• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 14
  • 10
  • 4
  • 3
  • 1
  • Tagged with
  • 88
  • 30
  • 21
  • 19
  • 16
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Major factors controlling diversity in Cenozoic terrestrial mammals

Blanco Segovia, Fernando 21 September 2022 (has links)
Die unkontrollierte menschliche Entwicklung beeinflusst alle Aspekte der Interaktionen und Prozesse von Ökosystemen (Ökosystemfunktionen), einschließlich derjenigen, die für Menschen von Nutzen sind und sein werden (Ökosystemdienstleistungen). In dieser Arbeit habe ich einen neuen analytischen Ansatz entwickelt, der auf der Netzwerkanalyse basiert, um die Strukturdynamik von Ökosystemen in der Tiefe zu untersuchen. Ich habe diesen Ansatz validiert, indem ich den gut untersuchten Fossilienbestand großer Säugetiere der Iberischen Halbinsel während der letzten 21 Ma verwendet habe. Das funktionelle System durchlief lange Perioden der Stabilität, unterbrochen von einer schnellen Reorganisation, die einen neuen stabilen Zustand fand. Hohe funktionelle Diversität und Reichhaltigkeit befeuert mit der Zeit zunehmende Belastbarkeit der Funktionsstruktur (Versicherungseffekt). Dann verwende ich eine Kombination aus funktionaler Diversität (fdiv) und Netzwerkanalyse über einen beispiellosen Datensatz von großen Pflanzenfressern weltweit, der sich über die letzten 65 Millionen Jahre erstreckt. Es gab einen anfänglichen Trend zur Zunahme der funktionellen Diversität, vermittelt durch einen Nettogewinn an funktionellem Reichtum, der 20 Ma erreichte, wahrscheinlich angeheizt durch die Bildung der sogenannten Gomphotherium-Landbrücke. Danach blieb der fdiv des Systems hoch und erreichte das maximale Niveau von 10 Ma, als das System viele Arten mit ähnlichen ökologischen Rollen (funktionelle Sättigung) angesammelt hatte, was letztendlich ihren funktionellen Zusammenbruch provozierte. Danach zeigte das System eine schnellere ökologische Verarmung, die während des Beginns der pleistozänen Vergletscherung um etwa 2,5 Ma zunahm. In Bezug auf die funktionelle Struktur stellen wir fest, dass känozoische große Pflanzenfressergemeinschaften lange Perioden der Stabilität durchlebten, gefolgt von der Reorganisation ihrer funktionellen Struktur in neue stabile Zustände (um 20 und 10 Ma). / Uncontrolled human development is affecting all aspects of ecosystems' interactions and processes (ecosystem functioning), including those that are, and will be, beneficial to people (ecosystem services). In this thesis I developed a new analytical approach based on network analysis to study deep time ecosystem structure dynamics. I validated this approach using the well studied large mammal fossil record of the Iberian Peninsula during the last 21 Ma. The functional system underwent long periods of stability punctuated by a rapid reorganization finding a new stable state. High functional diversity and richness fueled the time increasing resilience of the functional structure (insurance effect). Then, I use a combination of functional diversity (fdiv) and network analysis over an unprecedented dataset of worldwide large herbivores spanning the last 65 Myrs. There was an initial trend towards the increment of functional diversity, mediated by a net gain in functional richness that peaked 20 Ma, likely fueled by the formation of the so-called Gomphotherium land bridge. Thereafter, the system’s fdiv remained high reaching the maximum level 10 Ma, when the system had accumulated many species with similar ecological roles (functional saturation), which ultimately provoked their functional collapse. After that, the system showed a faster ecological impoverishment increasing around 2.5 Ma during the beginning of Pleistocene glaciations. Regarding the functional structure, we find that Cenozoic large herbivore communities experienced long periods of stability followed by the reorganization of their functional structure in new stable states (around 20 and 10 Ma).
82

World-wide body size patterns in freshwater fish by geography, size class, trophic level, and taxonomy

