• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 19
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 8
  • 7
  • 6
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 162
  • 162
  • 44
  • 40
  • 35
  • 28
  • 27
  • 27
  • 26
  • 20
  • 20
  • 19
  • 18
  • 18
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Ni-free Ti-based Bulk Metallic Glasses: Glass Forming Ability and Mechanical Behavior

Zheng, Na 30 July 2013 (has links) (PDF)
Metallic glasses are amorphous alloys that do not possess long-range structural order in contrast to crystalline alloys. Ni-free Ti-based bulk metallic glasses (BMGs) have potential for biomedical applications due to their attractive properties such as high strength, good corrosion resistance and excellent micro-formability, which cannot be obtained for conventional crystalline alloys. In this PhD thesis, Ni-free Ti-based BMGs, i.e. Ti40Zr10Cu34Pd14Sn2 and Ti40Zr10Cu36-xPd14Inx (x = 0, 2, 4, 6, 8), were prepared in the shape of rods by suction casting. Both alloy classes were systematically characterized in terms of glass forming ability, thermal stability, phase formation and mechanical properties. The largest diameter obtained in the fully glassy state for Ti40Zr10Cu34Pd14Sn2 alloy is 3 mm and for Ti40Zr10Cu36-xPd14Inx (x = 2, 4, 6, 8) alloys is 2 mm. Base alloy (Ti40Zr10Cu36Pd14) contains some crystalline phase(s) in the glassy matrix for a 2 mm diameter rod. The structural transformations of Ti40Zr10Cu34Pd14Sn2 BMG upon heating were thoroughly analyzed by utilizing different combination of methods. Firstly, we used differential scanning calorimetry (DSC), X-Ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate the first crystallization event. The main products of the first crystallization are possibly -(Ti, Zr) and Cu3Ti (orthorhombic) phases. Secondly, we employed in situ x-ray diffraction in transmission mode using synchrotron beam to deeply study the thermally-induced structural changes like relaxation, glass transition and crystallization. Since the first peak in the diffraction patterns reflects the structure of the glassy phase on the medium-range scale, the position, width and intensity of this peak in diffraction patterns are fitted through Voigt function below 800 K. All the peak position, width and intensity values show a nearly linear increase with increasing temperature to the onset temperature of structural relaxation, Tr = 510 K. However, these values start to deviate from the linear behavior between Tr and glass transition temperature Tg. The changes in the free volume, which was arrested during rapid quenching of the BMG, and the coefficient of volumetric thermal expansion prove that the aforementioned phenomenon is closely related to the structural relaxation. Above 800 K, three crystallization events are detected and the first exothermic event is due to the formation of metastable nanocrystals. For the Ti40Zr10Cu34Pd14Sn2 alloy, 2 mm diameter rods exhibit the best combination of mechanical properties (e.g. large plastic strain and high yield strength) among all the diameters (ø2, ø3 and ø4 mm) under the room-temperature compression tests. With the aim to improve its room-temperature mechanical properties, the processes of pre-annealing and cold rolling have been applied for the 2 mm diameter rods. Annealed and quenched specimens below Tg and in the supercooled liquid region (between Tg and onset crystallization temperature Tx) do not lead to the enhancement of the plasticity compared to as-cast alloys due to annihilation of excess free volume and crystallization. Cold rolling can effectively improve the plasticity of this BMG by inducing structural heterogeneities. Rolled samples up to a thickness reduction of 15% result in the largest plasticity of 5.7%. Low yield strength and visible work hardening ability are observed in the both 10%-rolled and 15%-rolled samples. The deformation behavior of Ti40Zr10Cu34Pd14Sn2 BMG at the elevated temperatures slightly below Tg and in the supercooled liquid region has been investigated. The stress-strain relations for this BMG over a broad range of temperatures (298 ~716 K) and strain rates (10-5 to 10-3 s-1) were established in uniaxial compression. Under compression tests at the highest test temperature of 716 K, the Ti-based BMG partially crystallizes and low strain rates can lead to the formation of larger volume fractions of crystals. In order to further improve the plasticity of Ti-Zr-Cu-Pd BMGs and simultaneously reduce the content of Cu (considering harmful element for the human body), the Ti40Zr10Cu36-xPd14Inx (x = 2, 4, 6, 8) BMGs have been newly developed with different short- or medium-range order in the structure. The compressive global strain of Ti40Zr10Cu36-xPd14Inx (x = 0, 2, 4, 6, 8) can be significantly improved from 4.5% for the In-free alloy to 10.2% for x = 4. However, a further increase of the indium content to 8 at.% results in a decrease of the plasticity. Among all the monolithic Ni-free Ti-based BMGs reported so far, the novel Ti40Zr10Cu32Pd14In4 BMG shows the largest plasticity. Inspired by the dislocation concept in crystalline materials, we propose a strategy for the design of ductile BMGs through minor substitution using relatively large atoms, which make the bonding nature become more metallic and with it less shear resistant. Such a locally modified structure results in topological heterogeneity, which appears to be crucial for achieving enhanced plasticity. This strategy is verified for Ti-Zr-Cu-Pd glassy alloys, in which Cu was replaced by In, and seems to be extendable to other BMG systems. The atomic-scale heterogeneity in BMGs is somewhat analog to defects in crystalline alloys and helps to improve the overall plasticity of BMGs.
92

