• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 7
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 12
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Determinação do papel estrutural que proteínas auxiliares exercem para ativação das glicosiltransferases na biossíntese de antibióticos macrolídeos. / Determining the structural role that auxiliary proteins have upon activation of glycosyltransferase in the biosynthesis of macrolide antibiotics.

Sá, Larissa Antelo de 10 November 2017 (has links)
Produtos naturais constituem uma das principais fontes de moléculas bioativas que possuem diversas aplicabilidades. Dentre os produtos naturais, policetídeos representam uma ampla classe de compostos estruturalmente diversos cuja atividade biológica, muitas vezes está relacionada com os grupos funcionais que estão ligados ao seu esqueleto central (aglicona). Os macrolídeos representam uma classe de antibiótico amplamente utilizado e são um exemplo de policetídeos cuja atividade é dependente de moléculas de açúcares. As enzimas que realizam a glicosilação de policetídeos são as glicosiltransferases, as quais apresentam uma especificidade estrita para 6-desoxiaçúcares, porém uma especificidade relaxada para açúcares não usuais e substratos aceptores. Estudar essa flexibilidade catalítica das glicosiltransferases de produtos naturais pode contribuir para a geração de novos compostos através de glicodiversificação. Esses novos compostos podem apresentar novas atividades biológicas e propriedades farmacocinéticas melhoradas. Além da especificidade relaxada, existe um pequeno grupo de glicosiltransferases que possui um comportamento peculiar no qual uma proteína auxiliar é necessária para sua atividade catalítica, por exemplo o par TylM2/TylM3 envolvidos na biossíntese do antibiótico macrolídeo tilosina em Strepromyces fradiae. Estudar a interação e as mudanças conformacionais que ocorrem durante a formação do complexo glicosiltransferase-proteína auxiliar é fundamental para entender a influência que essas as proteínas auxiliares exercem sobre as glicosiltransferases, e com isso gerar informações que possam ser úteis na aplicação de glicodiversificação. Neste trabalho foi realizado a sublonagem de genes sintéticos que codificam a glicosiltransferase TylM2 e a proteína auxiliar TylM3 e as proteínas recombinantes foram produzidas e purificadas. Além disso foram realizadas técnicas de caracterização estrutural para proteína TylM2 no qual essa glicosiltransferase parece formar um tetrâmero em solução na ausência de sua proteína auxiliar. Ensaios de cristalização com TylM2 rendeu cristais que difratam a uma resolução abaixo de 3,0Å, mesmo após tentativas de otimização, que dificultam a determinação de sua estrutura A criação de modelos teóricos por modelagem comparativa para TylM2 e TylM3 permitiu uma investigação sobre possíveis diferenças entre a TylM2 e suas homólogas. / Natural products compose one of the main sources of bioactive molecules that have several applications. Amongst natural products, polyketides represent a broad class of structurally diverse compounds whose biological activity is often related to the functional groups that are linked to their central skeleton (aglycone). Macrolides represent a class of widely used antibiotic and are an example of polyketides whose activity is dependent on sugar molecules. The enzymes that perform the glycosylation of polyketides are glycosyltransferases, which have a strict specificity for 6-deoxy sugars, but a relaxed specificity for unusual sugars and acceptor substrates. Studying this catalytic flexibility of glycosyltransferases of natural products may contribute to the generation of novel compounds through glycodiversification. These novel compounds may exhibit new biological activities and improved pharmacokinetic properties. In addition to the relaxed specificity, there is a small group of glycosyltransferases who have a peculiar behavior in which an auxiliary protein is required for its catalytic activity, an example of such is the TylM2 / TylM3 pair involved in the biosynthesis of the macrolide antibiotic tylosin in Strepromyces fradiae. Studying the interaction and conformational changes that occur during the formation of the glycosyltransferase-auxiliary protein complex is critical to understanding the influence that these auxiliary proteins have on glycosyltransferases, and thereby generate information that may be useful in the application of glycodiversification. In this work, synthetic genes coding the glycosyltransferase TylM2 and the auxiliary protein TylM3 was sub cloned into pET28a vectors and the recombinant proteins were produced and purified. In addition, structural characterization techniques were performed with TylM2 which appears to form a tetramer in solution in the absence of its auxiliary protein. Crystallization assays of TylM2 yielded crystals that diffracted bellow 3.0Å and presented pathologies which prevented determining of its structure, even after attempts of optimization. The creation of theoretical models by homology modelling for TylM2 and TylM3 allowed for an investigation into possible differences that make TylM2 possess a more stringent flexibility toward acceptor substrates when compared to other homologues.
32