Adhikari, Shishir 01 September 2015 (has links)
No description available.
83

Climatic Dependence of Terrestrial Species Assemblage Structure

Walker, Kevin R. 22 January 2013 (has links)
An important goal of ecological studies is to identify and explain patterns or variation in species assemblages. Ecologists have discovered that global variation in the number of species in an assemblage relates strongly to climate, area, and topographic variability in terrestrial environments. Is the same true for other characteristics of species assemblages? The focus of this thesis is to determine whether species assemblage structure, defined primarily as the body mass frequency distributions and species abundance distributions relate in convergent ways to a set of a few environmental variables across broad spatial scales. First, I found that for mammals and trees most of their geographic variation across North and South America in assemblage structure is statistically related to temperature, precipitation, and habitat heterogeneity (e.g. different vegetation types) in convergent ways. I then examined bird assemblages across islands and continents. Despite the evolutionary and ecological differences between island and continental assemblages, I found that much of the variation in bird assemblage structure depends on temperature, precipitation, land area, and island isolation in congruent patterns in continent and island bird assemblages. Frank Preston modeled species richness based on the total number of individuals and the number of individuals of the rarest species. Building on Preston’s model, Chapter 2 hypothesized that gradients of diversity correlate with gradients in the number of individuals of the rarest species, which in turn are driven by gradients in temperature and precipitation. This hypothesis assumes that species abundance distributions relate to temperature and precipitation in similar ways anywhere in the world. I found that both the number of individuals of the rarest species (m) and the proportion of species represented by a single individual in samples of species assemblages (Φ) were strongly related to climate. Moreover, global variation in species richness was more strongly related to these measures of rarity than to climate. I propose that variation in the shape of the log-normal species abundance distribution is responsible for global gradients of species richness: rare species (reflected in m and Φ) persist better in benign climates. Even though body mass frequency distributions of assemblages show convergent patterns in relation to a set of a few environmental variables, the question remains as to what processes are responsible for creating the geographical variation in the body-size distribution of species. Several mechanisms (e.g. heat conservation and resource availability hypotheses) have been proposed to explain this variation. Chapter 5 tested and found no empirical support for the predictions derived from each of these mechanisms; I showed that species of all sizes occur across the entire temperature gradient. In conclusion, assemblage structure among various taxonomic groups across broad spatial scales relate in similar ways to a set of a few environmental variables, primarily mean annual temperature and mean annual precipitation. While the exact mechanisms are still unknown, I hypothesize several to explain the patterns of convergent assembly. Résumé Un but important de l'écologie est d'identifier et d'expliquer la variation de premier ordre dans les caractéristiques des assemblages d'espèces. Un des patrons ayant déjà été identifié par les écologistes, c'est que la variation mondiale de la richesse en espèces est liée à la variation du climat, de l'aire et de la topographie. Est-ce que d'autres caractéristiques des assemblages d'espèces peuvent être reliées à ces mêmes variables? Le but de cette thèse est de déterminer si la structure des assemblages d'espèces, ici définie comme la distribution des fréquences de masse corporelle ainsi que la distribution d'abondances des espèces, est reliée de manière convergente à un petit ensemble de variables environnementales, et ce, partout dans le monde. D'abord, j'ai déterminé que, pour les mammifères et les arbres, la majorité de la variation géographique dans la structure des assemblages d'espèces est reliée statistiquement à température, précipitation, et l’hétérogénéité du couvert végétal , et ce, de manière convergente pour l'Amérique du Nord et du Sud. Je me suis ensuite penché sur l'assemblage des oiseaux sur les îles et les continents. Malgré les larges différences évolutives et écologiques qui distinguent les îles des continents, je démontre que la majorité de la variation dans la structure des assemblages d'oiseaux dépend de la température, la précipitation, la superficie et l’isolation de façon congruente sur les îles et les continents. Frank Preston a modélisé la richesse en espèces d'une localité, basée sur le nombre total d'individus ainsi que le nombre d'individus de l’espèce la plus rare. En s'appuyant sur les modèles de Preston, Chapître 3 propose une nouvelle hypothèse voulant que les gradients de diversité dépendent des gradients du nombre d'individus de l’espèce la plus rare. Celle-ci dépend des gradients de température et de précipitation. Cette hypothèse repose sur le postulat que la distribution d’abondances des espèces dépend de la température et la précipitation, et ce, de la même manière n’importe où au monde. J’ai mis en évidence que le nombre d’individus de l’espèce la plus rare (m), ainsi que la proportion d’espèces représentées par un individu unique () dans des échantillons locaux étaient fortement reliés au climat. D’ailleurs, la variation globale de la richesse en espèces était plus fortement reliée à ces indices de rareté qu’au climat. Je propose que la variation dans la forme de la distribution log-normale d’abondances d’individus soit responsable des gradients mondiaux de richesse en espèces. En d’autres mots, les espèces rares (indiquées par m et ) persistent mieux dans des climats bénins. Malgré que la distribution des fréquences de masse corporelle des assemblages d'espèces soit liée de manière convergente à seulement quelques variables environnementales, la question demeure à savoir quels processus sont responsables des gradients géographiques de variation en masse corporelle des espèces. Plusieurs mécanismes ont été proposés pour expliquer cette variation. Dans Chapitre 5, j'ai testé les prédictions dérivées de chacun de ces mécanismes sans trouver de support empirique pour aucun. Je démontre aussi que des espèces de toutes tailles se retrouvent sur le gradient de température en entier. En conclusion, la structure des assemblages d'espèces, pour différents groupes taxonomiques et à travers le monde, est liée de façon similaire à un petit nombre de variables environnementales. Bien que les mécanismes soient encore inconnus, j'en propose plusieurs pouvant expliquer ces patrons d'assemblages convergents.
84

