• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 15
  • 14
  • 9
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 187
  • 187
  • 177
  • 35
  • 34
  • 33
  • 32
  • 31
  • 26
  • 26
  • 25
  • 25
  • 25
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Impacto do loco HLA-DPB1* em pacientes consanguíneos submetidos a transplantes de células tronco hematopoiéticas / Impact of HLA-DPB1* loco in consanguineous patients submitted hematopoietic stem cell transplantation

Braga, Jordana 21 May 2014 (has links)
O requisito fundamental na seleção do par doador-receptor em Transplantes de Medula Óssea (TMO) é regido pelo sistema do Complexo Principal de Histocompatibilidade, ou seja, pelos mecanismos imunológicos mediados pelas moléculas dos Antígenos Leucocitários Humanos (HLA). No entanto as incompatibilidades HLA, podem influenciar de forma negativa ou positiva os resultados dos transplantes, através da Doença do Enxerto versus Hospedeiro e o efeito do enxerto versus Leucemia (EvL) respectivamente. Ainda é desconhecido o impacto do locus HLA-DPB1* neste contexto. Assim o presente projeto tem como objetivo a avaliação do impacto do HLA-DPB1* em transplantes de pacientes consanguíneos e a ocorrência de DECH. Para a tal finalidade, tipificamos o locus em questão utilizando a metodologia PCR-SSO, onde após a reação de amplificação da cadeia pela polimerase, realizamos a hibridização com uma sequência específica de oligonucleotídeos para tipificação do Loco HLA-DPB1*. Foram analisadas 826 amostras, sendo 413 pares de receptores e seus respectivos doadores familiares, submetidos a Transplantes de Células Tronco Hematopoiéticas, realizados na Unidade de Transplante de Medula Óssea de Curitiba da Universidade Federal do Paraná e da Faculdade de Medicina de Ribeirão Preto- USP. Observou-se que a presença de incompatibilidades HLA-DPB1* aumentam a chance dos receptores desenvolverem a doença do enxerto versus hospedeiro aguda, em graus mais graves. Assim, concluímos que a avaliação deste loco pode prevenir esta doença, e caso não haja outro doador, alerta o clínico quanto à utilização de medidas profiláticas. / The key requirement in the selection of the receptor-donor pair for bone marrow transplant is is defined by the Major Histocompatibility Complex, or by immunologic mechanisms mediated by molecules of the Human Leukocyte Antigens (HLA). However the post transplant complications due to HLA mismatches, as Graft versus Host Disease (GVHD) and graft failure are fundamental to the success of these transplants. Still unknown is the impact of loci HLA DPB1*, so this project aims to assess the impact of HLA - DPB1* in transplant patients consanguineous and assessing the impact of incompatibilities in HLA - DPB1 * GVHD. For this purpose, analyzed the loco in question using the PCR-SSO method, where after the amplification reaction polymerase chain, we performed hybridization with a sequence -specific primers for typing of HLA - DPB1* Loco. We analyzed 826 samples, 413 pairs of recipients and their respective donors, patients undergoing Hematopoietic Stem Cell Transplants performed in the Unit for Bone Marrow Transplantation in Curitiba, Federal University of Paraná and the Faculty of Medicine of Ribeirão Preto - USP. It was observed that the presence of mismatches HLA- DPB1* increase the chance of recipients develop chronic graft versus host disease, in more severe degrees. Thus, we conclude that the evaluation of this loci can prevent this disease and if no other donors alert the clinician to the use of prophylactic measures.
122

Avaliação da história evolutiva do gene HLA-G por meio de polimorfismos de base única e da inserção AluyHG / Evaluation of the HLA-G gene history by single-based polymorphisms and AluyHG insertion

