Spelling suggestions: "subject:"mahalanobis"" "subject:"aahalanobis""
31 |
Integration of multimodal imaging data for investigation of brain development / Intégration des données d’imagerie multimodale pour l’étude de développement du cerveauKulikova, Sofya 06 July 2015 (has links)
L’Imagerie par résonance magnétique (IRM) est un outil fondamental pour l’exploration in vivo du développement du cerveau chez le fœtus, le bébé et l’enfant. Elle fournit plusieurs paramètres quantitatifs qui reflètent les changements des propriétés tissulaires au cours du développement en fonction de différents processus de maturation. Cependant, l’évaluation fiable de la maturation de la substance blanche est encore une question ouverte: d'une part, aucun de ces paramètres ne peut décrire toute la complexité des changements sous-jacents; d'autre part, aucun d'eux n’est spécifique d’un processus de développement ou d’une propriété tissulaire particulière. L’implémentation d’approches multiparamétriques combinant les informations complémentaires issues des différents paramètres IRM devrait permettre d’améliorer notre compréhension du développement du cerveau. Dans ce travail de thèse, je présente deux exemples de telles approches et montre leur pertinence pour l'étude de la maturation des faisceaux de substance blanche. La première approche fournit une mesure globale de la maturation basée sur la distance de Mahalanobis calculée à partir des différents paramètres IRM (temps de relaxation T1 et T2, diffusivités longitudinale et transverse du tenseur de diffusion DTI) chez des nourrissons (âgés de 3 à 21 semaines) et des adultes. Cette approche offre une meilleure description de l’asynchronisme de maturation à travers les différents faisceaux que les approches uniparamétriques. De plus, elle permet d'estimer les délais relatifs de maturation entre faisceaux. La seconde approche vise à quantifier la myélinisation des tissus cérébraux, en calculant la fraction de molécules d’eau liées à la myéline (MWF) en chaque voxel des images. Cette approche est basée sur un modèle tissulaire avec trois composantes ayant des caractéristiques de relaxation spécifiques, lesquelles ont été pré-calibrées sur trois jeunes adultes sains. Elle permet le calcul rapide des cartes MWF chez les nourrissons et semble bien révéler la progression de la myélinisation à l’échelle cérébrale. La robustesse de cette approche a également été étudiée en simulations. Une autre question cruciale pour l'étude du développement de la substance blanche est l'identification des faisceaux dans le cerveau des enfants. Dans ce travail de thèse, je décris également la création d'un atlas préliminaire de connectivité structurelle chez des enfants âgés de 17 à 81 mois, permettant l'extraction automatique des faisceaux à partir des données de tractographie. Cette approche a démontré sa pertinence pour l'évaluation régionale de la maturation de la substance blanche normale chez l’enfant. Pour finir, j’envisage dans la dernière partie du manuscrit les applications potentielles des différentes méthodes précédemment décrites pour l’étude fine des réseaux de substance blanche dans le cadre de deux exemples spécifiques de pathologies : les épilepsies focales et la leucodystrophie métachromatique. / Magnetic Resonance Imaging (MRI) is a fundamental tool for in vivo investigation of brain development in newborns, infants and children. It provides several quantitative parameters that reflect changes in tissue properties during development depending on different undergoing maturational processes. However, reliable evaluation of the white matter maturation is still an open question: on one side, none of these parameters can describe the whole complexity of the undergoing changes; on the other side, neither of them is specific to any particular developmental process or tissue property. Developing multiparametric approaches combining complementary information from different MRI parameters is expected to improve our understanding of brain development. In this PhD work, I present two examples of such approaches and demonstrate their relevancy for investigation of maturation across different white matter bundles. The first approach provides a global measure of maturation based on the Mahalanobis distance calculated from different MRI parameters (relaxation times T1 and T2, longitudinal and transverse diffusivities from Diffusion Tensor Imaging, DTI) in infants (3-21 weeks) and adults. This approach provides a better description of the asynchronous maturation across the bundles than univariate approaches. Furthermore, it allows estimating the relative maturational delays between the bundles. The second approach aims at quantifying myelination of brain tissues by calculating Myelin Water Fraction (MWF) in each image voxel. This approach is based on a 3-component tissue model, with each model component having specific relaxation characteristics that were pre-calibrated in three healthy adult subjects. This approach allows fast computing of the MWF maps from infant data and could reveal progression of the brain myelination. The robustness of this approach was further investigated using computer simulations. Another important issue for studying white matter development in children is bundles identification. In the last part of this work I also describe creation of a preliminary atlas of white matter structural connectivity in children aged 17-81 months. This atlas allows automatic extraction of the bundles from tractography datasets. This approach demonstrated its relevance for evaluation of regional maturation of normal white matter in children. Finally, in the last part of the manuscript I describe potential future applications of the previously developed methods to investigation of the white matter in cases of two specific pathologies: focal epilepsy and metachromatic leukodystrophy.
