Spelling suggestions: "subject:"magnetische phasenumwandlung"" "subject:"magnetische phasenumwandlungs""
1 |
Der Einfluß der Nanokristallinität auf den ferro-paramagnetischen Phasenübergang eine Fallstudie an nanokristallinem Gadolinium /Michels, Daniel. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Saarbrücken.
|
2 |
Untersuchung der magnetischen Eigenschaften kubischer AntiferromagneteMeschke, Matthias. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2001--Berlin.
|
3 |
Ab-initio-Untersuchung magnetischer und struktureller Eigenschaften von 3d-Übergangsmetallen und ihren LegierungenHerper, Heike Christine. Unknown Date (has links)
Universiẗat, Diss., 2000--Duisburg.
|
4 |
Magnetische Phasenübergänge im Hubbard-Modell mit FrustrationRadke de Cuba, Maria Hedwig. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2002--Aachen.
|
5 |
Microscopic description of magnetic model compoundsSchmitt, Miriam 24 June 2013 (has links) (PDF)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds.
This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities.
Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials.
We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully.
In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx.
This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.
|
6 |
Einfluß der magnetischen Ordnung auf Supraleitung und Kristallstruktur in Seltenerd-Nickel-Borkarbid-Verbindungen / Influence of the magnetic order on superconductivity and crystal structure in rare earth nickel borocarbidesKreyßig, Andreas 05 September 2001 (has links) (PDF)
Rare-earth nickel borocarbids RNi2B2C are particularly suitable for investigations on one of the most interesting problems in modern solid-state physics: these compounds display competition and coexistence of superconductivity and magnetism. Depending on the R3+ ion, the transition temperatures are in an experimentally easy accessible range of 1 K to 25 K. This thesis presents experimental studies on the interplay of both ordering phenomena. Neutron diffraction is used to determine the magnetic order and the resulting changes of the crystal structure. Experiments are performed on polycrystalline and single crystal samples in dependence on temperature and external magnetic fields. The Ni-B stoichiometry of the tetragonal RNi2B2C compounds is systematically varied and the magnetic R3+ ions are partially substituted by other magnetic or nonmagnetic R?3+ ions. The experimental results are compared with macroscopic magnetic and electrical properties. For HoNi2B2C three different magnetic structures are found in a narrow temperature range. While for two magnetic structures the Ho3+ moments are modulated along the c axis, a third magnetic structure with a modulation in a direction is observed. Both, partial substitution of Ho3+ ions and variation of the Ni-B stoichiometry, strongly modify the formation of these different types of magnetic order. The comparison with the concomitant changes of the superconducting properties yields the following scenario for HoNi2B2C-based compounds: superconductivity coexists with both magnetic structures with modulations in c direction. However, the onset of magnetic order weakens the superconductivity. For the magnetic structure with modulation along the a axis, components of the magnetic moments arise in c direction. The resulting local magnetic fields on Ni sites yield a strong suppression of the superconductivity. The observed competition between superconductivity and the magnetic structure with modulation along the a axis strongly suggests that the modification of the electronic structure due to the superconducting state influences the magnetic ordering. As a further impact of the magnetism in RNi2B2C compounds with R = Ho, Dy, Tb and Er changes of the crystal structure are investigated. Using high-resolution neutron diffraction, tetragonal-to-orthorhombic lattice distortions are found. They are induced by those magnetic structures with either parallel or anti-parallel alignement of R3+ magnetic moments. The direction of the lattice distortions, the dependence of their size on the square of the effective ordered magnetic moment and on the type of the R3+ ions indicate that the magneto-elastic interactions are determined by crystal-field effects. This fact also facilitates the elucidation of the magnetic phase diagrams by neutron diffraction experiments in external magnetic fields. For a given phase, absence or presence of magneto-elastic lattice distortions restrict the set of possible magnetic