Climatic Dependence of Terrestrial Species Assemblage Structure

Walker, Kevin R. 22 January 2013 (has links)
An important goal of ecological studies is to identify and explain patterns or variation in species assemblages. Ecologists have discovered that global variation in the number of species in an assemblage relates strongly to climate, area, and topographic variability in terrestrial environments. Is the same true for other characteristics of species assemblages? The focus of this thesis is to determine whether species assemblage structure, defined primarily as the body mass frequency distributions and species abundance distributions relate in convergent ways to a set of a few environmental variables across broad spatial scales. First, I found that for mammals and trees most of their geographic variation across North and South America in assemblage structure is statistically related to temperature, precipitation, and habitat heterogeneity (e.g. different vegetation types) in convergent ways. I then examined bird assemblages across islands and continents. Despite the evolutionary and ecological differences between island and continental assemblages, I found that much of the variation in bird assemblage structure depends on temperature, precipitation, land area, and island isolation in congruent patterns in continent and island bird assemblages. Frank Preston modeled species richness based on the total number of individuals and the number of individuals of the rarest species. Building on Preston’s model, Chapter 2 hypothesized that gradients of diversity correlate with gradients in the number of individuals of the rarest species, which in turn are driven by gradients in temperature and precipitation. This hypothesis assumes that species abundance distributions relate to temperature and precipitation in similar ways anywhere in the world. I found that both the number of individuals of the rarest species (m) and the proportion of species represented by a single individual in samples of species assemblages (Φ) were strongly related to climate. Moreover, global variation in species richness was more strongly related to these measures of rarity than to climate. I propose that variation in the shape of the log-normal species abundance distribution is responsible for global gradients of species richness: rare species (reflected in m and Φ) persist better in benign climates. Even though body mass frequency distributions of assemblages show convergent patterns in relation to a set of a few environmental variables, the question remains as to what processes are responsible for creating the geographical variation in the body-size distribution of species. Several mechanisms (e.g. heat conservation and resource availability hypotheses) have been proposed to explain this variation. Chapter 5 tested and found no empirical support for the predictions derived from each of these mechanisms; I showed that species of all sizes occur across the entire temperature gradient. In conclusion, assemblage structure among various taxonomic groups across broad spatial scales relate in similar ways to a set of a few environmental variables, primarily mean annual temperature and mean annual precipitation. While the exact mechanisms are still unknown, I hypothesize several to explain the patterns of convergent assembly. Résumé Un but important de l'écologie est d'identifier et d'expliquer la variation de premier ordre dans les caractéristiques des assemblages d'espèces. Un des patrons ayant déjà été identifié par les écologistes, c'est que la variation mondiale de la richesse en espèces est liée à la variation du climat, de l'aire et de la topographie. Est-ce que d'autres caractéristiques des assemblages d'espèces peuvent être reliées à ces mêmes variables? Le but de cette thèse est de déterminer si la structure des assemblages d'espèces, ici définie comme la distribution des fréquences de masse corporelle ainsi que la distribution d'abondances des espèces, est reliée de manière convergente à un petit ensemble de variables environnementales, et ce, partout dans le monde. D'abord, j'ai déterminé que, pour les mammifères et les arbres, la majorité de la variation géographique dans la structure des assemblages d'espèces est reliée statistiquement à température, précipitation, et l’hétérogénéité du couvert végétal , et ce, de manière convergente pour l'Amérique du Nord et du Sud. Je me suis ensuite penché sur l'assemblage des oiseaux sur les îles et les continents. Malgré les larges différences évolutives et écologiques qui distinguent les îles des continents, je démontre que la majorité de la variation dans la structure des assemblages d'oiseaux dépend de la température, la précipitation, la superficie et l’isolation de façon congruente sur les îles et les continents. Frank Preston a modélisé la richesse en espèces d'une localité, basée sur le nombre total d'individus ainsi que le nombre d'individus de l’espèce la plus rare. En s'appuyant sur les modèles de Preston, Chapître 3 propose une nouvelle hypothèse voulant que les gradients de diversité dépendent des gradients du nombre d'individus de l’espèce la plus rare. Celle-ci dépend des gradients de température et de précipitation. Cette hypothèse repose sur le postulat que la distribution d’abondances des espèces dépend de la température et la précipitation, et ce, de la même manière n’importe où au monde. J’ai mis en évidence que le nombre d’individus de l’espèce la plus rare (m), ainsi que la proportion d’espèces représentées par un individu unique () dans des échantillons locaux étaient fortement reliés au climat. D’ailleurs, la variation globale de la richesse en espèces était plus fortement reliée à ces indices de rareté qu’au climat. Je propose que la variation dans la forme de la distribution log-normale d’abondances d’individus soit responsable des gradients mondiaux de richesse en espèces. En d’autres mots, les espèces rares (indiquées par m et ) persistent mieux dans des climats bénins. Malgré que la distribution des fréquences de masse corporelle des assemblages d'espèces soit liée de manière convergente à seulement quelques variables environnementales, la question demeure à savoir quels processus sont responsables des gradients géographiques de variation en masse corporelle des espèces. Plusieurs mécanismes ont été proposés pour expliquer cette variation. Dans Chapitre 5, j'ai testé les prédictions dérivées de chacun de ces mécanismes sans trouver de support empirique pour aucun. Je démontre aussi que des espèces de toutes tailles se retrouvent sur le gradient de température en entier. En conclusion, la structure des assemblages d'espèces, pour différents groupes taxonomiques et à travers le monde, est liée de façon similaire à un petit nombre de variables environnementales. Bien que les mécanismes soient encore inconnus, j'en propose plusieurs pouvant expliquer ces patrons d'assemblages convergents.
85