|
32 |
Integration of multimodal imaging data for investigation of brain development / Intégration des données d’imagerie multimodale pour l’étude de développement du cerveauKulikova, Sofya 06 July 2015 (has links)
L’Imagerie par résonance magnétique (IRM) est un outil fondamental pour l’exploration in vivo du développement du cerveau chez le fœtus, le bébé et l’enfant. Elle fournit plusieurs paramètres quantitatifs qui reflètent les changements des propriétés tissulaires au cours du développement en fonction de différents processus de maturation. Cependant, l’évaluation fiable de la maturation de la substance blanche est encore une question ouverte: d'une part, aucun de ces paramètres ne peut décrire toute la complexité des changements sous-jacents; d'autre part, aucun d'eux n’est spécifique d’un processus de développement ou d’une propriété tissulaire particulière. L’implémentation d’approches multiparamétriques combinant les informations complémentaires issues des différents paramètres IRM devrait permettre d’améliorer notre compréhension du développement du cerveau. Dans ce travail de thèse, je présente deux exemples de telles approches et montre leur pertinence pour l'étude de la maturation des faisceaux de substance blanche. La première approche fournit une mesure globale de la maturation basée sur la distance de Mahalanobis calculée à partir des différents paramètres IRM (temps de relaxation T1 et T2, diffusivités longitudinale et transverse du tenseur de diffusion DTI) chez des nourrissons (âgés de 3 à 21 semaines) et des adultes. Cette approche offre une meilleure description de l’asynchronisme de maturation à travers les différents faisceaux que les approches uniparamétriques. De plus, elle permet d'estimer les délais relatifs de maturation entre faisceaux. La seconde approche vise à quantifier la myélinisation des tissus cérébraux, en calculant la fraction de molécules d’eau liées à la myéline (MWF) en chaque voxel des images. Cette approche est basée sur un modèle tissulaire avec trois composantes ayant des caractéristiques de relaxation spécifiques, lesquelles ont été pré-calibrées sur trois jeunes adultes sains. Elle permet le calcul rapide des cartes MWF chez les nourrissons et semble bien révéler la progression de la myélinisation à l’échelle cérébrale. La robustesse de cette approche a également été étudiée en simulations. Une autre question cruciale pour l'étude du développement de la substance blanche est l'identification des faisceaux dans le cerveau des enfants. Dans ce travail de thèse, je décris également la création d'un atlas préliminaire de connectivité structurelle chez des enfants âgés de 17 à 81 mois, permettant l'extraction automatique des faisceaux à partir des données de tractographie. Cette approche a démontré sa pertinence pour l'évaluation régionale de la maturation de la substance blanche normale chez l’enfant. Pour finir, j’envisage dans la dernière partie du manuscrit les applications potentielles des différentes méthodes précédemment décrites pour l’étude fine des réseaux de substance blanche dans le cadre de deux exemples spécifiques de pathologies : les épilepsies focales et la leucodystrophie métachromatique. / Magnetic Resonance Imaging (MRI) is a fundamental tool for in vivo investigation of brain development in newborns, infants and children. It provides several quantitative parameters that reflect changes in tissue properties during development depending on different undergoing maturational processes. However, reliable evaluation of the white matter maturation is still an open question: on one side, none of these parameters can describe the whole complexity of the undergoing changes; on the other side, neither of them is specific to any particular developmental process or tissue property. Developing multiparametric approaches combining complementary information from different MRI parameters is expected to improve our