structures. For HoNi2B2C the magnetic phases reported in literature are confirmed. The experimental results for DyNi2B2C are interpreted using a simple model to determine the magnetic structures. Based on mean field calculations, the differences in the magnetic structures for increasing and decreasing magnetic fields can be understood as very strong hysteresis effects in connection with first-order phase transitions. / Seltenerd-Nickel-Borkarbid-Verbindungen RNi2B2C sind bestens zur Untersuchung eines der interessantesten Probleme der modernen Festkörperphysik geeignet: Diese Substanzen weisen Konkurrenz und Koexistenz von Supraleitung und Magnetismus auf, wobei die vom R3+-Ion abhängigen Übergangstemperaturen in einem experimentell gut zugänglichen Bereich von 1 K bis 25 K liegen. Die vorliegende Dissertation stellt experimentelle Arbeiten zum Wechselspiel der beiden Ordnungsphänomene vor. Für poly- und einkristalline Proben werden die magnetischen Ordnungen und resultierende Veränderungen der Kristallstruktur mittels Neutronendiffraktion in Abhängigkeit von der Temperatur und vom äußeren Magnetfeld bestimmt und mit den makroskopischen magnetischen und elektrischen Eigenschaften verglichen. Hierbei werden die tetragonalen RNi2B2C-Verbindungen gezielt in ihrer Ni-B-Stöchiometrie variiert sowie die magnetischen R3+-Ionen partiell durch andere magnetische als auch unmagnetische R?3+-Ionen substituiert. Für HoNi2B2C werden in einem engen Temperaturbereich drei verschiedene magnetische Strukturen nachgewiesen. Während in zwei magnetischen Ordnungen die Ho3+-Momente entlang der c-Achse moduliert sind, wird für die dritte magnetische Ordnung eine Modulation in a-Richtung beobachtet. Sowohl durch die partielle Substitution der Ho3+-Ionen als auch durch die Ni-B-Stöchiometrievariation wird die Ausprägung der magnetischen Strukturen stark modifiziert. Der Vergleich mit den ebenfalls veränderten supraleitenden Eigenschaften ergibt das folgende Bild für die HoNi2B2C-Verbindungen: Die Supraleitung koexistiert mit den beiden c-Achsen-modulierten magnetischen Strukturen, das Einsetzen der magnetischen Ordnung führt jedoch zu einer Schwächung der Supraleitung. Die a-Achsen-modulierte magnetische Struktur weist Momentkomponenten in c-Richtung auf, die auf Grund der resultierenden lokalen Magnetfelder an den Ni-Plätzen eine starke Unterdrückung der Supraleitung bewirken. Die beobachtete Konkurrenz zwischen der Supraleitung und der a-Achsen-modulierten magnetischen Struktur gibt andererseits einen starken Hinweis darauf, daß die Modifizierung der elektronischen Struktur im supraleitenden Zustand auf das magnetische System rückwirkt. Als weitere Auswirkung des Magnetismus kommt es in RNi2B2C-Verbindungen mit R = Ho, Dy, Tb und Er zu Veränderungen der Kristallstruktur. Mittels hochauflösender Neutronendiffraktion werden magnetisch induzierte, tetragonal-zu-orthorhombische Gitterverzerrungen für diejenigen magnetischen Ordnungen nachgewiesen, bei denen die magnetischen Momente der R3+-Ionen parallel bzw. antiparallel ausgerichtet sind. Die Richtung der Gitterverzerrung, die Abhängigkeit ihrer Größe vom Quadrat des geordneten magnetischen Momentes als auch von der Art der R3+-Ionen deuten darauf hin, daß die magneto-elastischen Wechselwirkungen durch Kristallfeldeffekte bestimmt werden. Diese Einsicht unterstützt auch die Aufklärung der magnetischen Phasendiagramme mittels magnetfeldabhängiger Neutronenbeugungsexperimente. Für eine magnetische Phase schränkt das Auftreten bzw. Fehlen der magneto-elastischen Effekte die Vielfalt der möglichen magnetischen Strukturen ein. Die aus der Literatur bekannten magnetischen Phasen von HoNi2B2C werden bestätigt. Für DyNi2B2C werden die experimentellen Ergebnisse unter Nutzung eines einfachen Modelles interpretiert und die magnetischen Strukturen bestimmt. Anhand von Molekularfeldrechnungen können die Unterschiede in den magnetischen Strukturen für ansteigendes und für abnehmendes Magnetfeld als sehr starke Hystereseeffekte in Zusammenhang mit Phasenübergängen erster Ordnung gedeutet werden.
|
7 |
Microscopic description of magnetic model compounds: from one-dimensional magnetic insulators to three-dimensional itinerant metalsSchmitt, Miriam 22 November 2012 (has links)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds.
This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities.
Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials.
We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully.
In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx.