Synthèse de béta-lactames polycycliques et du fragment C15-C30 des dolabélides, macrolides cytotoxiques d'origine marine, par catalyse organométallique

Desroy, Nicolas 30 November 2004 (has links) (PDF)
Aucun !
33

Studies on saccharothriolides, phenyl-substituted 10-membered macrolides from a rare actinomycete Saccharothrix sp. and precursor-directed in situ synthesis of saccharothriolide analogs / 希少放線菌Saccharothrix sp.が産生する新規saccharothriolide類とPDSSに関する研究

Shan, Lu 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第20315号 / 薬科博第84号 / 新制||薬科||9(附属図書館) / 京都大学大学院薬学研究科医薬創成情報科学専攻 / (主査)教授 掛谷 秀昭, 教授 高須 清誠, 教授 大野 浩章 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM
34

Uncovering the Antibiotic Kinome with Small Molecules

Shakya, Tushar 10 1900 (has links)
<p>The 20<sup>th</sup> century introduction of antibiotics made once fatal infectious diseases readily treatable. This taken-for-granted therapy is now threatened by rising antibiotic resistance. The ability of pathogens to acquire numerous simultaneous resistance mechanisms has given rise to an alarming number of increasingly difficult to treat multi-drug resistant infections. When coupled with a sharp decline in development of novel antibiotic therapies, health practitioners today are left with limited therapeutic options. Several alternative methodologies have been employed to find novel therapeutics, including new techniques in natural product isolation and the production of semi-synthetic and synthetic antibiotics; however, there has been limited focus on targeting antibiotic resistance mechanisms directly to create synergistic therapies. We demonstrate the potential in using small molecules to target antibiotic kinases, thereby rescuing the antibiotic action of aminoglycosides and macrolides when used in combination. We conducted a thorough examination of these enzymes including: kinetic analysis; an assessment of phosphate donor specificity; and in-depth structural comparison, including a case study on the structure-function relationship of APH(4)-Ia. This analysis culminated in an intensive screening initiative of fourteen antibiotic kinases against a set of well defined protein kinase inhibitors. From this work, we have identified several inhibitors that have the potential for use in future combination therapeutics. This study illustrates the benefit of a structure-activity based approach to drug discovery, an important tool at a time when novel therapeutic strategies are required.</p> / Doctor of Philosophy (PhD)
35

Addressing Antibiotic Resistance: The Discovery of Novel Ketolide Antibiotics Through Structure Based Design and In Situ Click Chemistry

Glassford, Ian Michael January 2016 (has links)
Antibiotic resistance has become and will continue to be a major medical issue of the 21st century. If not addressed, the potential for a post-antibiotic era could become a reality, one that the world has not been familiar with since the early 1900’s. Multidrug-resistant hospital-acquired bacterial infections already account for close to 2 million cases and 23,000 deaths in the United States, along with 20 billion dollars of additional medical spending each year. The CDC released a report in 2013 regarding the seriousness of antibiotic resistance and providing a snapshot of costs and mortality rates of the most serious antibiotic resistant bacteria, which includes 17 drug resistant bacteria, such as carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococcus and Staphylococcus aureus, and multidrug-resistant Acinetobacter and Pseudomonas aeruginosa. The development of antibiotic resistance is part of bacteria’s normal evolutionary process and thus impossible to completely stop. To ensure a future where resistant bacteria do not run rampant throughout society, there is a great need for new antibiotics and accordingly, methods to facilitate their discovery Macrolides are a class of antibiotics that target the bacterial ribosome. Since their discovery in the 1950’s medicinal chemistry has created semi-synthetic analogues of natural product macrolides to address poor pharmacokinetics and resistance. Modern X-Ray crystallography has allowed the chemist access to high resolution images of the bacterial ribosome bound to antibiotics including macrolides which has ushered in an era of structure-based design of novel antibiotics. These crystal structures suggest that the C-4 methyl group of third generation ketolide antibiotic telithromycin can sterically clash with a mutated rRNA residue causing loss of binding and providing a structural basis for resistance. The Andrade lab hypothesized that the replacement of this methyl group with hydrogen would alleviate the steric clash and allow the antibiotic to retain activity. To this end, the Andrade lab set out on a synthetic program to synthesize four desmethyl analogues of telithromycin by total synthesis that would directly test the steric clash hypothesis and also provide structure-activity relationships about these methyl groups which have not been assessed in the past. Following will contain highlights of the total synthesis of (-)-4,8,10-didesmethyl telithromycin, (-)-4,10-didesmethyl telithromycin, and (-)-4,8-desmethyl telithromycin and my journey toward the total synthesis of (-)-4-desmethyl telithromycin Traditional combinatorial chemistry uses chemical synthesis to make all possible molecules from various fragments. These molecules then need to be purified, characterized, and tested against the biological target of interest. While high-throughput assay technologies (i.e., automation) has streamlined this process to some extent, the process remains expensive when considering the costs of labor, reagents, and solvent to synthesize, purify, and characterize all library members. Unlike traditional combinatorial chemistry, in situ click chemistry directly employs the macromolecular target to template and synthesize its own inhibitor. In situ click chemistry makes use of the Huisgen cycloaddition of alkyne and azides to form 1,2,3-triazoles, which normally reacts slowly at room temperature in the absence of a catalyst. If azide and alkyne pairs can come together in a target binding pocket the activation energy of the reaction can be lowered and products detected by LC-MS. Compounds found in this way generally show tighter binding than the individual fragments. Described in the second part of this dissertation is the development of the first in situ click methodology targeting the bacterial ribosome. Using the triazole containing third generation ketolide solithromycin as a template we were able to successfully show that in situ click chemistry was able to predict the tightest binding compounds. / Chemistry
36

