Manja and co-workers (1982) developed a simple, fast and low-cost method for fecal contamination based on detection of sulfate-reducing bacteria, the H2S method. This work aimed to analyse the detection efficiency of the H2S method under different conditions: with L-cystine (125mg/L e 250mg/L) and sodium deoxycholate (0.1% e 0.3%). Also, non-sulfate-reducing bacteria interference were evaluated. Comparison tests were made through membrane filtration and Colilert®. Our results indicate a faster and more sensible for the 0.3% sodium deoxycholate condition. Compared to other classic methodologies, the 0.3% sodium deoxycholate condition slightly decrease the sensibility. However the H2S method was more sensitive than the Colilert one.
77

Optimization of the woven fibre-immersed membrane bioreactor (WF-IMBR)

Shitemi, Kenneth Khamati, Pillay January 2017 (has links)
Submitted in fulfilment of the requirements for the Degree of Master of Engineering, Durban University of Technology, 2017. / In this research, the woven fibre microfiltration (WFMF) fabric which is produced locally in South Africa is used as a membrane material. It is cheaper in price in comparison with the current commercial membrane materials that are in use. The WFMF is also more robust when compared with the commercial membrane materials thus is able to withstand harsh working conditions. From previous studies on the WFMF, it has been shown that it can be used as a membrane material without any compromise to permeate quality. This research seeks to optimize the working conditions of this membrane material (WFMF) with an aim of achieving lower running costs and better anti fouling strategies in comparison to the commercial MBRs. The objectives and aims of this research was to come up with a MBR system whose running cost is lower than that for the commercial systems, which can be adapted for use in any environment, especially in the hardship regions where its robustness would be an added advantage. The performance of the WFMF submerged MBR was also optimised including antifouling operating regimes. This study was done in a pilot plant that was set up at Veolia wastewater treatment plant, Durban Metro Southern Works. The feed water for the pilot plant was pumped from the return activated sludge mixing chamber by means of a submersible pump. The MLSS concentration of the feed water was about 12 g/l. The various investigations that were conducted in the course of this research included the effect of spacing between membrane modules, relaxation steps and frequencies, evaluation of aeration rates and evaluation of coarse vs. fine bubbles which were all aimed at optimizing the performance of the immersed WFMF MBR. The permeate was checked for turbidity and COD levels to ensure that they were within the accepted water standards. From the experiments it is shown that the critical flux increased with an increase in aeration rate which is in concurrence with the literature and a starting flux of 30 LMH was chosen for the running of the pilot plant for the various experimental runs to be carried out. For the pipe diffuser height effect experimental run, the best results were achieved at a height of 5 cm below the membrane modules and the use of a pipe diffuser gave better results than the use of a disc diffuser. For the membrane module spacing effect the best results were obtained at the smallest possible width i.e. 3.5 mm. The best relaxation step sequence was found to be 9 mins on and 1 min off. COD, turbidity and DO was continuously determined during the course of the experimentation. Further studies should be done on use of the disc diffuser with increased surface area of aeration holes and also hole sizes of smaller diameters to check on its effectiveness as a means of reducing fouling on the membrane surface. / M
78

Production of biopolymers and synthons from lignocellulosic wastes / Production de biopolymères et synthons à partir de résidus lignocellulosiques

