• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 19
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 8
  • 7
  • 6
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 162
  • 162
  • 44
  • 40
  • 35
  • 28
  • 27
  • 27
  • 26
  • 20
  • 20
  • 19
  • 18
  • 18
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Thermal annealing and superconductivity in Zr based metallic glasses

Marshall, Gillian E. January 1986 (has links)
No description available.
102

Structural Evolution In Mechanically Alloyed Fe-based Powder Systems

Patil, Umesh 01 January 2005 (has links)
A systematic study of iron-based binary and multi-component alloys was undertaken to study the structural evolution in these powders as a function of milling time during mechanical alloying. Blended elemental powders of Fe100-XBX (where x = 5, 10, 17, 20, 22, 25, 37.5 and 50 at. %) and a bulk metallic glass (BMG) composition (Fe60Co8Zr10Mo5W2B15) were subjected to mechanical alloying in a SPEX 8000 mixer mill. X-ray diffraction technique was employed to study the phase evolution, crystallite size, lattice strain and also to determine the crystal structure(s) of the phases. Depending on the milling time, formation of supersaturated solid solutions, intermetallics, and amorphous phases was noted in the binary Fe-B powder mixtures. A maximum of about 22 at. % B was found to dissolve in Fe in the solid state, and formation of FeB and Fe2B intermetallics was noted in some of the powder blends. However, an interesting observation that was made, for the first time, related to the formation of a crystalline phase on continued milling of the amorphous powder in the BMG composition. This phenomenon, termed mechanical crystallization, has been explored. Reasons for the mechanical crystallization of the amorphous powder using the X-ray diffraction and electron microscopy methods have been discussed. External heat treatments of the milled powder were also conducted to study the complete crystallization behavior of the amorphous phase. Preliminary attempts were made to consolidate the milled BMG powder to bulk shape by hot isostatic pressing (HIP) and magnetic compaction techniques. Full densification was not achieved. Nanoindentation and microhardness tests were performed to characterize the mechanical properties of the glassy alloy. Nanoindentation results gave an elastic modulus of 59 GPa, lower than the expected value of 184 GPa; due to the presence of porosity in the consolidated sample. Optimization of the consolidation parameters is required to achieve a fully dense material.
103

Catalytic Properties and Mechanical Behavior of Metallic Glass Powders

Garrison, Seth 05 1900 (has links)
Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. By altering the morphology and tuning of composition, MGs may be transformed into high-performance catalytic materials. In this study, the catalytic properties of metallic glass powders were demonstrated in dissociating toxic organic chemicals such as AZO dye. BMG powders showed superior performance compared to state of the art crystalline iron because of their high catalytic activity, durability, and reusability. To enhance the catalytic properties, high energy mechanical milling was performed to increase the surface area and defect density. Iron-based bulk metallic glass (BMG) of composition Fe48Cr15Mo14Y2C15B6 was used because of its low cost and ability to make large surface area by high energy ball milling. AZO dye was degraded in less than 20 minutes for the 9 hours milled Fe-BMG. However, subsequent increase in ball milling time resulted in devitrification and loss of catalytic activity as measured using UV-Visible spectroscopy. Aluminum-based bulk metallic glass (Al-BMG) powder of composition Al82Fe3Ni8Y7 was synthesized by arc-melting the constituent elements followed by gas-atomization. The particle size and morphology were similar to Fe-BMG with a fully amorphous structure. A small percentage of transition metal constituents (Fe and Ni) in a mostly aluminum alloy showed high catalytic activity, with no toxic by-products and no change in surface characteristics. Al-alloy particles, being light-weight, were easily dispersed in aqueous medium and accelerated the redox reactions. The mechanism of dye dissociation was studied using Raman and Infrared (IR) spectroscopy. Breaking of -C-H- and - C-N- bonds of AZO dye was found to be the primary mechanism. Mechanical behavior of individual BMG particles was evaluated by in situ pico-indentation in a scanning electron microscope (SEM) to understand the fracture mechanisms. Catastrophic shear banding was found to be the primary fracture mode, which supported the observation of flake formation during high energy ball milling.
104

Effects of Chemistry on Toughness and Temperature on Structural Evolution in Metallic Glasses

Shamimi Nouri, Ali 25 February 2009 (has links)
No description available.
105

Viscosity effects on the flow and fracture of metallic glasses and other viscous materials