Interactions entre l’inflammation neutrophilique et le remodelage bronchique dans l’asthme : investigations chez le modèle naturel de l’asthme équin sévère

Mainguy-Seers, Sophie 08 1900 (has links)
L’asthme est une des maladies chroniques les plus prévalentes, affectant environ 300 millions d’individus dans le monde et causant plus de 400 000 décès annuellement. La condition se caractérise par une hyperréactivité bronchique, de l’inflammation pulmonaire et des changements structuraux (remodelage) des voies respiratoires. Bien que l’inflammation soit le plus souvent de type éosinophilique dans l’asthme, une proportion importante des patients affectés par la forme sévère de la maladie présente plutôt une infiltration des voies respiratoires par les neutrophiles. Cette inflammation neutrophilique a été associée à plusieurs issues cliniques négatives, notamment à une mauvaise réponse aux traitements, à une obstruction respiratoire permanente et à la mortalité. Malgré l’importance de ces conséquences cliniques pour les patients affectés, le rôle de l’inflammation neutrophilique dans la pathophysiologie de l’asthme, dont ses effets sur le remodelage bronchique, demeure peu exploré. Dans toutes les formes d’asthme, les traitements usuels de la maladie (glucocorticoïdes et bronchodilatateurs) ne permettent pas de renverser entièrement les lésions de remodelage bronchique, dont l’augmentation de la masse du muscle lisse, et ne contrôlent pas adéquatement la neutrophilie pulmonaire. L’augmentation de la masse musculaire lisse bronchique représente pourtant une cible thérapeutique importante vu son implication dans le rétrécissement de la lumière bronchique et le bronchospasme. Les objectifs de cette thèse ont donc été d’étudier les mécanismes potentiellement impliqués dans l’association entre l’inflammation neutrophilique et la sévérité de la maladie, et d’investiguer les effets de thérapies anti-neutrophiliques sur le remodelage bronchique dans le modèle de l’asthme équin sévère. Similairement à la condition humaine, l’asthme équin sévère est caractérisé par une obstruction respiratoire fluctuante, de l’inflammation pulmonaire et un remodelage bronchique, notamment une augmentation de la masse du muscle lisse. Cette maladie se prête particulièrement bien à l’étude du phénotype neutrophilique puisque c’est cette cellule granulocytaire qui infiltre le milieu pulmonaire lors des exacerbations cliniques. Les études réalisées dans ce projet doctoral ont permis de déterminer que l’azithromycine, un macrolide possédant des propriétés immunomodulatrices, réduit l’inflammation neutrophilique dans le modèle de l’asthme équin. Toutefois, ce traitement n’a pas diminué l’obstruction bronchique ni les lésions de remodelage lorsqu’utilisé en monothérapie, et n’a pas potentialisé les effets des corticostéroïdes inhalés. Ces résultats suggèrent que l’atténuation de l’inflammation pulmonaire ne suffit pas à rétablir l’homéostasie tissulaire dans la phase chronique de la maladie. Toutefois, l’hétérogénéité phénotypique des neutrophiles pourrait rendre leur simple quantification dans les sécrétions respiratoires insuffisante pour élucider leurs répercussions dans l’asthme. Par exemple, les neutrophiles pourraient contribuer au remodelage bronchique par la relâche de vésicules extracellulaires, des nanoparticules qui peuvent modifier la biologie des cellules locales et distantes. Ainsi, les caractéristiques des vésicules neutrophiliques et leur effet prolifératif sur le muscle lisse bronchique ont été examinés. Les résultats obtenus indiquent que les vésicules produites par les neutrophiles augmentent