Environmental heterogeneity–species richness relationships from a global perspective

Stein, Anke 23 October 2014 (has links)
Heterogenität von Umweltbedingungen gilt als einer der wichtigsten Faktoren für die Verteilung von Artenreichtum weltweit. Laut der Habitatheterogenität-Hypothese bieten räumlich heterogenere Gebiete eine höhere Vielfalt an Umweltparametern und weisen mehr Refugien und Möglichkeiten zur Isolation und Radiation auf. Dadurch begünstigen sie Koexistenz, Persistenz und Diversifikation von Arten. Die Erforschung potentieller positiver Effekte von Heterogenität auf Artenreichtum fasziniert Ökologen und Evolutionsbiologen seit Jahrzehnten. Dementsprechend existieren zahlreiche Studien über die Beziehung zwischen Heterogenität und dem Artenreichum verschiedener Taxa unter unterschiedlichsten ökologischen Gegebenheiten. Heterogenität kann sich auf biotische und abiotische Bedingungen beziehen und wurde daher mittels vieler verschiedener Maße quantifiziert. Diese finden zudem auf sehr unterschiedlichen Skalen Anwendung, die von der Architektur einer einzelnen Pflanze über Landschaftsstruktur bis hin zu topographischem Relief reichen. Die Vielfalt der Maße sowie eine oft unbestimmte und inkonsistente Terminologie, die in der Forschung zu Heterogenität-Artenreichtums-Beziehungen verwendet wird, erschweren das Verständnis, den Vergleich und die Synthese der entsprechenden Studien. Desweiteren gibt es große Unterschiede in der Form und Stärke der Beziehungen: während viele Studien einen positiven Zusammenhang zwischen Heterogenität und Artenreichtum nachwiesen, sind auch negative, unimodale und nicht signifikante Zusammenhänge bekannt. Deshalb existiert bisher kein eindeutiger Konsens bezüglich der generellen Heterogenität-Artenreichtums-Beziehung. Im Rahmen der vorliegenden Dissertation fertige ich ein systematisches Literaturreview an, mit dem ich einen Überblick über die verwendeten Maße und Begriffe gebe, die bisher in der Forschung zu Heterogenität-Artenreichtums-Beziehungen Anwendung fanden. Basierend auf 192 Studien identifiziere ich 165 verschiedene Heterogenitätsmaße, die ich bezüglich ihrer Themenfelder und Berechnungsmethoden klassifiziere. Es werden fünf Themenfelder unterschieden, nämlich Landbedeckung und Vegetation als biotische Komponenten, und Klima, Boden und Topographie als abiotische Komponenten von Heterogenität. Desweiteren identifiziere ich achtzehn verschiedene Berechnungsmethoden, wie z.B. Anzahl, Standardabweichung und Variationskoeffizient. Die Höhenspannweite in einem Gebiet erweist sich als das häufigste Heterogenitätsmaß in der Literatur, wohingegen Maße von klimatischer Heterogenität und Bodenheterogenität unterrepräsentiert sind. Weiterhin stelle ich ein deutliches räumliches und taxonomisches Ungleichgewicht in der Forschung fest, wobei ein Großteil der Studien den Einfluss von Heterogenität in der Paläarktis untersucht und sich auf den Artenreichtum von Vertebraten oder Pflanzen konzentriert. Ich kompiliere über 100 verschiedene Begriffe für Heterogenität, wie z.B. Habitatdiversität oder Habitatheterogenität, und weise auf mangelhafte und teilweise sogar widersprüchliche Definitionen hin. Solche Unklarheiten erschweren das Verständnis der Begriffe und Studien, weshalb ich für eindeutige Terminologie plädiere und mich gegen die Verwendung von Synonymen ausspreche. Desweiteren gebe ich einen Überblick über mögliche Mechanismen, die als Grundlage von positiven Zusammenhängen zwischen Heterogenität und Artenreichtum in der Literatur diskutiert werden. Insgesamt identifiziere ich sieben Hauptmechanismen, die mit der Förderung von Koexistenz, Persistenz und Diversifikation von Arten zusammenhängen. Diese Mechanismen stelle ich in Beziehung zu den Themenfeldern der Heterogenitätsmaße, den Taxa und den räumlichen Skalen, die in den jeweiligen Studien behandelt werden. Basierend auf dem gleichen Datensatz von 192 Studien und 1148 Datenpunkten führe ich anschließend eine Meta-Analyse durch, um die generelle Richtung und Stärke des Zusammenhangs zwischen Heterogenität