This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.:Contents
List of abbreviations
1. Introduction
2. Methods
2.1. Electronic structure and magnetic models for real compounds
2.1.1. Describing a solid
2.1.2. Basic exchange and correlation functionals
2.1.3. Strong correlations
2.1.4. Band structure codes
2.1.5. Disorder and vacancies
2.1.6. Models on top of DFT
2.2. X-ray diffraction and x-ray absorption at extreme conditions
2.2.1. Diamond anvil cells
2.2.2. ID09 - XRD under pressure
2.2.3. ID24 - XAS and XMCD under pressure
3. Low dimensional magnets
3.1. Materials
3.1.1 AgCuVO4 - a model compound between two archetypes of Cu-O chains
3.1.2 Li2ZrCuO4 - in close vicinity to a quantum critical point
3.1.3 PbCuSO4(OH)2 -magnetic exchange ruled by H
3.1.4 CuCl2 and CuBr2 - flipping magnetic orbitals by crystal water
3.1.5 Na3Cu2SbO6 and Na2Cu2TeO6 - alternating chain systems
3.1.6 Cu2(PO3)2CH2 - magnetic vs. structural dimers
3.1.7 Cu2PO4OH - orbital order between dimers and chains
3.1.8 A2CuEO6 - an new family of spin 1/2 square lattice compounds
3.2. General trends and relations
3.2.1. Approximation for the treatment of strong correlation
3.2.2. Structural elements
4. Magnetic intermetallic compounds under extreme conditions 115
4.1. Itinerant magnets
4.1.1. YCo5 - a direct proof for a magneto elastic transition by XMCD
4.1.2. SrFe2As2 - symmetry-preserving lattice collapse
4.2. Localized magnets
4.2.1. EuPd3Bx - valence transition under doping and pressure
5. Summary and outlook
A. Technical details
B. Crystal Structures
C. Supporting Material
Bibliography
List of Publications
Acknowledgments
|
8 |
Einfluß der magnetischen Ordnung auf Supraleitung und Kristallstruktur in Seltenerd-Nickel-Borkarbid-VerbindungenKreyßig, Andreas 04 July 2001 (has links)
Rare-earth nickel borocarbids RNi2B2C are particularly suitable for investigations on one of the most interesting problems in modern solid-state physics: these compounds display competition and coexistence of superconductivity and magnetism. Depending on the R3+ ion, the transition temperatures are in an experimentally easy accessible range of 1 K to 25 K. This thesis presents experimental studies on the interplay of both ordering phenomena. Neutron diffraction is used to determine the magnetic order and the resulting changes of the crystal structure. Experiments are performed on polycrystalline and single crystal samples in dependence on temperature and external magnetic fields. The Ni-B stoichiometry of the tetragonal RNi2B2C compounds is systematically varied and the magnetic R3+ ions are partially substituted by other magnetic or nonmagnetic R?3+ ions. The experimental results are compared with macroscopic magnetic and electrical properties. For HoNi2B2C three different magnetic structures are found in a narrow temperature range. While for two magnetic structures the Ho3+ moments are modulated along the c axis, a third magnetic structure with a modulation in a direction is observed. Both, partial substitution of Ho3+ ions and variation of the Ni-B stoichiometry, strongly modify the formation of these different types of magnetic order. The comparison with the concomitant changes of the superconducting properties yields the following scenario for HoNi2B2C-based compounds: superconductivity coexists with both magnetic structures with modulations in c direction. However, the onset of magnetic order weakens the superconductivity. For the magnetic structure with modulation along the a axis, components of the magnetic moments arise in c direction. The resulting local magnetic fields on Ni sites yield a strong suppression of the superconductivity. The observed competition between superconductivity and the magnetic structure with modulation along the a axis strongly suggests that the modification of the electronic structure due to the superconducting state influences the magnetic ordering. As a further impact of the magnetism in RNi2B2C compounds with R = Ho, Dy, Tb and Er changes of the crystal structure are investigated. Using high-resolution neutron diffraction, tetragonal-to-orthorhombic lattice distortions are found. They are induced by those magnetic structures with either parallel or anti-parallel alignement of R3+ magnetic moments. The direction of the lattice distortions, the dependence of their size on the square of the effective ordered magnetic moment and on the type of the R3+ ions indicate that the