Santos, Kaisson Ernane dos 25 November 2013 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-04T13:00:39Z No. of bitstreams: 2 Dissertação - Kaisson Ernane dos Santos - 2013.pdf: 2738475 bytes, checksum: 6c79ab9177dd126fa5cb677127debc2c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-04T13:01:13Z (GMT) No. of bitstreams: 2 Dissertação - Kaisson Ernane dos Santos - 2013.pdf: 2738475 bytes, checksum: 6c79ab9177dd126fa5cb677127debc2c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-01-04T13:01:13Z (GMT). No. of bitstreams: 2 Dissertação - Kaisson Ernane dos Santos - 2013.pdf: 2738475 bytes, checksum: 6c79ab9177dd126fa5cb677127debc2c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2013-11-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The Major Histocompatibility Complex is mainly composed by genes of the adaptive immune response. In humans, part of this complex is known as the Human Leukocyte Antigens (HLA), whose genes are responsible for specific antigen presentation to effector immune cells. The classical class I HLA genes (HLA-A, -B and -C) are responsible for antigen presentation to T CD8+ cells and they constitute the most polymorphic genes in the human genome. This variability is maintained by selection mediated by microorganisms. In contrast to their classical counterparts, the non classical class I genes (HLA-G, -E and -F) present low variability and are associated with immune tolerance due to the interaction with NK and T cells inhibitor receptors. HLA-G is the most studied non classical gene, which is associated with immune response modulation, mainly during pregnancy. Considering that natural selection is acting on the HLA-G regulatory regions maintaining high heterozigosity in this region, we evaluated a nearby Alu insertion (AluyHG) correlating this Alu element with coding and 3’UTR HLA-G polymorphisms. The AluyHG insertion was particularly associated with the HLA-G haplotype known as G*01:01:01:01/UTR-1, considered a high-expressing HLA-G haplotype. The G*01:01:01:01/UTR-1/AluyHG haplotype would be the most recent HLA-G haplotypes, in spite of its high frequency in worldwide populations. / O Complexo Principal de Histocompatibilidade (MHC) é formado principalmente por genes que participam da resposta imunológica adaptativa. Entre esses genes encontramos o grupo denominado de Antígenos Leucocitários Humanos (HLA), que são responsáveis pela apresentação de antígenos específicos às células efetoras do sistema imunológico. Os genes HLA de classe I clássicos (HLA-A, -B e -C), responsáveis pela apresentação antigênica aos linfócitos T citotóxicos, são considerado como os mais polimórficos do genoma humano e de outros vertebrados. A variabilidade desses genes e elevada heterozigose é mantida por seleção mediada por microrganismos. Diferentemente dos genes clássicos, os genes HLA de classe I não clássicos (HLA-G, -E e -F) apresentam variabilidade reduzida e como função principal a tolerância imunológica, por meio de sua interação com receptores inibitórios presentes nas células NK e T. O HLA-G é o mais estudado entre esses genes e, devido sua importância como molécula imunomoduladora e sua importância em situações como gestação, e considerando evidências anteriores de seleção natural mantendo uma elevada heterozigose nas regiões regulatórias do HLA-G, avaliamos a presença de uma inserção Alu (AluyHG) próxima a este gene correlacionando os achados com a variabilidade contida nas suas regiões codificadora e 3’ não traduzida. A inserção AluyHG mostrou-se em desequilíbrio de ligação (LD) com os polimorfismos do gene HLA-G. Especificamente, o elemento inserido apresentou-se em LD com um haplótipo denominado G*01:01:01:01/UTR-1, considerado como um haplótipo de alta produção da molécula de HLA-G. Esse haplótipo aparentemente é o mais jovem entre humanos, apesar de sua elevada frequência nas populações estudadas até o momento.
123

Rôle de l'ubiquitination dans le trafic cellulaire des molécules de présentation antigénique. / Role of the ubiquitination in the intracellular trafficking of antigen presenting molecules