understanding of brain development. In this PhD work, I present two examples of such approaches and demonstrate their relevancy for investigation of maturation across different white matter bundles. The first approach provides a global measure of maturation based on the Mahalanobis distance calculated from different MRI parameters (relaxation times T1 and T2, longitudinal and transverse diffusivities from Diffusion Tensor Imaging, DTI) in infants (3-21 weeks) and adults. This approach provides a better description of the asynchronous maturation across the bundles than univariate approaches. Furthermore, it allows estimating the relative maturational delays between the bundles. The second approach aims at quantifying myelination of brain tissues by calculating Myelin Water Fraction (MWF) in each image voxel. This approach is based on a 3-component tissue model, with each model component having specific relaxation characteristics that were pre-calibrated in three healthy adult subjects. This approach allows fast computing of the MWF maps from infant data and could reveal progression of the brain myelination. The robustness of this approach was further investigated using computer simulations. Another important issue for studying white matter development in children is bundles identification. In the last part of this work I also describe creation of a preliminary atlas of white matter structural connectivity in children aged 17-81 months. This atlas allows automatic extraction of the bundles from tractography datasets. This approach demonstrated its relevance for evaluation of regional maturation of normal white matter in children. Finally, in the last part of the manuscript I describe potential future applications of the previously developed methods to investigation of the white matter in cases of two specific pathologies: focal epilepsy and metachromatic leukodystrophy.
|
33 |
DETECÇÃO DO ESTADO DE SONOLÊNCIA VIA UM ÚNICO CANAL DE ELETROENCEFALOGRAFIA ATRAVÉS DA TRANSFORMADA WAVELET DISCRETA / DROWSINESS DETECTION FROM A SINGLE ELECTROENCEPHALOGRAPHY CHANNEL THROUGH DISCRETE WAVELET TRANSFORMSilveira, Tiago da 20 June 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Many fatal traffic accidents are caused by fatigued and drowsy drivers. In this context, automatic
drowsiness detection devices are an alternative to minimize this issue. In this work, two
new methodologies to drowsiness detection are presented, considering a signal obtained from
a single electroencephalography channel: (i) drowsiness detection through best m-term approximation,
applied to the wavelet expansion of the analysed signal; (ii) drowsiness detection
through Mahalanobis distance with wavelet coefficients. The results of both methodologies are
compared with a method which uses Mahalanobis distance and Fourier coefficients to drowsiness
detection. All methodologies consider the medical evaluation of the brain signal, given by
the hypnogram, as a reference. / A sonolência diurna em motoristas, principal consequência da privação de sono, tem sido
a causa de diversos acidentes graves de trânsito. Neste contexto, a utilização de dispositivos
que alertem o condutor ao detectar automaticamente o estado de sonolência é uma alternativa
para a minimização deste problema. Neste trabalho, duas novas metodologias para a detecção
automática da sonolência são apresentadas, utilizando um único canal de eletroencefalografia
para a obtenção do sinal: (i) detecção da sonolência via melhor aproximação por m-termos,
aplicada aos coeficientes wavelets da expansão em série do sinal; e (ii) detecção da sonolência
via distância de Mahalanobis e coeficientes wavelets. Os resultados de ambas as metodologias
são comparados a uma implementação utilizando distância de Mahalanobis e coeficientes de
Fourier. Para todas as metodologias, utiliza-se como referência a avaliação médica do sinal
cerebral, dada pelo hipnograma.