Phasenseparation und Einfluss von Mikrolegierungselementen in Systemen mit metallischer Glasbildung

Schmitz, Steffen 18 October 2012 (has links) (PDF)
In den letzten Jahren belegt eine stark ansteigende Anzahl experimenteller und theoretischer Resultate das große Interesse an Volumenmaterialien mit elektronischer, struktureller und/oder chemischer Heterogenität auf der Skala von 0,5 bis 2 nm. Solche Clustermaterialien lassen hervorragende Eigenschaften erwarten, wenn vorteilhafte strukturelle oder elektronische Konfigurationen kombiniert werden können. Ein interessanter neuer Ansatz zur Erzeugung von Heterogenitäten in metallischen Gläsern sind zusätzliche Legierungselemente mit positiven Mischungsenthalpien zwischen mindestens zwei der Komponenten. Die abstoßende Wechselwirkung zwischen zwei Hauptkomponenten kann zu einer Mischungslücke in der Schmelze und sogar zur Bildung phasenseparierter metallischer Gläser führen. Diese Gläser bestehen aus Volumenanteilen mit amorpher Struktur, aber unterschiedlicher Zusammensetzung. Es wurde bereits gezeigt, dass in massiven metallischen Gläsern in einigen Fällen eine verbesserte Plastizität und sogar eine erhöhte Glasbildungsfähigkeit erreicht werden kann, falls ein geringer Massenanteil eines Legierungselements mit positiver Mischungsenthalpie zugegeben wird. In der vorliegenden Arbeit wird die Herstellung von Clustermaterialien von Legierungen mit metallischer Glasbildungsfähigkeit und deren Eigenschaften untersucht. In Levitationsexperimenten wurde zunächst die Phasenseparation in unterkühlten Schmelzen der binären Systeme mit positiver Mischungsenthalpie Gd-Ti und Gd-Zr in einer elektromagnetischen Levitationsanlage experimentell aufgeklärt. Wenn Schmelzen unter die Binodale unterkühlt werden, entmischen sie in Bereiche mit unterschiedlicher Zusammensetzung. Aus den signifikanten Unterschieden der Gefüge von Proben, die von einem Zustand innerhalb bzw. außerhalb der Mischungslücke auf einem Kupfersubstrat abgeschreckt wurden, konnte die Form der Mischungslücke in der Gd-Ti Schmelze als Funktion der Temperatur und der Konzentration bestimmt werden. Diese erstreckt sich von 10 bis 80 At.% Gadolinium und ist wesentlich ausgedehnter als bisher vermutet. Ihre kritische Temperatur 1580 ◦C liegt bei der Zusammensetzung Gd20 Ti80. Im Gegensatz zu Gd-Ti konnte für Gd-Zr Schmelzen wegen der geringeren positiven Mischungsenthalpie keine stabile Mischungslücke gefunden werden. Jedoch deutet die simultane dendritische Kristallisation der Primärphasen Gadolinium und Zirkonium in bis zu 100 K unterkühlten Proben auf die Existenz einer metastabilen Mischungslücke unterhalb der eutektischen Temperatur hin. Eine durch CAL- PHAD Rechnungen vorhergesagte Mischungslücke in der Schmelze des quaternären Systems Gd-Ti-Cu-Al, für das dünne Bänder phasenseparierter Gläser mit dem Schmelzspinnverfahren hergestellt wurden, konnte nicht bestätigt werden. Die mit der elektromagnetischen Levitationsanlage erreichte minimale Abschrecktemperatur (920◦C) läßt aber keine endgültige Aussage zu. Ein weiteres Ziel der Arbeit ist es, die Wirkung geringer Anteile der Elemente Gadolinium, Kobalt und Rhenium auf eine Cu-Zr-Al Legierung mit