De Angelis Rigotti, Francesca 12 April 2011 (has links)
L’ubiquitinylation a été largement étudiée comme étant un mécanisme impliqué dans la régulation du trafic intracellulaire de nombreuses protéines membranaires. Mon travail a permis d’identifier MARCH-IX, une ubiquitine ligase exprimées dans les cellules de mammifères, comme un acteur important du trafic intracellulaire des molécules de présentation antigénique CD1a et CMH-I. En condition d'over-expression, MARCH-IX ubiquitinyle spécifiquement CD1a et CMH-I. Par ailleurs, en utilisant la technique d’ARN interférence, nous avons mis en évidence que l’ubiquitination des CMH I dépendante de MARCH IX facilite l’export des CMH I néosynthétisés du TGN vers la membrane plasmique et permet leur accès à des compartiments endosomaux. Notamment l’expression de MARCH-IX est régulée au niveau transcriptionnel pendant la maturation de DCs humaine; son expression est largement diminuée suite à l’activation des DCs plasmacytoïdes (pDCs), alors qu’elle augmente dans des DCs dérivées de monocytes (MoDCs) stimulées par du LPS. Ces résultats laissent envisager que MARCH IX puisse avoir un rôle important dans le contrôle de la présentation antigénique médiée par les CMH I dans les DCs humaines. Enfin, l’adressage intracellulaire des molécules de CD1a dans les MoDCs apparait également comme un processus régulé au cours de la maturation. Si CD1a est localisé à la membrane plasmique et dans des compartiments endosomaux précoce dans des cellules immatures, cette molécule n’apparaît plus qu’à la surface des cellules matures. Nous postulons donc que la régulation de MARCH-IX durant la maturation des MoDCs puisse être directement liée à la modification du trafic intracellulaire de CD1a. / Ubiquitination has been largely studied as regulator of the intracellular trafficking of several membrane proteins, inducing their internalization or their sorting from TGN to endosomes. Interestingly, pathogens adopted this mechanism to evade the immune response. For example, Kaposi’s sarcoma herpesvirus synthesizes two ubiquitin ligases, MIR1 and MIR2, which target the antigen presenting molecule, MHC class I, inducing its internalization. We identified the mammalian ubiquitin ligase MARCH-IX as important factor in the intracellular trafficking of antigen presenting molecules, CD1a and MHC-I. In conditions of MARCH-IX over-expression, CD1a and MHC-I are ubiquitinated and they accumulated in early endosomes. In MARCH-IX silenced cells, the arrival of MHC-I at the plasma membrane appear to be delayed and MHC-I accumulates in the TGN. During dendritic cell maturation, MARCH-IX expression and CD1a intracellular localization showed a correlation, which is compatible with a role of the ubiquitin ligase in the export pathway of CD1a. We concluded that MARCH-IX acts on neo-synthesized molecules, facilitating their sorting from the TGN. In addition to the function analysis of MARCH-IX, we also investigated its ability to conjugate ubiquitin on non-conventional residues. Our results demonstrated that, differently from viral ubiquitin ligases, MARCH-IX could target MHC class I and CD1a only in presence of lysine residues on their cytoplasmic tail, suggesting a stronger restriction in the control of the ubiquitination mechanism on mammals.
124

Genetic Aspects of Sexual Selection and Mate Choice in Salmonids

Forsberg, Lars January 2008 (has links)
The long-term genetic consequences of supportive breeding programs are not well understood. Nevertheless, stocking populations with hatchery-produced fish to compensate for losses of natural production are common practice, for example after constructions of hydroelectric power dams. Hatcheries typically fertilize eggs using ‘mixed-milt fertilizations’, without consideration to natural reproductive behaviours, and hence, natural selective regimes would be altered. Here, a series of experiments with focus on Mhc and mate choice in a population of brown trout (Salmo trutta L.) with a history of long-term stocking are presented. The major histocompatibility complex (Mhc) constitutes of genes coding for antigen presentation in the vertebrate immune system. In addition to the immunological function, Mhc genes might also influence reproductive behaviours such as mate choice. For example, in some species individuals are able to recognize Mhc genotypes of potential mates and to some extent base their mate choice on this information. Here, I address these questions on brown trout. Can the phenomena be observed in brown trout? Could such mechanisms help individuals to avoid inbreeding, or are other mechanisms important? How does the artificial rearing of fish for enhancement of natural populations relate to these issues? The results presented here, in combination with previous work, shows that several factors are important in the process of pair formation in salmonid species. For example, females of the studied population used more than a single criterion when choosing among the available mates Mhc genes and males with certain Mhc genotypes achieved more matings, possibly an effect from increased fighting ability. Further, the population appears to contain an unnatural high level of Mhc variation, and some results indicate that the population might suffer from outbreeding depression at the Mhc. These negative effects are most likely derived from compression of sub-populations after dam-construction, in combination with supportive breeding with no consideration to natural spawning behaviour.
125

Studies On The Roles Of Intracellular Ca2+ And Reactive Oxygen Species During CD4+ T Cell Activation : Influence Of Signal Strength