Deibler, Lisa A. 11 April 2011 (has links)
No description available.
106

Mesoscale modeling of mechanical deformation of metallic glasses

Zhao, Pengyang 15 May 2015 (has links)
No description available.
107

Predictive Modeling for Developing Novel Metallic Glass Alloys

Ward, Logan Timothy 30 August 2012 (has links)
No description available.
108

Thermodynamics, Kinetics and Mechanical Behavior of Model Metallic Glasses

Akhtar, Mst Alpona 12 1900 (has links)
The thermophysical properties and deformation behavior of a systematic series of model metallic glasses was investigated. For Zr-based metallic glasses with all metallic constituents, the activation energy of glass transition was determined to be in the range of 74-173 kJ/mol while the activation energy of crystallization was in the range of 155-170 kJ/mol. The reduced glass transition temperature was roughly the same for all the alloys (~ 0.6) while the supercooled liquid region was in the range of 100-150 K, indicating varying degree of thermal stability. In contrast, the metal-metalloid systems (such as Ni-Pd-P-B) showed relatively higher activation energy of crystallization from short range ordering in the form of triagonal prism clusters with strongly bonded metal-metalloid atomic pairs. Deformation mechanisms of all the alloys were investigated by uniaxial compression tests, strain rate sensitivity (SRS) measurements, and detailed characterization of the fracture surface morphology. For the metal-metal systems, plasticity was found to be directly correlated with shear transformation zone (STZ) size, with systems of larger STZ size showing better plasticity. In metal-metalloid amorphous alloys, plasticity was limited by the distribution of STZ units, with lower activation energy leading to more STZ units and better plasticity. The alloys with relatively higher plasticity showed multiple shear bands while the brittle alloys showed a single dominant shear band and vein-pattern on the fracture surface indicating sudden catastrophic failure. The effect of chemistry change on thermodynamics, kinetics, and deformation behavior was investigated for the model binary NixP100-x and CoxP100-x metallic glasses. Alloys with higher phosphorous content showed greater activation energy of crystallization, indicating better thermal stability. In addition, metallic glasses with higher % P showed greater hardness, modulus, and serrated flow behavior during indentation that is characteristic of inhomogeneous deformation.
109

Polyhedra-based analysis of computer simulated amorphous structures

Kokotin, Valentin 25 June 2010 (has links) (PDF)
Bulk metallic glasses represent a newly developed class of materials. Some metallic glasses possess combinations of very good or even excellent mechanical, chemical and/or magnetic properties uncovering a broad range of both industrial and vital applications. Besides all advantages metallic glasses have also significant drawbacks, which have to be overcome for commercial application. Apart from low critical thicknesses, brittleness and chemical inhomogeneity one important problem of metallic glasses is the lack of an appropriate theory describing their structure. Therefore, the search for new glass forming compositions as well as the improving of existing ones occurs at present by means of trial-and-error methods and a number of empirical rules. Empirical rules for good glass-forming ability of bulk metallic glasses have been established in recent years by Inoue and Egami. Two of these rules, (i) Preference of more than 3 elements and (ii) Need of more than 12 % radii difference of base elements, seem to be closely related to topological (geometrical) criteria. From this point of view topological parameters contribute essentially to the glass-forming ability. The third rule (iii) demands a negative mixing enthalpy of base elements and refers to the chemical interaction of the atoms. The generalized Bernal’s model (hard-sphere approximation) was used for the simulation of monatomic, binary and multi-component structures. Excluding chemical interaction, this method allows the investigation of topological criteria of the glass-forming ability. Bernal’s hard-sphere model was shown to be a good approximation for bulk metallic glasses and metallic liquids and yields good coincidence of experimental and theoretical results. • The Laguerre (weighted Voronoi) tessellation technique was used as the main tool for the structural analysis. Due to very complex structures it is impossible to determine the structure of bulk metallic glasses by means of standard crystallographic methods. • Density, radial distribution function, coordination number and Laguerre polyhedra analysis confirm amorphism of the simulated structures and are in a good agreement with available experimental results. • The ratio of the fractions of non-crystalline to crystalline Laguerre polyhedra faces was introduced as a new parameter . This parameter reflects the total non-crystallinity of a structure and the amount of atomic rearrangements necessary for crystallization. Thus, the parameter is related to the glass-forming ability. It depends strongly on composition and atomic size ratio and indicates a region of enhanced glass-forming ability in binary mixtures at 80 % of small atoms and atomic size ratio of 1.3. All found maxima of parameter for ternary mixtures have compositions and size ratios which are nearly the same as for the binary mixture with the maximum value of . • A new method of multiple-compression was introduces in order to test the tendency towards densification and/or crystallization of the simulated mixtures. The results of the multiple-compression of monatomic mixtures indicate a limiting value of about 0.6464 for the density of the amorphous state. Further densification is necessarily connected to formation and growth of nano-crystalline regions. • The results of the multiple-compression for binary mixtures shows a new maximum of the density at the size ratio of 1.3 and 30 % to 90 % of small atoms. This maximum indicates a local island of stability of the amorphous state. The maximal receivable density without crystallization in this region is enhanced compared to neighbouring regions. • The comparison of the parameter and the density to the distribution of known binary bulk metallic (metal-metal) glasses clearly shows that both parameters play a significant role in the glass-forming ability. • The polyhedra analysis shows regions with enhanced fraction of the icosahedral short-range order (polyhedron (0, 0, 12)) in the binary systems with the maximum at 80 % of small atoms and size ratio of 1.3. Comparison of the distribution of the (0, 0, 12) polyhedra to the distribution of known binary metallic (metal-metal) glasses and to the parameter shows that icosahedral short-range order is not related to the glass-forming ability and is a consequence of the high non-crystallinity (high values of ) of the mixtures and non vice versa. Results for the ternary mixtures confirm this observation. • A new approach for the calculation of the mixing enthalpy is proposed. The new method is based on the combination of Miedema’s semi-empirical model and Laguerre tessellation technique. The new method as well as 6 other methods including the original Miedema’s model were tested for more than 1400 ternary and quaternary alloys. The results show a better agreement with experimental values of the mixing enthalpy for the new model compared to all other methods. The new model takes into account the local structure at atom site and can be applied to all metallic alloys without additional extrapolations if the atomic structure of the considered alloy is known from a suitable atomistic structure model.
110