guter Glasbildungsfähigkeit zu ermitteln. Die genannten Elemente zeichnen sich durch positive Mischungsenthalpie sowie Mischungslücken in Schmelzen mit unterschiedlichen Hauptkomponenten der binären Randsysteme Gd-Zr, Cu-Co bzw. Cu-Re der Basislegierung aus. Die Wirkung dieser Mikrolegierungselemente auf Glasbildungsfähigkeit, Struktur, thermische Stabilität und mechanische Eigenschaften erwiesen sich als abhängig vom Mikrolegierungselement, seiner Konzentration und den Abkühlbedingungen. Massive metallische Gläser mit Durchmessern 2 bis 6 mm der Zusammensetzung (Cu46Zr46Al8)100−xZx (x=0−4) konnten für Z=Gd, Co mit dem Spritzgießverfahren hergestellt werden. Dabei erhöht sich die Glasbildungsfähigkeit für geringe Gd-Beimischungen sogar bis 2 At.%, während sie für Kobalt nur leicht reduziert wird. In Abhängigkeit von x verringern sowohl Gadolinium als auch Kobalt die Kristallisationstemperatur der Cu46Zr46Al8 Basislegierung um bis zu 25 K, während die Glasbildungstemperatur Tg nahezu unverändert bleibt. Legieren mit optimalen Gehalten von Gadolinium und Kobalt bis zu 2 At.% führt zu einer plastischen Verformbarkeit im Vergleich zum spröden Verhalten des massiven metallischen Glases Cu46Zr46Al8. Im Druckversuch wurden z.B. Bruchdehnungen bis εf = 4% in (Cu46Zr46Al8)98Co2- bzw. (Cu46Zr46Al8)98Gd2-Proben mit 3mm Durchmesser erreicht. Die maximale Druckfestigkeit und der Elastizitätsmodul bleiben gegenüber der Basislegierung nahezu unverändert. Weite Gebiete der Bruchflächen solcher mikrolegierter Gläser zeigen die Abwesenheit von Scherbändern, was ein Zeichen für eine inhomogene Verformung ist und zum Versagen der Proben führt. Selbst geringe Zugaben von Rhenium (1 At.%) setzen die Glasbildungsfähigkeit drastisch herab. Es konnten nur amorphe Folien von ca. 40 μm Dicke durch Splat- Quenching hergestellt werden, obwohl sich die Kristallisationstemperatur für (Cu46Zr46Al8)98Re2 etwas erhöht. Gegossene massive Proben besitzen ein kristallines Gefüge bestehend aus Primärdendriten der intermetallischen Verbindung B2-CuZr und der kubischen Phase CuZrAl als Hauptbestandteile. Kleine Teilchen einer Rereichen Phase sind unregelmäßig in der Probe verteilt. Diese werden beim Erstarrungsprozess zuerst ausgeschieden und triggern offensichtlich die Kristallisation der B2-CuZr Phase, wie Gefügebilder beweisen. Die massiven Gussproben besitzen außergewöhnliche mechanische Eigenschaften, hohe Festigkeit verbunden mit plastischer Dehnung bis 4 % und einen ausgedehnten Bereich der Kaltverfestigung bei reduzierter Streckgrenze gegenüber den metallischen Gläsern. Diese Eigenschaften werden durch den hohen Volumenanteil der B2-CuZr Phase bestimmt. Das Mikrolegieren mit Elementen positiver Mischungsenthalpie sowie die gezielte Keimbildung stabiler bzw. metastabiler kristalliner Phasen durch Ausscheidungen in der Schmelze, die in dieser Arbeit verfolgt wurden, sind aussichtsreiche Konzepte zur Optimierung mechanischer Eigenschaften von Materialien auf der Basis von massiven metallischen Gla ̈sern. Die Bildung nanokristalliner Clusterstrukturen und der Mechanismus der Verbesserung der plastischen Verformbarkeit bedürfen zukünftig vertiefter wissenschaftlicher Untersuchungen.
93