und dem Artenreichtum terrestrischer Pflanzen und Tiere zu untersuchen. Hierbei weise ich quantitativ nach, dass der Zusammenhang von der Landschaftsebene bis zur globalen Skala über Taxa, Habitattypen und räumliche Skalen hinweg generell positiv ist. Während kein signifikanter Unterschied in der Effektgröße zwischen biotischer und abiotischer Heterogenität besteht, weisen Vegetations- und topographische Heterogenität signifikant stärkere Assoziationen mit Artenreichtum auf als klimatische Heterogenität. Durch gemischte Meta-Regressionen identifiziere ich weiterhin Studieneigenschaften, die die Stärke des Zusammenhangs zwischen Heterogenität und Artenreichtum beeinflussen. Räumliche Skalen, insbesondere Flächenkonstanz, räumliche Auflösung und Ausdehnung, stellen sich als besonders wichtige Einflussgrößen für die untersuchte Beziehung zwischen Artenreichtum und auf Landbedeckung und Höhe basierenden Heterogenitätsmaßen heraus. Ausgehend von den Ergebnissen des Literaturreviews untersuche ich schließlich die Ähnlichkeit zwischen einer Reihe von Heterogenitätsmaßen sowie deren differentiellen Einfluss auf den globalen Artenreichtum terrestrischer Säugetiere. Ich berechne systematisch 51 verschiedene Heterogenitätsmaße auf globaler Ebene, die alle fünf Themenfelder von Heterogenität abdecken und neun verschiedene Berechnungsmethoden beinhalten. Ich zeige, dass manche dieser Maße sich deutlich voneinander abheben, während andere stärker kollinear und zum Teil redundant sind. Ich stelle Ähnlichkeiten und Unterschiede zwischen verschiedenen Regionen in Bezug auf räumliche Muster einzelner Heterogenitätsmaße sowie einen multidimensionalen Heterogenitätsraum heraus, der auf einer Hauptkomponentenanalyse beruht. Außerdem untersuche ich den Zusammenhang zwischen jedem einzelnen Heterogenitätsmaß und dem Säugetierreichtum in einfachen und multiplen Regressionsmodellen, welche zusätzlich den Einfluss von Klima, biogeographischer Region und menschlichem Einfluss berücksichtigen. Mit Hilfe von bedingten Inferenzbäumen analysiere ich den Einfluss der verschiedenen Themenfelder und Berechnungsmethoden der Heterogenitätsmaße auf die Modellgüte über drei räumliche Auflösungen hinweg. Die Wahl der Themenfelder stellt sich dabei als wichtigster Einflussfaktor heraus, wobei sich Maße klimatischer und topographischer Heterogenität besonders positiv auf die Modellgüte auswirken. Desweiteren zeichnen sich Modelle mit Anzahl- oder Spannweitemaßen ebenfalls durch hohe Modellgüte aus, wohingegen der Variationskoeffizient und ein Geländeschroffheitsindex mit relativ geringer Modellgüte zusammenhängen. Insgesamt betonen meine Ergebnisse die hohe Bedeutung methodischer Entscheidungen auf die Ergebnisse von Heterogenität-Artenreichtums-Studien. Dies wiederum dokumentiert wie wichtig es ist, sinnvolle, taxon- und skalenabhängige Heterogenitätsmaße zu verwenden, die dem jeweiligen Untersuchungssystem und dem zu untersuchenden Mechanismus entsprechen. Diese Dissertation stellt die bisher umfangreichste Untersuchung der Quantifizierung und Terminologie von Heterogenität über Themenfelder und verschiedene taxonomische Gruppen hinweg dar. Sie belegt erstmals einen generell positiven Zusammenhang zwischen biotischer und abiotischer Heterogenität und dem Artenreichtum terrestrischer Pflanzen und Tiere auf relativ großen räumlichen Skalen. Meine Forschung demonstriert deutlich die enorme Komplexität von Heterogenität als Thema und Forschungsgebiet. Trotz der beachtlichen Fortschritte, die durch diese Arbeit in der Erforschung von Heterogenität-Artenreichtums-Beziehungen gemacht wurden, gilt es noch zahlreiche offene Fragen zu beantworten. Die vorliegende Dissertation soll eine solide Basis schaffen, um diese Herausforderung in Zukunft anzugehen.
86

Abundance, niche breadth and stress in the centre and at the border of the distribution range. / A macroecological study on abundant and rare tree species. / Häufigkeit, Nischenbreite und Stress im Arealzentrum und am Arealrand. / Eine makroökologische Studie über häufige und seltene Baumarten.