Oriez, Vincent 29 January 2019 (has links)
Les résidus forestiers et agricoles, également appelés résidus lignocellulosiques, constituent de par leur quantité et leur structure un potentiel unique pour la production d’énergie et de molécules d’origine renouvelable, afin de pallier à la raréfaction des hydrocarbures fossiles ainsi qu’aux problèmes environnementaux liés à l’utilisation de ceux-ci. Les biomasses lignocellulosiques sont constituées principalement de cellulose, hémicelluloses et lignines. Le fractionnement et la purification de ces trois constituants est nécessaire à leur valorisation comme produits de substitution des hydrocarbures fossiles. Cette étude s’est tout d’abord attachée à la description et la compréhension des fractionnements chimiques acides et alcalins de la lignocellulose et aux voies de purification qui leur sont actuellement associées. Les travaux expérimentaux ont été réalisés à partir de deux matières premières : la bagasse de canne à sucre et le tourteau de tournesol. Une caractérisation fine de ces matières premières ainsi que des extraits acides et alcalins obtenus à partir de ces matières a été réalisée. Les étapes de purification se sont focalisées sur l’extrait alcalin de bagasse obtenu en conditions douces. En effet, la bagasse de canne à sucre peut être considérée comme un bon modèle de biomasse lignocellulosique, et la purification d’extraits alcalins lignocellulosiques obtenus en conditions douces a été peu étudiée malgré l’intérêt de ce procédé de fractionnement. La filtration membranaire et la chromatographie d'élution sur résine échangeuse de cation ont été évaluées séparément puis en association, afin de séparer les cinq grandes familles de molécules constitutives de l’extrait : des oligomères de lignines, des oligomères de sucres, des monomères phénoliques, de l’acide acétique et des sels inorganiques. Des essais d’ultrafiltration sur plusieurs membranes en faisant varier divers paramètres de filtration ont permis de déterminer que les oligomères de lignine et de sucres, récupérés dans le rétentat, sont séparés des monomères phénoliques, de l’acide acétique et des sels inorganiques, récupérés dans le perméat. Une membrane en fibres creuses de 10 kDa en polysulfone a présenté les meilleures performances de séparation et a été retenue pour les essais suivant en mode concentration et diafiltration. Des essais de chromatographie d'élution avec de l’eau pour éluant en testant plusieurs résines cationiques fortement acides ont montré qu’une fraction très pure d’oligomères de lignines et de sucres peut être obtenue avec une résine de type macroporeuse, alors qu’une résine de type gel a permis la séparation de monomères phénoliques entre eux en fonction de la présence ou non dans leur structure d’une fonction carboxyle. A partir d’extrait alcalin de bagasse, un procédé intégré de purification a été développé combinant de la filtration membranaire puis de la chromatographie sur le perméat et de la précipitation par ajout d’acide sur le rétentat. Il en a résulté l'obtention de quatre fractions purifiées : les monomères phénoliques avec fonction carboxyle, les sels inorganiques et les monomères phénoliques sans fonction carboxyle, les oligomères de lignine, et les oligomères de sucres. / Agricultural and forestry residues, also known as lignocellulosic residues, have a unique potential based on their quantity and structure for the production of renewable energy and molecules, inorder to solve the issues raised by the increasing scarcity of fossil hydrocarbons and the environmental disorder caused by their use. Lignocellulosic biomasses are essentially made ofcellulose, hemicelluloses and lignin. Fractionation and purification of these three compounds are necessary for their valorization as substitutes of fossil hydrocarbons. In the first place, this studydescribed the chemical fractionation of lignocellulose under acidic and alkaline conditions, and their related purification pathways. The experimental work was carried out on two raw materials:sugarcane bagasse and sunflower oil cake. A thorough characterization of the raw materials as well as the acid and alkaline extracts produced from these materials was performed. The purification steps focused on the sugarcane bagasse mild alkaline extract. Indeed, sugarcane bagasse can be considered a model lignocellulosic biomass and the purification of lignocellulosicmild alkaline extract has not been widely studied despite the numerous assets of this fractionation process. Membrane filtration and elution chromatography on strong acid cationic exchange resins were assessed individually then combined, for the separation of the five main pools of molecules that constitute the extract: lignin oligomers, sugar oligomers, phenolic monomers, acetic acid and inorganic salts. Ultrafiltration trials run on several membranes under various filtration conditions showed that lignin and sugar oligomers, recovered in the retentate, were separated from phenolicmonomers, acetic acid and inorganic salts, recovered in the permeate. A hollow fiber membrane of 10 kDa in polysulfone exhibited the best separation performance and was selected for further trials in concentration and diafiltration modes. Elution chromatography tests using water as eluent and various strong acid cationic exchange resins resulted in the production of a very pure lignin andsugar oligomers fraction with a macroporous-type resin, whereas a gel-type resin led to the separation of phenolic monomers from each other depending on the presence or absence in their structure of a carboxyl group. From a sugarcane bagasse mild alkaline extract, an integrated purification process was developed combining membrane filtration then chromatography on the permeate and precipitation by acid addition on the retentate. It resulted in the production of four purified fractions: phenolic monomers with a carboxyl group, inorganic salts and phenolicmonomers without carboxyl group, lignin oligomers, and sugar oligomers
79