Magnetic Monitoring Approach To Kinetics Of Phase Transformations In Multicomponent Alloy Systems

Duman, Nagehan 01 March 2012 (has links) (PDF)
It is of great importance for a materials scientist both from fundamental and applicability aspects to have better understanding of solid-state phase transformations and its kinetics responsible for micro-/nano-structure development in alloys and corresponding physical and mechanical properties. Transformation kinetics can be analyzed by various experimental techniques such as thermal analysis, laborious electron microscopy combined with extensive image analysis or by measuring changes in electrical resistivity, specimen volume and relative intensities of diffraction lines caused by the phase transformation. Beyond these conventional techniques, this dissertation provides a novel magnetic monitoring approach to study the isothermal kinetics of phase transformations in multicomponent alloy systems involving measurable changes in overall magnetic moment as the transformation proceeds. This dissertation focuses on understanding the microstructural evolution, macro- and micro-alloying behavior, magnetic properties, thermal characteristics, mechanical properties and kinetics of solid-state transformations, i.e. nanoscale precipitation and nanocrystallization, in nickel aluminides and Fe-based bulk amorphous alloys. Microstructural characterization of alloys was done by X-ray diffraction, scanning electron microscopy and transmission electron microcopy techniques. Magnetic properties were analyzed by vibrating sample magnetometry whereas thermal characteristics were evaluated by differential scanning calorimetry. Mechanical properties of alloys were determined by microhardness measurements and compression tests. The influence of Fe macroalloying and 3d transition metal microalloying on the microstructure and properties of Ni-Al-Fe alloys were studied for as-cast and annealed states and it is shown that desired microstructure and related properties can be obtained by proper selection of the type and concentration of macro- or micro-alloying elements together with an appropriate annealing procedure. Thermomagnetic characterization reveals the nanoscale precipitation of a ferromagnetic second phase with annealing. In conjunction with saturation magnetization dependence on annealing, an optimum temperature is identified where nanoscale precipitates impart the highest extent of precipitation strengthening. The isothermal kinetics of ferromagnetic second phase precipitation reveals invariant Avrami exponents close to unity, indicating that nanoscale precipitation is governed by a diffusion-controlled growth process with decreasing growth rate, which closely resembles continuous precipitation kinetics. Appropriate annealing of the Fe-based bulk amorphous alloy precursor produced by suction casting demonstrated extremely fine microstructures containing uniformly distributed and densely dispersed nanocrystals inside a residual amorphous matrix. In order to have better understanding of nanocrystallization mechanisms, kinetic parameters were determined via isothermal magnetic monitoring and non-isothermal differential scanning calorimetry where excellent agreement was obtained in Avrami exponent and activation energy. Analyzing the local kinetics, the nanocrystalline phase was found to evolve through distinct transformation regimes during annealing which were discussed on the basis of transformation kinetics theory and microscopical investigations on each characteristic transformation regime.
94

Thermal annealing and superconductivity in Zr based metallic glasses

Marshall, Gillian E. January 1986 (has links)
No description available.
95

Effects of Chemistry on Toughness and Temperature on Structural Evolution in Metallic Glasses

Shamimi Nouri, Ali January 2009 (has links)
Thesis (Ph.D.)--Case Western Reserve University, 2009 / Department of Materials Science and Engineering Available online via the OhioLINK ETD Center
96