|
34 |
Evaluating Long-Term Land Cover Changes for Malheur Lake, Oregon Using ENVI and ArcGISWoods, Ryan Joseph 01 December 2015 (has links)
Land cover change over time can be a useful indicator of variations in a watershed, such as the patterns of drought in an area. I present a case study using remotely sensed images from Landsat satellites for over a 30-year period to generate classifications representing land cover categories, which I use to quantify land cover change in the watershed areas that contribute to Malheur, Mud, and Harney Lakes. I selected images, about every 4 to 6 years from late June to late July, in an attempt to capture the peak vegetation growth and to avoid cloud cover. Complete coverage of the watershed required that I selected an image that included the lakes, an image to the North, and an image to the West of the lakes to capture the watershed areas for each chosen year. I used the watershed areas defined by the HUC-8 shapefiles. The relevant watersheds are called: Harney-Malheur Lakes, Donner und Blitzen, Silver, and Silvies watershed. To summarize the land cover classes that could be discriminated from the Landsat images in the area, I used an unsupervised classification algorithm called Iterative Self-Organizing Data Analysis Technique (ISODATA) to identify different classes from the pixels. I then used the ISODATA results and visual inspection of calibrated Landsat images and Google Earth imagery, to create Regions of Interest (ROI) with the following land cover classes: Water, Shallow Water, Vegetation, Dark Vegetation, Salty Area, and Bare Earth. The ROIs were used in the following supervised classification algorithms: maximum likelihood, minimum distance, and Mahalanobis distance, to classify land cover for the area. Using ArcGIS, I removed most of the misclassified area from the classified images by the use of the Landsat CDR, combined the main, north, and west images and then extracted the watersheds from the combined image. The area in acres for each land cover class and watershed was computed and stored in graphs and tables.After comparing the three supervised classifications using the amount of area classified into each category, normalized area in each category, and the raster datasets, I determined that the minimum distance classification algorithm produced the most accurate land cover classification. I investigated the correlation of the land cover classes with the average precipitation, average discharge, average summer high temperature, and drought indicators. For the most part, the land cover changes correlate with the weather. However, land use changes, groundwater, and error in the land cover classes may have accounted for the instances of discrepancy. The correlation of land cover classes, except Dark Vegetation and Bare Earth, are statistically significant with weather data. This study shows that Landsat imagery has the necessary components to create and track land cover changes over time. These results can be useful in hydrological studies and can be applied to models.
|
35 |
Déploiement du tolérancement inertiel dans la relation client fournisseur.Denimal, Dimitri 19 November 2009 (has links) (PDF)
Lors de la phase d'industrialisation, l'allocation des tolérances fait partie des étapes clés qui permettront de produire des assemblages dont les performances sont conformes et homogènes à l'ensemble des exigences fonctionnelles spécifiées par le cahier des charges. Depuis toujours, l'approche traditionnelle des tolérances et de leur allocation sous la forme d'une bilimite présente certaines incohérences. En 2002, Pr M.Pillet a suggéré une solution à ces incohérences, l'inertie. Ce travail de thèse est une continuation à ceux de Pr M Pillet et de PA Adragna. Ce travail s'articule en cinq chapitres. Le premier chapitre revient sur l'apport de l'inertie et introduit les travaux développés dans la thèse. Le second propose une analyse de la performance de la carte de contrôle inertielle avec dérive et formalise les conditions d'utilisation des différentes variantes dans un contexte industriel. Le troisième chapitre aborde l'inertie dans un contexte 3D en comparant les trois définitions de l'inertie 3D proposées dans les travaux antérieurs. Le quatrième développe une nouvelle approche de tolérancement de surface, appelée inertie totale et propose en cohérence avec cette définition un outil permettant de donner les réglages optimums pour minimiser l'inertie totale d'une pièce. Le dernier chapitre conclut par une proposition de tolérancement d'un assemblage de surface par une approche inertielle statistique. Ce dernier suppose une variation rigide des défauts des surfaces, et n'intègre pas la notion de jeu de l'assemblage. Il porte explicitement sur la notion de variance et de covariance liée à la structure du mécanisme et introduit un indicateur de capabilité de dimensions n
|
36 |
Robust Design With Binary Response Using Mahalanobis Taguci SystemYenidunya, Baris 01 August 2009 (has links) (PDF)
In industrial quality improvement and design studies, an important aim is to improve the product or process quality by determining factor levels that would result in satisfactory quality results. In these studies, quality characteristics that are qualitative are often encountered. Although there are many effective methods proposed for parameter optimization (robust design) with continuous responses, the methods available for qualitative responses are limited. In this study, a parameter optimization method for solving binary response robust design problems is proposed. The proposed method uses Mahalanobis Taguchi System to form a classification model that provides a distance function to separate the two response classes. Then, it finds the product/process variable settings that minimize the distance from the desired response class using quadratic programming.