Fracture and Deformation in Bulk Metallic Glasses and Composites

Narayan, R Lakshmi January 2014 (has links) (PDF)
Plastic flow in bulk metallic glasses (BMGs) localizes into narrow bands, which, in the absence of a microstructure that could obstruct them, propagate unhindered under tensile loading. In constrained deformation conditions such as indentation and at notch roots, extensive shear band formation can occur. A key issue in the context of fracture of BMGs that is yet to be understood comprehensively is how their toughness is controlled by various state parameters. Towards this end, the change in fracture toughness and plasticity with short term annealing above and below the glass transition temperature, Tg, is studied in a Zr-based BMG. Elastic properties like shear modulus, Poisson's ratio as well as parameters defining the internal state like the fictive temperature, Tf, density, and free volume are measured and correlation with the toughness was attempted at. While the elastic properties may help in distinguishing between tough and brittle glasses, they fail to reveal the reasons behind the toughness variations. Spherical-tip nanoindentation and microindentation tests were employed to probe the size, distributions and activation energies of the microscopic plastic carriers with the former and shear band densities with the latter. Results indicate that specimens annealed at a higher temperature, Ta, exhibit profuse shear banding with negligible changes in the local yield strengths. Statistical analysis of the nanoindentation data by incorporating the nucleation rate theory and the results of the cooperative shear model (CSM), reveals that short term annealing doesn't alter the shear transformation zone (STZ) size much. However, density estimates indicate changes in the free volume content across specimens. A model combining STZ activation and free volume accumulation predicts a higher rate in the reduction of the cumulative STZ activation barrier in specimens with a higher initial free volume content. Of the macroscopic physical properties, the specimen density is revealed to be a useful qualitative measure of enhancement in fracture toughness and plasticity in BMGs. We turn our attention next to the brittle fracture in BMGs, with the specific objective of understanding the mechanisms of failure. For this purpose, mode I fracture experiments were conducted on embrittled BMG samples and the fracture surface features were analyzed in detail. Wallner lines, which result from the interaction between the propagating crack front and shear waves emanating from a secondary source, were observed on the fracture surface and geometric analysis of them indicates that the maximum crack velocity to be ~800 m/s, which corresponds to ~0.32 times the shear wave speed. Fractography reveals that the sharp crack nucleation at the notch tip occurs at the mid-section of the specimens with the observation of flat and half-penny shaped cracks. On this basis, we conclude that the crack initiation in brittle BMGs occurs through hydrostatic stress assisted cavity nucleation ahead of the notch tip. High magnification scanning electron and atomic force microscopies of the dynamic crack growth regions reveal highly organized, nanoscale periodic patterns with a spacing of ~79 nm. Juxtaposition of the crack velocity with this spacing suggests that that the crack takes ~10-10 s for peak-to-peak propagation. This, and the estimated adiabatic temperature rise ahead of the propagating crack tip that suggests local softening, are utilized to critically discuss possible causes for the nanocorrugation formation. The Taylor’s fluid meniscus instability is unequivocally ruled out. Then, two other possible mechanisms, viz. (a) crack tip blunting and resharpening through nanovoid nucleation and growth ahead of the crack tip and eventual coalescence, and (b) dynamic oscillation of the crack in a thin slab of softened zone ahead of the crack-tip, are critically discussed. One way of alleviating the fracture-related issues in BMGs is to impart a microstructure to it, which would either impede the growth of shear bands or promote the multiplication of them. One such approach is through the BMG composites (BMGCs) route, wherein a crystalline second phase incorporated in the BMG matrix. There is a need to study the effects of reinforcement content, size and distribution on the mechanical behavior of the BMGC so as to achieve an optimum combination of strength and ductility. For this purpose, an investigation into the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify “structure–property” connections in these materials. This was accomplished by employing four different processing methods—arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat—on composites with two different dendrite volume fractions, Vd. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, λ, and dendrite size, δ, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite’s properties are insensitive to the microstructural length scales when Vd is high (∼75%), whereas they become process dependent for relatively lower Vd (∼55%). Larger δ in arc-melted and forged specimens result in higher ductility (7–9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer λ result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure.

Page generated in 0.0287 seconds