Conductivité thermique des alliages métalliques amorphes en conditions cryogéniques et applications / Thermal conductivity of metallic glasses under cryogenic conditions and applications

Lenain, Alexis 13 December 2017 (has links)
Les alliages métalliques amorphes possèdent une structure désordonnée sansordre atomique local à longue distance contrairement aux alliages cristallins. Cettestructure leur confère des propriétés particulières, ouvrant la voie à de nombreusesapplications industrielles. En particulier, leur conductivité thermique est faiblecomparée aux autres matériaux métalliques du fait de l'absence de réseau cristallin.Ces alliages possèdent ainsi des propriétés isolantes permettant de minimiser lespertes thermiques par conduction. Ce travail de thèse porte d'une part sur lacompréhension des mécanismes intervenant dans la conductivité thermique desalliages métalliques amorphes, permettant d'identifier des compositions adaptées.Différentes méthodes d'optimisation des propriétés thermiques ont été étudiées etont permis de développer une composition optimisée à faible conductivité thermique.D'autre part, la capacité à être assemblé a été étudiée dans l'objectif d'intégrer ces alliages dans un dispositif industriel. Deux techniques d'assemblage ont étéconfrontées permettant de développer une solution à court et à long terme. Deuxbrevets protégeant l'utilisation de compositions avantageuses obtenus grâce auxrésultats de ce travail ont été déposés. Par ailleurs, des prototypes ont été réalisés en utilisant les procédés étudiés dans ce travail et présentent des performances augmentées par rapport à la solution actuelle. / Bulk metallic glasses possess an amorphous structure without any atomic longrange ordering unlike their crystalline counterparts. They exhibit particularproperties due to this amorphous structure, which is very promising for futureindustrial applications. In particular, their thermal conductivity is very low compared to other metallic materials due to the absence of crystalline lattice. Thus, these alloys show some insulating properties, leading to low heat losses. This PhD work focuses on understanding the mechanisms that occur in thermal conductivity of bulk metallic glasses in order to identify suitable compositions. Several optimization methods have been carried out to minimize the thermal properties and resulted in the development of an optimized composition showing low thermal conductivity. Secondly, their joining ability has been studied with the aim to implement these alloys in an industrial device. Two different joining techniques have been faced to provide a short and a long term solution. Eventually, two patents which protect the use of beneficial compositions developed in this work have been filed. Besides, prototypes have been produced using the two processes studied in this work and show enhanced performances compared to the current solution.
97

Contribution à l'étude des mécanismes de plasticité et de fissuration de verres métalliques massifs / Contribution to the study of the mechanisms of plasticity and cracking of massive metallic glasses