Köckemann, Benjamin 23 September 2008 (has links)
No description available.
87

Climatic Dependence of Terrestrial Species Assemblage Structure

Walker, Kevin R. January 2013 (has links)
An important goal of ecological studies is to identify and explain patterns or variation in species assemblages. Ecologists have discovered that global variation in the number of species in an assemblage relates strongly to climate, area, and topographic variability in terrestrial environments. Is the same true for other characteristics of species assemblages? The focus of this thesis is to determine whether species assemblage structure, defined primarily as the body mass frequency distributions and species abundance distributions relate in convergent ways to a set of a few environmental variables across broad spatial scales. First, I found that for mammals and trees most of their geographic variation across North and South America in assemblage structure is statistically related to temperature, precipitation, and habitat heterogeneity (e.g. different vegetation types) in convergent ways. I then examined bird assemblages across islands and continents. Despite the evolutionary and ecological differences between island and continental assemblages, I found that much of the variation in bird assemblage structure depends on temperature, precipitation, land area, and island isolation in congruent patterns in continent and island bird assemblages. Frank Preston modeled species richness based on the total number of individuals and the number of individuals of the rarest species. Building on Preston’s model, Chapter 2 hypothesized that gradients of diversity correlate with gradients in the number of individuals of the rarest species, which in turn are driven by gradients in temperature and precipitation. This hypothesis assumes that species abundance distributions relate to temperature and precipitation in similar ways anywhere in the world. I found that both the number of individuals of the rarest species (m) and the proportion of species represented by a single individual in samples of species assemblages (Φ) were strongly related to climate. Moreover, global variation in species richness was more strongly related to these measures of rarity than to climate. I propose that variation in the shape of the log-normal species abundance distribution is responsible for global gradients of species richness: rare species (reflected in m and Φ) persist better in benign climates. Even though body mass frequency distributions of assemblages show convergent patterns in relation to a set of a few environmental variables, the question remains as to what processes are responsible for creating the geographical variation in the body-size distribution of species. Several mechanisms (e.g. heat conservation and resource availability hypotheses) have been proposed to explain this variation. Chapter 5 tested and found no empirical support for the predictions derived from each of these mechanisms; I showed that species of all sizes occur across the entire temperature gradient. In conclusion, assemblage structure among various taxonomic groups across broad spatial scales relate in similar ways to a set of a few environmental variables, primarily mean annual temperature and mean annual precipitation. While the exact mechanisms are still unknown, I hypothesize several to explain the patterns of convergent assembly. Résumé Un but important de l'écologie est d'identifier et d'expliquer la variation de premier ordre dans les caractéristiques des assemblages d'espèces. Un des patrons ayant déjà été identifié par les écologistes, c'est que la variation mondiale de la richesse en espèces est liée à la variation du climat, de l'aire et de la topographie. Est-ce que d'autres caractéristiques des assemblages d'espèces peuvent être reliées à ces mêmes variables? Le but de cette thèse est de déterminer si la structure des assemblages d'espèces, ici définie comme la distribution des fréquences de masse corporelle ainsi que la distribution d'abondances des espèces, est reliée de manière convergente à un petit ensemble de variables environnementales, et ce, partout dans le monde. D'abord, j'ai déterminé que, pour les mammifères et les arbres, la majorité de la variation géographique dans la structure des assemblages d'espèces est reliée statistiquement à température, précipitation, et l’hétérogénéité du couvert végétal , et ce, de manière convergente pour l'Amérique du Nord et du Sud. Je me suis ensuite penché sur l'assemblage des oiseaux sur les îles et les continents. Malgré les larges différences évolutives et écologiques qui distinguent les îles des continents, je démontre que la majorité de la variation dans la structure des assemblages d'oiseaux dépend de la température, la précipitation, la superficie et l’isolation de façon congruente sur les îles et les continents. Frank Preston a modélisé la richesse en espèces d'une localité, basée sur le nombre total d'individus ainsi que le nombre d'individus de l’espèce la plus rare. En s'appuyant sur les modèles de Preston, Chapître 3 propose une nouvelle hypothèse voulant que les gradients de diversité dépendent des gradients du nombre d'individus de l’espèce la plus rare. Celle-ci dépend des gradients de température et de précipitation. Cette hypothèse repose sur le postulat que la distribution d’abondances des espèces dépend de la température et la précipitation, et ce, de la même manière n’importe où au monde. J’ai mis en évidence que le nombre d’individus de l’espèce la plus rare (m), ainsi que la proportion d’espèces représentées par un individu unique () dans des échantillons locaux étaient fortement reliés au climat. D’ailleurs, la variation globale de la richesse en espèces était plus fortement reliée à ces indices de rareté qu’au climat. Je propose que la variation dans la forme de la distribution log-normale d’abondances d’individus soit responsable des gradients mondiaux de richesse en espèces. En d’autres mots, les espèces rares (indiquées par m et ) persistent mieux dans des climats bénins. Malgré que la distribution des fréquences de masse corporelle des assemblages d'espèces soit liée de manière convergente à seulement quelques variables environnementales, la question demeure à savoir quels processus sont responsables des gradients géographiques de variation en masse corporelle des espèces. Plusieurs mécanismes ont été proposés pour expliquer cette variation. Dans Chapitre 5, j'ai testé les prédictions dérivées de chacun de ces mécanismes sans trouver de support empirique pour aucun. Je démontre aussi que des espèces de toutes tailles se retrouvent sur le gradient de température en entier. En conclusion, la structure des assemblages d'espèces, pour différents groupes taxonomiques et à travers le monde, est liée de façon similaire à un petit nombre de variables environnementales. Bien que les mécanismes soient encore inconnus, j'en propose plusieurs pouvant expliquer ces patrons d'assemblages convergents.
88