Utilization of Biomethane in Decarbonising India´s Energy Mix

Ravindra Kunkulol, Niraj January 2023 (has links)
This thesis investigates the potential of biomethane production in India, the impact of its integration into the energy mix, and the corresponding Greenhouse Gases (GHG) emission and potential reduction. India, with its huge population and being an agriculturally rich country, produces gigantic amounts of biodegradable waste from various sources such as Municipal Solid Waste (MSW),agricultural waste, animal husbandry, sugar industry, etc. Three different end-use scenarios: electricity generation, cooking fuel, and transportation fuel—are assessed in order to determine the decree to which current fossil fuels may be replaced and the net amount of greenhouse gas emissions that are saved by using this biomethane. The total biomethane generation potential according to the study conducted by the Ministry of New and Renewable Energy (MNRE) is 25.6 Billion Metric Standard Cubic Meters (BMSCM) and with the most efficient upgrading technology available (3-stage membrane filtration) the useful potential is 25.4 BMSCM. The electricity that can be produced from the biomethane potential available is 159.1 TWh, which corresponds to the optimistic value of GHG emission reduction of 89million tons. When used as a cooking fuel, biomethane can contribute immensely to satisfying the final thermal needs of India. It can satisfy more than half the combined total thermal energy from Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) consumed in India and, at the same time, reduce 46.2 million tons of GHG emissions caused by it. The transportation sectoris the most suited and easy to adapt as an end-use application for biomethane. It was observed that biomethane as a replacement for Petrol for road transportation fuel presents the best scenario, since biomethane can reduce more than 71% of its consumption and respectively reduce more than 57 million tons of GHG emission, which is the second highest after electricity production. This thesis puts up a strong case to look at biomethane as a very important fuel towards India’starget to be net zero by 2070 and its plans to be self-reliant. Moreover, biomethane production usingthe path of anaerobic digestion provides not only a renewable source of energy but also food security with digestate being used as fertilizer and an opportunity to address the impact of climate change by preventing the emission of methane in the atmosphere which has a global warming potential of28 and burning of agricultural waste in the open field. Eventually, the production of biomethane prevents soil, air and water pollution. / Denna avhandling undersöker potentialen för biometanproduktion i Indien, effekterna av dess integration i energimixen och motsvarande utsläpp och potential för växthusgaser (GHG). minskning. Indien, med sin enorma befolkning och är ett jordbruksrikt land, producerar gigantiska mängder biologiskt nedbrytbart avfall från olika källor som kommunalt fast avfall (MSW), jordbruksavfall, djurhållning, sockerindustri, etc. Tre olika slutanvändningsscenarier: el produktion,matlagningsbränsle och transportbränsle – utvärderas för att fastställa till vilket dekret nuvarande fossila bränslen får ersättas och nettomängden växthusgasutsläpp som sparas genom att använda denna biometan. Den totala biometangenereringspotentialen enligt studien utförd av ministeriet för ny och förnybarenergi (MNRE) är 25,6 miljarder metriska standardkubikmeter (BMSCM) och med den mest effektiva uppgraderingstekniken som finns tillgänglig (3-stegs membranfiltrering) är den användbara potentialen 25,4 BMSCM. Den el som kan produceras från den tillgängliga biometanpotentialen är 159,1 TWh medan det optimistiska värdet av växthusgasutsläpp som är möjligt med användning av biometan för elproduktion är 89 miljoner ton. När biometan används som matlagningsbränsle kan det bidra oerhört mycket för att tillfredsställa Indiens slutliga termiska behov. Det kan tillfredsställa mer än halva finalen termisk energi som förbrukas i Indien och samtidigt samma miljon ton i utsläpp av växthusgaser som orsakas av den. Transportsektorn är den mest lämpade och lätta att anpassa som slutanvändningsprogram för biometan. Det observerades att biometan som ersättning för bensin som transportbränsle är det bästa scenariot eftersom biometan kan minskamer än 71 % av sin förbrukning och respektive minska mer än 57 miljoner ton växthusgasutsläpp, vilket är det näst högsta efter elproduktion. Den här avhandlingen ger ett starkt argument för att se biometan som ett mycket viktigt bränslemot Indiens mål att vara nettonoll år 2070 och dess planer på att vara självförsörjande. Dessutom ger biometanproduktion genom att använda vägen för anaerob rötning inte bara en förnybar energikälla utan också livsmedelssäkerhet med rötgas som används som gödningsmedel och en möjlighet att ta itu med effekterna av klimatförändringar genom att förhindra utsläpp av metan i atmosfären som har en global uppvärmningspotential på 28 och förbränning av jordbruksavfall på det öppna fältet. Så småningom förhindrar produktionen av biometan mark-, luft- och vattenföroreningar.
80

Parametric study and economic evaluation of a simulated biogas upgrading plant

25 June 2015 (has links)
M. Tech. (Chemical Engineering) / The usual target of an upgrading process using membrane is to produce a retentate stream, the product, with high CH4 concentration. This work presents a simulation of two possible membrane configurations, single stage without recycle (SSWR) and double stage with permeate recycle (DSPR), of an existing operational biogas upgrading plant. The simulation was conducted using ChemCAD and AlmeeSoft gas permeation software to investigate the performance of the configurations on product purity, recovery and required compressor power with a view to determine the optimal operational conditions for maximising the concentration of CH4 and its recovery. Thereafter, an economic assessment on the optimal configuration was conducted to determine the gas processing cost (GPC), the profitability of producing biomethane and cost-benefit of utilising biomethane as a vehicular fuel. The simulation was validated against plant data with a maximum percentage error of 2.64%. Increasing CO2 in feed reduced product recovery and purity. Increasing feed pressure and selectivity increased product recovery and purity up to the pressure limit of the membrane module. Increasing feed flow rate increased product recovery but reduces purity. In both configurations, increasing CO2 in the feed and increasing feed pressure increased the GPC. However, increasing feed flow rate reduced the GPC. The overall performance of DSPR configuration was much higher due to increased trans-membrane area available for separation. At optimal conditions, a product purity of 91% and 96% CH4 recovery was achieved from the initial plant result of 87.2% product purity and 91.16% CH4 recovery. The total compression duty was 141 kW. The GPC was $0.46/m3 of biomethane. The cumulative discounted NPV, IRR and BCR for producing biomethane was R15,240,343, 22.41% and 2.05 respectively, with a break-even in the 5th year after plant start-up considering a prime lending rate at 9%. Using CBG instead of gasoline saves 34% of annual fuel cost with a payback period of one year and three months for the cost of retrofitting the vehicle.

Page generated in 0.0435 seconds