The proposed method is applied on two cases previously studied using Logistic Regression. The classification models are formed and the parameter optimization is conducted using the formed MTS models. The results are compared with those of the Logistic Regression. Conclusions and suggestions for future work are given.
|
37 |
Nearest Neighbor Foreign Exchange Rate Forecasting with Mahalanobis DistancePathirana, Vindya Kumari 01 January 2015 (has links)
Foreign exchange (FX) rate forecasting has been a challenging area of study in the past. Various linear and nonlinear methods have been used to forecast FX rates. As the currency data are nonlinear and highly correlated, forecasting through nonlinear dynamical systems is becoming more relevant. The nearest neighbor (NN) algorithm is one of the most commonly used nonlinear pattern recognition and forecasting methods that outperforms the available linear forecasting methods for the high frequency foreign exchange data. The basic idea behind the NN is to capture the local behavior of the data by selecting the instances having similar dynamic behavior. The most relevant k number of histories to the present dynamical structure are the only past values used to predict the future. Due to this reason, NN algorithm is also known as the k-nearest neighbor algorithm (k-NN). Here k represents the number of chosen neighbors.
In the k-nearest neighbor forecasting procedure, similar instances are captured through a distance function. Since the forecasts completely depend on the chosen nearest neighbors, the distance plays a key role in the k-NN algorithm. By choosing an appropriate distance, we can improve the performance of the algorithm significantly. The most commonly used distance for k-NN forecasting in the past was the Euclidean distance. Due to possible correlation among vectors at different time frames, distances based on deterministic vectors, such as Euclidean, are not very appropriate when applying for foreign exchange data. Since Mahalanobis distance captures the correlations, we suggest using this distance in the selection of neighbors.
In the present study, we used five different foreign currencies, which are among the most traded currencies, to compare the performances of the k-NN algorithm with traditional Euclidean and Absolute distances to performances with the proposed Mahalanobis distance. The performances were compared in two ways: (i) forecast accuracy and (ii) transforming their forecasts in to a more effective technical trading rule. The results were obtained with real FX trading data, and the results showed that the method introduced in this work outperforms the other popular methods.
Furthermore, we conducted a thorough investigation of optimal parameter choice with different distance measures. We adopted the concept of distance based weighting to the NN and compared the performances with traditional unweighted NN algorithm based forecasting.
Time series forecasting methods, such as Auto regressive integrated moving average process (ARIMA), are widely used in many ares of time series as a forecasting technique. We compared the performances of proposed Mahalanobis distance based k-NN forecasting procedure with the traditional general ARIM- based forecasting algorithm. In this case the forecasts were also transformed into a technical trading strategy to create buy and sell signals. The two methods were evaluated for their forecasting accuracy and trading performances.
Multi-step ahead forecasting is an important aspect of time series forecasting. Even though many researchers claim that the k-Nearest Neighbor forecasting procedure outperforms the linear forecasting methods for financial time series data, and the available work in the literature supports this claim with one step ahead forecasting. One of our goals in this work was to improve FX trading with multi-step ahead forecasting. A popular multi-step ahead forecasting strategy was adopted in our work to obtain more than one day ahead forecasts. We performed a comparative study on the performance of single step ahead trading strategy and multi-step ahead trading strategy by using five foreign currency data with Mahalanobis distance based k-nearest neighbor algorithm.