The Macroecology of Island Floras

Weigelt, Patrick 17 December 2013 (has links)
Marine Inseln beherbergen einen großen Teil der biologischen Vielfalt unseres Planeten und weisen gleichzeitig einen hohen Anteil endemischer Arten auf. Inselbiota sind allerdings zudem besonders anfällig für anthropogene Einflüsse wie den globalen Klimawandel, Habitatverlust und invasive Arten. Für ihren Erhalt ist es daher wichtig, die ökologischen Prozesse auf Inseln detailliert zu verstehen. Aufgrund ihrer definierten Größe und isolierten Lage eignen sich Inseln als Modellsysteme in der ökologischen und evolutionären Forschung. Der Großteil der bisherigen Inselstudien hat sich allerdings mit kleinräumigen Mustern befasst, so dass standardisierte globale Daten zu den biogeographischen Eigenschaften und eine makroökologische Synthese ihrer Biota bislang fehlen. In dieser Arbeit stelle ich eine physische und bioklimatische Charakterisierung der Inseln der Welt vor und behandle die Frage, wie abiotische Inseleigenschaften die Diversität von Inselfloren beeinflussen. Ich bearbeite zwei Hauptaspekte dieser Fragestellung: Zuerst konzentriere ich mich auf historische und heutige Klimabedingungen und physische Inseleigenschaften als Triebfedern von Pflanzendiversitätsmustern auf Inseln. Hierbei setze ich einen Schwerpunkt auf die räumliche Anordnung von Inseln und Struktur von Archipelen. Als Zweites behandle ich taxon-spezifische Unterschiede in der Antwort von Diversitätsmustern auf abiotische Faktoren. Hierzu stelle ich eine globale Datenbank mit historischen und heutigen Klimabedingungen und physischen Eigenschaften, wie Fläche, Isolation und Geologie, von 17883 Inseln größer als 1 km² vor. Mit Hilfe von Ordinations- und Klassifikationsverfahren charakterisiere und klassifiziere ich die Inseln in einem multidimensionalen Umweltraum. Außerdem entwickele ich einen Satz von ökologisch relevanten Maßen zur Beschreibung von Isolation von Inseln und ihrer räumlichen Anordnung in Archipelen, darunter Maße zu Trittstein-Inseln, Wind- und Meeresströmungen, klimatischer Ähnlichkeit, Distanzen zwischen Inseln und umgebender Landfläche. Diese Maße berücksichtigen verschiedene Aspekte von Isolation, welche Immigration, Artbildung und Aussterben auf Inseln sowie Austausch zwischen Inseln beeinflussen. Um abiotische Bedingungen mit biotischen Eigenschaften von Inselfloren in Verbindung zu bringen, nutze ich eine für diese Arbeit erstellte Datenbank aus 1295 Insel-Artenlisten, die insgesamt ca. 45000 heimische Gefäßpflanzenarten umfassen. Dies ist der umfassendste und erste globale Datensatz für Pflanzen auf Inseln, der Artidentitäten anstatt lediglich Artenzahlen beinhaltet. Die globale Insel-Charakterisierung bestätigt quantitativ, dass sich Inseln in bioklimatischen und physischen Eigenschaften vom Festland unterscheiden. Inseln sind im Durchschnitt signifikant kühler, feuchter und weniger saisonal geprägt als das Festland. Die weiteren Ergebnisse zeigen, dass eine sorgfältige Beschreibung der räumlich-physischen Eigenschaften von Inseln und Archipelen nötig ist, um die Diversitätsmuster ihrer Biota zu verstehen. Isolation ist nach Inselfläche der zweitwichtigste Einflussfaktor für den Gefäßpflanzenartenreichtum auf Inseln. Von den verglichenen Isolationsmaßen eignet sich der Anteil an umgebender Landfläche am besten zur Erklärung der Artenzahlen. Außerdem erhöht sich durch die Berücksichtigung von Trittsteininseln, großen Inseln als Quell-Landflächen und klimatischer Ähnlichkeit der Quell-Landflächen die Vorhersagekraft der Modelle. Isolation spielt eine geringere Rolle auf großen Inseln, wo in situ Diversifizierung den negativen Effekt von Isolation auf Immigration ausgleicht. Die räumliche Struktur innerhalb von Archipelen