Hin, Sovannara 17 June 2016 (has links)
Les alliages amorphes, ou verres métalliques, sont des matériaux relativement récents, datant au plus d’une cinquantaine d’années. Ils possèdent des propriétés mécaniques exceptionnelles (résistance, dureté, ténacité, énergie élastique stockée, …) sans commune mesure avec celles de la plupart des alliages métalliques cristallins. Leur fragilité apparente en chargement uniaxial constitue toutefois un frein majeur à leur application à grande échelle et donc à leur industrialisation. Par ailleurs, les études sur le comportement à la fissuration et à la rupture des verres métalliques massifs rapportées dans la littérature sont à la fois peu nombreuses et très diverses dans leurs résultats. Face à ces problématiques, ces travaux de thèse sur les verres métalliques à base de zirconium ont deux objectifs principaux. Le premier consiste à étudier leurs mécanismes de déformation plastique par des essais hétérogènes. L’essai brésilien (ou de compression diamétrale) se révèle, dans ce contexte, efficace pour atteindre des niveaux élevés de déformation plastique à l’échelle macroscopique. Celui-ci permet également d’étudier à plus petite échelle la formation et la propagation des bandes de cisaillement et de quantifier les champs de déformation au cours du chargement par corrélation d’image. Les résultats montrent une bonne reproductibilité à ces deux échelles et offrent une meilleure estimation des déformations intenses se produisant dans les bandes de cisaillement. De plus, une identification basée sur cet essai couplé avec un autre essai hétérogène (nano-indentation) dans le but de discriminer des paramètres élastoplastiques montre qu’une loi de comportement de type von Mises n’est pas pertinente pour ce matériau. Le deuxième objectif de ces travaux vise à caractériser l’influence des défauts cristallins, liés à leur procédé d’élaboration et présents dans la matrice amorphe de nos verres métalliques, sur l'initiation et la propagation des fissures mais aussi sur leur rupture par des essais de flexion. La mesure de la ténacité et l’analyse fractographique des éprouvettes montrent que ces défauts facilitent la pré-fissuration, mais entrainent aussi une fragilisation de nos matériaux. Cette dernière propriété, i.e. la résistance à la fissuration ou ténacité, s’avère alors un bon moyen pour discriminer les différentes qualités de synthèse de ces alliages amorphes. / Amorphous alloys or metallic glasses are relatively new materials, dating back to over fifty years. They exhibit exceptional mechanical properties (strength, hardness, toughness, stored elastic energy …), compared to those of most crystalline metallic alloys. Their apparent brittleness in uniaxial loading, however, is a major obstacle to their wide application and thus their industrialization. Studies on the cracking and fracture of these materials have so far been sparse and relatively contradictory in their results. The objectives of this PhD thesis work on zirconium base metallic glasses are therefore twofold. The first objective is to study their plastic deformation mechanisms by means of heterogeneous tests, namely instrumented indentation and diametral compression. The Brazilian test (or diametrical compression test) is shown, in this context, to be effective in achieving high levels of plastic deformation at the macroscopic scale. This test also allows to study, at a smaller scale, the formation and the propagation of shear bands and to quantify the strain fields during loading by digital image correlation techniques. The results show good reproducibility at these two scales and provide a better estimation of intense deformations occurring in the shear bands. In addition, a reverse analysis based on this test coupled with another heterogeneous test (nanoindentation) is carried out to identify elastoplastic parameters. This procedure shows that a von Mises yield criterion is not relevant for this material and that a Drucker-Prager model is capable of predicting the response. The second objective of this work is to characterize the influence of crystalline defects, linked to different casting processes, present in the amorphous matrix of our metallic glasses, on the initiation and propagation of cracks and on their fracture toughness. The measured fracture toughness and the fractographic analyses of the specimens show that these defects facilitate the pre-cracking, but result in an embrittlement. This latter property, i.e. the resistance to crack propagation or fracture toughness, then proves a good way to distinguish the different synthesis qualities of these amorphous alloys.
98

Phasenseparation und Einfluss von Mikrolegierungselementen in Systemen mit metallischer Glasbildung