magneto-elastic interactions are determined by crystal-field effects. This fact also facilitates the elucidation of the magnetic phase diagrams by neutron diffraction experiments in external magnetic fields. For a given phase, absence or presence of magneto-elastic lattice distortions restrict the set of possible magnetic structures. For HoNi2B2C the magnetic phases reported in literature are confirmed. The experimental results for DyNi2B2C are interpreted using a simple model to determine the magnetic structures. Based on mean field calculations, the differences in the magnetic structures for increasing and decreasing magnetic fields can be understood as very strong hysteresis effects in connection with first-order phase transitions. / Seltenerd-Nickel-Borkarbid-Verbindungen RNi2B2C sind bestens zur Untersuchung eines der interessantesten Probleme der modernen Festkörperphysik geeignet: Diese Substanzen weisen Konkurrenz und Koexistenz von Supraleitung und Magnetismus auf, wobei die vom R3+-Ion abhängigen Übergangstemperaturen in einem experimentell gut zugänglichen Bereich von 1 K bis 25 K liegen. Die vorliegende Dissertation stellt experimentelle Arbeiten zum Wechselspiel der beiden Ordnungsphänomene vor. Für poly- und einkristalline Proben werden die magnetischen Ordnungen und resultierende Veränderungen der Kristallstruktur mittels Neutronendiffraktion in Abhängigkeit von der Temperatur und vom äußeren Magnetfeld bestimmt und mit den makroskopischen magnetischen und elektrischen Eigenschaften verglichen. Hierbei werden die tetragonalen RNi2B2C-Verbindungen gezielt in ihrer Ni-B-Stöchiometrie variiert sowie die magnetischen R3+-Ionen partiell durch andere magnetische als auch unmagnetische R?3+-Ionen substituiert. Für HoNi2B2C werden in einem engen Temperaturbereich drei verschiedene magnetische Strukturen nachgewiesen. Während in zwei magnetischen Ordnungen die Ho3+-Momente entlang der c-Achse moduliert sind, wird für die dritte magnetische Ordnung eine Modulation in a-Richtung beobachtet. Sowohl durch die partielle Substitution der Ho3+-Ionen als auch durch die Ni-B-Stöchiometrievariation wird die Ausprägung der magnetischen Strukturen stark modifiziert. Der Vergleich mit den ebenfalls veränderten supraleitenden Eigenschaften ergibt das folgende Bild für die HoNi2B2C-Verbindungen: Die Supraleitung koexistiert mit den beiden c-Achsen-modulierten magnetischen Strukturen, das Einsetzen der magnetischen Ordnung führt jedoch zu einer Schwächung der Supraleitung. Die a-Achsen-modulierte magnetische Struktur weist Momentkomponenten in c-Richtung auf, die auf Grund der resultierenden lokalen Magnetfelder an den Ni-Plätzen eine starke Unterdrückung der Supraleitung bewirken. Die beobachtete Konkurrenz zwischen der Supraleitung und der a-Achsen-modulierten magnetischen Struktur gibt andererseits einen starken Hinweis darauf, daß die Modifizierung der elektronischen Struktur im supraleitenden Zustand auf das magnetische System rückwirkt. Als weitere Auswirkung des Magnetismus kommt es in RNi2B2C-Verbindungen mit R = Ho, Dy, Tb und Er zu Veränderungen der Kristallstruktur. Mittels hochauflösender Neutronendiffraktion werden magnetisch induzierte, tetragonal-zu-orthorhombische Gitterverzerrungen für diejenigen magnetischen Ordnungen nachgewiesen, bei denen die magnetischen Momente der R3+-Ionen parallel bzw. antiparallel ausgerichtet sind. Die Richtung der Gitterverzerrung, die Abhängigkeit ihrer Größe vom Quadrat des geordneten magnetischen Momentes als auch von der Art der R3+-Ionen deuten darauf hin, daß die magneto-elastischen Wechselwirkungen durch Kristallfeldeffekte bestimmt werden. Diese Einsicht unterstützt auch die Aufklärung der magnetischen Phasendiagramme mittels magnetfeldabhängiger Neutronenbeugungsexperimente. Für eine magnetische Phase schränkt das Auftreten bzw. Fehlen der magneto-elastischen Effekte die Vielfalt der möglichen magnetischen Strukturen ein. Die aus der Literatur bekannten magnetischen Phasen von HoNi2B2C werden bestätigt. Für DyNi2B2C werden die experimentellen Ergebnisse unter Nutzung eines einfachen Modelles interpretiert und die magnetischen Strukturen bestimmt. Anhand von Molekularfeldrechnungen können die Unterschiede in den magnetischen Strukturen für ansteigendes und für abnehmendes Magnetfeld als sehr starke Hystereseeffekte in Zusammenhang mit Phasenübergängen erster Ordnung gedeutet werden.
|
Page generated in 0.0973 seconds