la prolifération du muscle lisse bronchique lorsqu’elles proviennent de cellules exposées au lipopolysaccharide, un fragment bactérien omniprésent dans l’environnement et incriminé dans l’infiltration neutrophilique et le développement de l’obstruction bronchique dans l’asthme humain et équin. / Asthma is one of the most prevalent chronic diseases, affecting approximately 300 million people worldwide and causing over 400,000 deaths annually. The condition is characterized by the combination of bronchial hyperreactivity, lung inflammation, and structural changes in the airways (remodeling). Although an eosinophilic inflammation is common in asthma, a significant proportion of patients affected by the severe form of the disease have a neutrophilic airway infiltration. The neutrophilic phenotype has been associated with several negative outcomes in human asthma, including poor response to therapy, permanent airway obstruction and mortality. Despite these associations, the role of neutrophils in asthma, including its effects on airway remodeling, remains insufficiently explored. Unfortunately, standard asthma therapies (glucocorticoids and bronchodilators) do not adequately control neutrophilic inflammation and reverse only partially, if at all, bronchial remodeling lesions, including the increased airway smooth muscle mass. This structural modification is however an important therapeutic target because of its involvement in bronchial lumen narrowing and bronchospasm. The main objectives of this thesis were therefore to study mechanisms potentially involved in the association between neutrophilic inflammation and asthma severity, and to investigate the effects of anti-neutrophilic therapies on bronchial remodeling reversibility in the severe equine asthma model. Similar to the human disease, severe equine asthma is characterized by fluctuating airflow obstruction, pulmonary inflammation, and remodeling lesions, including a large increase in airway smooth muscle mass. Clinical exacerbations are characterized by a marked pulmonary neutrophilic influx, making this disease particularly suitable to study the neutrophilic phenotype. Studies conducted during this doctoral program revealed that azithromycin, a macrolide with immunomodulatory properties, reduces neutrophilic inflammation in the equine asthma model, but fails to alleviate bronchial obstruction and remodeling lesions, suggesting that the control of neutrophilic inflammation is not sufficient to restore tissue homeostasis when the disease reaches its chronic phase. However, the simple quantification of neutrophils within respiratory secretions might not elucidate comprehensively the possible functional consequences of this cell in the pathophysiology of asthma. For instance, neutrophils could lead and sustain bronchial structural lesions through the release of extracellular vesicles. Those nanoparticles can modify the biology of local and distant cells and are involved in the pathophysiology of several inflammatory diseases. Thus, the characteristics and the effect of neutrophil extracellular vesicles on airway smooth muscle proliferation were studied in horses with severe asthma. The results obtained indicate that extracellular vesicles increase bronchial smooth muscle cell proliferation when they are produced by neutrophils exposed to lipopolysaccharide, a ubiquitous environmental contaminant incriminated in the development of neutrophilic infiltration and bronchial obstruction in human and equine asthma.
37

Macrolide Antibiotics in Bacterial Protein Synthesis / Makrolidantibiotika i Bakteriell Proteinsyntes