Schmitz, Steffen 09 October 2012 (has links)
In den letzten Jahren belegt eine stark ansteigende Anzahl experimenteller und theoretischer Resultate das große Interesse an Volumenmaterialien mit elektronischer, struktureller und/oder chemischer Heterogenität auf der Skala von 0,5 bis 2 nm. Solche Clustermaterialien lassen hervorragende Eigenschaften erwarten, wenn vorteilhafte strukturelle oder elektronische Konfigurationen kombiniert werden können. Ein interessanter neuer Ansatz zur Erzeugung von Heterogenitäten in metallischen Gläsern sind zusätzliche Legierungselemente mit positiven Mischungsenthalpien zwischen mindestens zwei der Komponenten. Die abstoßende Wechselwirkung zwischen zwei Hauptkomponenten kann zu einer Mischungslücke in der Schmelze und sogar zur Bildung phasenseparierter metallischer Gläser führen. Diese Gläser bestehen aus Volumenanteilen mit amorpher Struktur, aber unterschiedlicher Zusammensetzung. Es wurde bereits gezeigt, dass in massiven metallischen Gläsern in einigen Fällen eine verbesserte Plastizität und sogar eine erhöhte Glasbildungsfähigkeit erreicht werden kann, falls ein geringer Massenanteil eines Legierungselements mit positiver Mischungsenthalpie zugegeben wird. In der vorliegenden Arbeit wird die Herstellung von Clustermaterialien von Legierungen mit metallischer Glasbildungsfähigkeit und deren Eigenschaften untersucht. In Levitationsexperimenten wurde zunächst die Phasenseparation in unterkühlten Schmelzen der binären Systeme mit positiver Mischungsenthalpie Gd-Ti und Gd-Zr in einer elektromagnetischen Levitationsanlage experimentell aufgeklärt. Wenn Schmelzen unter die Binodale unterkühlt werden, entmischen sie in Bereiche mit unterschiedlicher Zusammensetzung. Aus den signifikanten Unterschieden der Gefüge von Proben, die von einem Zustand innerhalb bzw. außerhalb der Mischungslücke auf einem Kupfersubstrat abgeschreckt wurden, konnte die Form der Mischungslücke in der Gd-Ti Schmelze als Funktion der Temperatur und der Konzentration bestimmt werden. Diese erstreckt sich von 10 bis 80 At.% Gadolinium und ist wesentlich ausgedehnter als bisher vermutet. Ihre kritische Temperatur 1580 ◦C liegt bei der Zusammensetzung Gd20 Ti80. Im Gegensatz zu Gd-Ti konnte für Gd-Zr Schmelzen wegen der geringeren positiven Mischungsenthalpie keine stabile Mischungslücke gefunden werden. Jedoch deutet die simultane dendritische Kristallisation der Primärphasen Gadolinium und Zirkonium in bis zu 100 K unterkühlten Proben auf die Existenz einer metastabilen Mischungslücke unterhalb der eutektischen Temperatur hin. Eine durch CAL- PHAD Rechnungen vorhergesagte Mischungslücke in der Schmelze des quaternären Systems Gd-Ti-Cu-Al, für das dünne Bänder phasenseparierter Gläser mit dem Schmelzspinnverfahren hergestellt wurden, konnte nicht bestätigt werden. Die mit der elektromagnetischen Levitationsanlage erreichte minimale Abschrecktemperatur (920◦C) läßt aber keine endgültige Aussage zu. Ein weiteres Ziel der Arbeit ist es, die Wirkung geringer Anteile der Elemente Gadolinium, Kobalt und Rhenium auf eine Cu-Zr-Al Legierung mit guter Glasbildungsfähigkeit zu ermitteln. Die genannten Elemente zeichnen sich durch positive Mischungsenthalpie sowie Mischungslücken in Schmelzen mit unterschiedlichen Hauptkomponenten der binären Randsysteme Gd-Zr, Cu-Co bzw. Cu-Re der Basislegierung aus. Die Wirkung dieser Mikrolegierungselemente auf Glasbildungsfähigkeit, Struktur, thermische Stabilität und mechanische Eigenschaften erwiesen sich als abhängig vom Mikrolegierungselement, seiner Konzentration und den Abkühlbedingungen. Massive metallische Gläser mit Durchmessern 2 bis 6 mm der Zusammensetzung (Cu46Zr46Al8)100−xZx (x=0−4) konnten für Z=Gd, Co mit dem Spritzgießverfahren hergestellt werden. Dabei erhöht sich die Glasbildungsfähigkeit für geringe Gd-Beimischungen sogar bis 2 At.%, während sie für Kobalt nur leicht reduziert wird. In Abhängigkeit von x verringern sowohl Gadolinium als auch Kobalt die Kristallisationstemperatur der Cu46Zr46Al8 Basislegierung um bis zu 25 K, während die Glasbildungstemperatur Tg nahezu unverändert bleibt. Legieren mit optimalen Gehalten von Gadolinium und Kobalt bis zu 2 At.% führt zu einer plastischen Verformbarkeit im Vergleich zum spröden Verhalten des massiven metallischen Glases Cu46Zr46Al8. Im Druckversuch wurden z.B. Bruchdehnungen bis εf = 4% in (Cu46Zr46Al8)98Co2- bzw. (Cu46Zr46Al8)98Gd2-Proben mit 3mm Durchmesser erreicht. Die maximale Druckfestigkeit und der Elastizitätsmodul bleiben gegenüber der Basislegierung nahezu unverändert. Weite Gebiete der Bruchflächen solcher mikrolegierter Gläser zeigen die Abwesenheit von Scherbändern, was ein Zeichen für eine inhomogene Verformung ist und zum Versagen der Proben führt. Selbst geringe Zugaben von Rhenium (1 At.%) setzen die Glasbildungsfähigkeit drastisch herab. Es konnten nur amorphe Folien von ca. 40 μm Dicke durch Splat- Quenching hergestellt werden, obwohl sich die Kristallisationstemperatur für (Cu46Zr46Al8)98Re2 etwas erhöht. Gegossene massive Proben besitzen ein kristallines Gefüge bestehend aus Primärdendriten der intermetallischen Verbindung B2-CuZr und der kubischen Phase CuZrAl als Hauptbestandteile. Kleine Teilchen einer Rereichen Phase sind unregelmäßig in der Probe verteilt. Diese werden beim Erstarrungsprozess zuerst ausgeschieden und triggern offensichtlich die Kristallisation der B2-CuZr Phase, wie Gefügebilder beweisen. Die massiven Gussproben besitzen außergewöhnliche mechanische Eigenschaften, hohe Festigkeit verbunden mit plastischer Dehnung bis 4 % und einen ausgedehnten Bereich der Kaltverfestigung bei reduzierter Streckgrenze gegenüber den metallischen Gläsern. Diese Eigenschaften werden durch den hohen Volumenanteil der B2-CuZr Phase bestimmt. Das Mikrolegieren mit Elementen positiver Mischungsenthalpie sowie die gezielte Keimbildung stabiler bzw. metastabiler kristalliner Phasen durch Ausscheidungen in der Schmelze, die in dieser Arbeit verfolgt wurden, sind aussichtsreiche Konzepte zur Optimierung mechanischer Eigenschaften von Materialien auf der Basis von massiven metallischen Gla ̈sern. Die Bildung nanokristalliner Clusterstrukturen und der Mechanismus der Verbesserung der plastischen Verformbarkeit bedürfen zukünftig vertiefter wissenschaftlicher Untersuchungen.
99