|
38 |
Aplicativo computacional para obtenção de probabilidades a priori de classificação errônea em experimentos agronômicosPadovani, Carlos Roberto [UNESP] 27 July 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:37Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-07-27Bitstream added on 2014-06-13T21:02:58Z : No. of bitstreams: 1
padovani_crp_dr_botfca.pdf: 793418 bytes, checksum: 8b62c9d520c0086c46554fb418856bb7 (MD5) / Nas Ciências Agronômicas, encontram-se várias situações em que são observadas diversas variáveis respostas nas parcelas ou unidades experimentais. Nestas situações, um caso de interesse prático à experimentação agronômica é o que considera a construção de regiões de similaridade entre as parcelas para a discriminação entre os grupos experimentais e ou para a classificação de novas unidades experimentais em uma dessas regiões. Os métodos de classificação ou discriminação exigem, para sua utilização prática, uma quantidade considerável de retenção de informação da estrutura de variabilidade dos dados e, principalmente, alta fidedignidade e competência nas alocações de novos indivíduos nos grupos, mostradas nas distribuições corretas destes indivíduos. Existem vários procedimentos para medir o grau de decisão correta (acurácia) das informações fornecidas pelos métodos classificatórios. Praticamente, a totalidade deles utilizam a probabilidade de classificação errônea como o indicador de qualidade, sendo alguns destes freqüentistas (probabilidade estimada pela freqüência relativa de ocorrências - métodos não paramétricos) e outros baseados nas funções densidade de probabilidade das populações (métodos paramétricos). A principal diferença entre esses procedimentos é a conceituação dada ao cálculo da probabilidade de classificação errônea. Pretende-se, no presente estudo, apresentar alguns procedimentos para estimar estas probabilidades, desenvolver um software para a obtenção das estimativas considerando a distância generalizada de Mahalanobis como o procedimento relativo à da função densidade de probabilidade para populações com distribuição multinormal . Este software será de acesso livre e de fácil manuseio para pesquisadores de áreas aplicadas, completado com o manual do usuário e com um exemplo de aplicação envolvendo divergência genética de girassol. / In the Agronomical Sciences, mainly in studies involving biomass production and rational use of energy, there are several situations in which several variable answers in the parts or experimental units are observed. In these situations, a case of practical interest to the agronomical experimentation is that one which considers the construction of similarity regions among parts and or the classification of new experimental units. The classification methods demand, for their utilization, a considerable quantity for utilization of their information retention of data and, mostly, high fidelity and competence in the new individual allocations. There are several procedures to measure accuracy degree of the information supplied by the discrimination method. Practically all of them use the miss-classification probability (erroneous classification) like the quality indicator. The main difference among these evaluation methods is the characterization of the miss-classification probability. Therefore, the aim is to present some estimate procedures of the missclassification probabilities involving repetition frequency and distribution methods and to develop a software to obtain their estimate, which is accessible and easy handling for researchers of applied areas, complementing the study with user's manual and examples in the rational energy application and biomass energy.
|
39 |
Image Enhancement & Automatic Detection of Exudates in Diabetic RetinopathyMallampati, Vivek January 2019 (has links)
Diabetic retinopathy (DR) is becoming a global health concern, which causes the loss of vision of most patients with the disease. Due to the vast prevalence of the disease, the automated detection of the DR is needed for quick diagnoses where the progress of the disease is monitored by detection of exudates changes and their classifications in the fundus retina images. Today in the automated system of the disease diagnoses, several image enhancement methods are used on original Fundus images. The primary goal of this thesis is to make a comparison of three of popular enhancement methods of the Mahalanobis Distance (MD), the Histogram Equalization (HE) and the Contrast Limited Adaptive Histogram Equalization (CLAHE). By quantifying the comparison in the aspect of the ability to detect and classify exudates, the best of the three enhancement methods is implemented to detect and classify soft and hard exudates. A graphical user interface is also adopted, with the help of MATLAB. The results showed that the MD enhancement method yielded better results in enhancement of the digital images compared to the HE and the CLAHE. The technique also enabled this study to successfully classify exudates into hard and soft exudates classification. Generally, the research concluded that the method that was suggested yielded the best results regarding the detection of the exudates; its classification and management can be suggested to the doctors and the ophthalmologists.
|
40 |
Fast Algorithm for Modeling of Rain Events in Weather Radar ImageryPaduru, Anirudh 20 December 2009 (has links)
Weather radar imagery is important for several remote sensing applications including tracking of storm fronts and radar echo classification. In particular, tracking of precipitation events is useful for both forecasting and classification of rain/non-rain events since non-rain events usually appear to be static compared to rain events. Recent weather radar imaging-based forecasting approaches [3] consider that precipitation events can be modeled as a combination of localized functions using Radial Basis Function Neural Networks (RBFNNs). Tracking of rain events can be performed by tracking the parameters of these localized functions. The RBFNN-based techniques used in forecasting are not only computationally expensive, but also moderately effective in modeling small size precipitation events. In this thesis, an existing RBFNN technique [3] was implemented to verify its computational efficiency and forecasting effectiveness. The feasibility of modeling precipitation events using RBFNN effectively was evaluated, and several modifications to the existing technique have been proposed.
|
Page generated in 0.0505 seconds