ist von besonderer Bedeutung für β-Diversität, d.h. für den Unterschied in der Artenzusammensetzung der Inseln. Außerdem beeinflusst sie indirekt, durch den Effekt auf die β-Diversität, auch die γ-Diversität, d.h. die Diversität des gesamten Archipels. Die Ergebnisse heben die enorme Bedeutung der relativen räumlichen Position von Inseln zueinander für Diversitätsmuster auf Inseln hervor und zeigen die Notwendigkeit für Inselforschung und Naturschutz, Inseln im Kontext ihres Archipels zu betrachten. Die Ergebnisse für Farne auf südostasiatischen Inseln zeigen, dass die Bedeutung von physischen Inseleigenschaften für Diversität kontinuierlich mit der Größe der betrachteten Untersuchungsfläche von der Insel- bis zur Plotebene abnimmt, wohingegen der Einfluss von lokalen Umweltbedingungen zunimmt. Lokale Artgemeinschaften sind häufig gesättigt, wodurch die Anzahl an Arten, die aus dem regionalen Artenbestand einwandern können, limitiert wird. Um Vorhersagen über lokalen Artenreichtum zu machen, ist es daher wichtig, die Skalenabhängigkeit der Effekte des regionalen Artenbestandes zu berücksichtigen. Großgruppen von Pflanzen unterscheiden sich in ihrer Ausbreitungsfähigkeit, ihrem Genfluss, Artbildungsraten und Anpassungen an das Klima. Dementsprechend zeigen die vergleichenden Analysen zwischen taxonomischen Pflanzengruppen deutliche Unterschiede in der Reaktion von Artenreichtum und phylogenetischen Diversitätsmustern auf abiotische Faktoren. Die Arten-Fläche-Beziehung, d.h. die Zunahme von Artendiversität mit zunehmender Fläche, variiert zwischen den Pflanzengruppen. Die Steigung der Arten-Fläche-Beziehung ist für Spermatophyten größer als für Pteridophyten und Bryophyten, wohingegen der y-Achsenabschnitt kleiner ist. Unter der Annahme, dass Merkmale und klimatische Anpassungen innerhalb von taxonomischen Gruppen phylogenetisch konserviert sind, führen die Filterwirkung von Ausbreitungsbarrieren und Umwelteigenschaften sowie in situ Artbildung zu Gemeinschaften eng verwandter Arten (phylogenetic clustering). Die Ergebnisse zeigen, dass physische und bioklimatische Inseleigenschaften, die mit der Filterwirkung und Artbildung in Verbindung stehen, die phylogenetische Struktur von Inselgemeinschaften beeinflussen. Die Stärke und Richtung der Zusammenhänge variieren zwischen taxonomischen Gruppen. Abiotische Faktoren erklären mehr Variation in phylogenetischer Diversität für alle Angiospermen und Palmen als für Farne, was auf Grund höherer Ausbreitungsfähigkeit und größerer Verbreitungsgebiete von Farnen den Erwartungen entspricht. Die abiotische Charakterisierung und Klassifizierung der weltweiten Inseln und die zugehörigen Daten ermöglichen eine integrativere Berücksichtigung von Inseln in der makroökologischen Forschung. In dieser Arbeit präsentiere ich die ersten Vorhersagen globaler Pflanzenartenvielfalt auf Inseln und die ersten Analysen zu unterschiedlichen Diversitätskomponenten (α, β, γ und phylogenetische Diversität) von Inselsystemen und ihren abiotischen Einflussfaktoren auf globalem Maßstab. Ich zeige, dass Zusammenhänge zwischen Umweltfaktoren und Artenzahl sowie phylogenetischen Eigenschaften von Inselgemeinschaften zwischen unterschiedlichen taxonomischen Gruppen in Abhängigkeit ihrer vorwiegenden Ausbreitungs- und Artbildungseigenschaften variieren können. Dies ist eine neue Sichtweise in der makroökologischen Inselforschung, die Rückschlüsse auf die Mechanismen hinter Diversitätsmustern von Pflanzen auf Inseln erlaubt. Ein detailliertes Verständnis davon, wie Diversität unterschiedlicher Pflanzengruppen durch Immigration und Diversifizierung auf Inseln entsteht, dürfte auch das Verständnis globaler Diversitätsmuster im Allgemeinen verbessern.

Page generated in 0.0508 seconds