Thermal and thermoelectric properties of nanostructured materials and interfaces

Liao, Hao-Hsiang 19 December 2012 (has links)
Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal diffusivity measurement system is used to measure the thermal diffusivitiy and heat capacity of bulk materials at high temperatures. With regards to the specific experiments, I examine the thermal conductivity and interface thermal conductance of two different types of nanocrystalline metallic alloys of nickel-iron and cobalt-phosphorus. I find that the thermal conductivity of the nanocrystalline alloys is reduced by a factor of approximately two from the thermal conductivity measured on metallic alloys with larger grain sizes. With subsequent molecular dynamics simulations performed by a collaborator, and my own electrical conductivity measurements, we determine that this strong reduction in thermal conductivity is the result of increased electron scattering at the grain boundaries, and that the phonon component of the thermal conductivity is largely unchanged by the grain boundaries. We also examine four complex bulk metallic glass (BMG) materials with compositions of Zr₅₀Cu₄₀Al₁₀, Cu<sub>46.25</sub>Zr<sub>44.25</sub>Al<sub>7.5</sub>Er₂, Fe₄₈Cr₁₅Mo₁₄C₁₅B₆Er₂, and Ti<sub>41.5</sub>Zr<sub>2.5</sub>Hf₅Cu<sub>42.5</sub>Ni<sub>7.5</sub>Si₁. From these measurements, I find that the addition of even a small percentage of heavy atoms (i.e. Hf and Er) into complex disordered BMG structures can create a significant reduction in the phonon thermal conductivity of these materials. This work also indicates that the addition of these heavy atoms does not disrupt electron transport to the degree with which thermal transport is reduced. / Ph. D.
100

Design of Hinge-Line Geometry to Facilitate Non-Plastic Folding in Thin Metallic Origami-Inspired Devices

Zhang, Miaomiao 29 August 2019 (has links)
No description available.

Page generated in 0.0273 seconds