Lovmar, Martin January 2005 (has links)
<p>Macrolides are a large group of clinically relevant antibiotics that inhibit protein synthesis by binding to the large ribosomal subunit in the peptide exit tunnel, close to the peptidyl transferase center (PTC). We have shown that the peptide length of the resulting peptidyl-tRNA drop-off products is proportional to the distance between the PTC and the respective macrolide in the tunnel. This indicates that macrolides act by sterically blocking the nascent peptide exit path.</p><p>A substantial amount of read-through into full-length product was observed for some macrolides and depends on the relation between the dissociation rate constants for peptidyl-tRNA and the macrolide, respectively. The dissociation rate constant for josamycin is 60 times lower than the dissociation rate constant for erythromycin, which explains why no read-through is seen for josamycin in contrast to erythromycin.</p><p>Macrolides do not compete with binding of ternary complexes, hence they are non-competitive inhibitors. However, the text-book description is not valid for macrolide antibiotics, and we show that this is due to the equilibrium assumption generally used to describe non-competitive inhibitors. Our results suggest that a more thorough mechanistic investigation is required to classify inhibitors than what has been proposed previously.</p><p>Further, we have examined the phenomenon of peptide mediated resistance to macrolides. Our results show that expression of a resistance peptide increases the dissociation rate constant for erythromycin.</p><p>In addition, we have examined the accuracy of protein synthesis on three different levels: (<i>i</i>) How do the three initiation factors accomplish fast and accurate initiation of protein synthesis, (<i>ii</i>) how does proof-reading work on the isoleucyl-tRNA synthetase, and (<i>iii</i>) what is the accuracy in the tRNA selection and how is it accomplished? Our data propose a change of the view on all these mechanisms.</p><p>In conclusion this thesis presents new results on protein synthesis, macrolide antibiotics and macrolide resistance.</p>
38

Macrolide Antibiotics in Bacterial Protein Synthesis / Makrolidantibiotika i Bakteriell Proteinsyntes

Lovmar, Martin January 2005 (has links)
Macrolides are a large group of clinically relevant antibiotics that inhibit protein synthesis by binding to the large ribosomal subunit in the peptide exit tunnel, close to the peptidyl transferase center (PTC). We have shown that the peptide length of the resulting peptidyl-tRNA drop-off products is proportional to the distance between the PTC and the respective macrolide in the tunnel. This indicates that macrolides act by sterically blocking the nascent peptide exit path. A substantial amount of read-through into full-length product was observed for some macrolides and depends on the relation between the dissociation rate constants for peptidyl-tRNA and the macrolide, respectively. The dissociation rate constant for josamycin is 60 times lower than the dissociation rate constant for erythromycin, which explains why no read-through is seen for josamycin in contrast to erythromycin. Macrolides do not compete with binding of ternary complexes, hence they are non-competitive inhibitors. However, the text-book description is not valid for macrolide antibiotics, and we show that this is due to the equilibrium assumption generally used to describe non-competitive inhibitors. Our results suggest that a more thorough mechanistic investigation is required to classify inhibitors than what has been proposed previously. Further, we have examined the phenomenon of peptide mediated resistance to macrolides. Our results show that expression of a resistance peptide increases the dissociation rate constant for erythromycin. In addition, we have examined the accuracy of protein synthesis on three different levels: (i) How do the three initiation factors accomplish fast and accurate initiation of protein synthesis, (ii) how does proof-reading work on the isoleucyl-tRNA synthetase, and (iii) what is the accuracy in the tRNA selection and how is it accomplished? Our data propose a change of the view on all these mechanisms. In conclusion this thesis presents new results on protein synthesis, macrolide antibiotics and macrolide resistance.
39

New and Bioactive Secondary Metabolites from Ma-rine and Terrestrial Bacteria: Ramthacin A, B, C, and Polyene Macrolides from Genetically Modified Bacteria

Mahmoud Hussien, Ibrahim Al-Refa 30 October 2008 (has links)
No description available.
40

Desenvolvimento e validação de método analítico utilizando LC-MS/MS para determinação de macrolídeos em carne de tilápia do Nilo (Oreochomis niloticus) / Development and validation of analytical method using LC-MS/MS for the determination of macrolides in Nile tilapia (Oreochomis niloticus) meat

Sismotto, Marcela 17 August 2018 (has links)
Orientador: Felix Guillermo Reyes Reyes / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-17T10:10:51Z (GMT). No. of bitstreams: 1 Sismotto_Marcela_M.pdf: 608581 bytes, checksum: 06d9dc244d3f9c3dfc7c4d6225ed5c95 (MD5) Previous issue date: 2011 / Resumo: O resumo poserá ser visualizado no texto completo da tese digital / Abstract: The abstract is available with the full eletronic digital document / Mestrado / Mestre em Ciência de Alimentos

Page generated in 0.0559 seconds