Ahmed, Asma 07 1900 (has links)
Optimal CD4+ T cell activation is key to the generation of a productive immune response. Naïve circulating CD4+ T cells are quiescent under normal conditions and undergo activation only upon encounter of the T cell receptor (TCR) with Major Histocompatibility Complex (MHC)-encoded class II molecules on antigen presenting cells (APCs). Processed antigens (derived from pathogens, tumors or self tissue during autoimmunity) in complex with MHC class II are recognized by specific TCRs on CD4+ T cells. After this encounter, the highly complex and regulated process of CD4+ T cell activation results in the differentiation of naïve T cells into effectors and their clonal expansion. Apart from binding to its cognate peptide-MHC-II complex, several other factors define the extent and magnitude of T cell activation. This context is an important determinant of the nature of the subsequent T cell response. One of the factors involved is the strength of the signal (SOS) which is delivered to the cell upon ligation of the TCR to the MHC-peptide complex. The SOS, which can vary from weak to strong, is determined by the affinity/avidity of the TCR for the MHC-peptide complex, antigen concentrations, the duration of engagement, etc. Extreme weak or strong signals can lead to non-productive T cell responses with the former resulting mostly in anergy and the latter in cell death. Signals of optimal strength are the ones that translate into functional T cell responses. However, mechanisms by which signal strength information is translated into distinct T cell responses are still not very well understood. Binding of the TCR to the MHC-peptide complex triggers several signaling cascades and leads to generation of intracellular signaling intermediates, including Ca2+. Rise in intracellular Ca2+ levels is one of the first events to occur upon initiation of T cell activation. The initial increase is brought about due to release of Ca2+ from intracellular smooth endoplasmic reticulum stores. Once intracellular stores have been emptied, the increase is sustained by a process termed as capacitative Ca2+ entry, involving opening of Ca2+ channels in the plasma membrane known as Ca2+ release activated channels (CRACs). Consequently, Ca2+ flows from the extracellular milieu into the cell. A sustained Ca2+ increase is essential for activation of the transcription factor, NF-AT whose primary job is to initiate transcription of IL-2, a cytokine crucial for CD4+ T cell proliferation. The other intracellular signaling intermediates which are the focus of work presented in this study are reactive oxygen species (ROS). TCR signaling leads to generation of ROS, which may be either mitogenic or detrimental to T cell activation. Low levels of ROS, especially H2O2, inactivate phosphatases leading to activation of kinases and signaling pathways resulting in increased proliferation. However, high levels of ROS cause oxidative stress leading to reduced T cell activation, hyporesponsiveness and death. The experimental system used for this study consists of purified mouse lymph node CD4+ T cells. These cells were activated with varying strengths of the primary signal to better understand the roles of Ca2+ and ROS in modulating T cell activation and function. The signal strength was either varied by addition of different concentrations of ionomycin or thapsigargin, pharmacological agents that increase intracellular Ca2+ concentrations. Alternatively, signal through the surface TCR-CD3 complex was initiated using anti-CD3 in two modes: soluble (weak signal) or plate immobilized (strong signal). Increasing concentrations of ionomycin or thapsigargin or changing the mode of anti-CD3 from soluble to plate bound enhances IL-2 amounts, thereby converting a weak signal to a strong one. The work presented has been divided into three parts, each dealing with a distinct aspect of T cell activation. I. SOS and CTLA4-CD80/CD86 interactions: The binding of the TCR to its cognate MHC-peptide complex delivers the primary signal. However, this alone is not sufficient to drive T cell activation and an additional costimulatory signal emanating from the binding of CD28, a constitutively expressed receptor on T cells, to its ligands CD80 and CD86 is required. Another receptor that binds to CD80 and CD86 is CTLA-4 although it does so with a ~100 fold higher affinity. CTLA-4, unlike CD28, is expressed upon T cell activation and is considered to downregulate T cell activation. Its role as a negative regulator is highlighted by the phenotype of Ctla4 -/-mice which die of massive lymphoproliferation. However, there have also been reports of some plasticity in the effects mediated by CTLA-4. Previous work from our laboratory showed that CTLA-4-CD80/CD86 interactions could either inhibit or stimulate T cell activation depending on the SOS. To identify the molecular mediators of the differential effects of CTLA-4, the role of Ca2+ and ROS was evaluated. During activation with phorbol myristate acetate (PMA) and low amounts of ionomycin, intracellular amounts of Ca2+ were greatly reduced upon blockade of CTLA-4-CD80/CD86 interactions. Further experiments demonstrated that CTLA4-CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of ionomycin or thapsigargin (strong SOS) but the opposite occurred with PMA and low amounts of ionomycin or thapsigargin (weak SOS). These results were confirmed by activating cells with anti-CD3 either in the soluble or plate bound form. Considerably higher amounts of intracellular Ca2+ were present in cells activated with plate bound anti-CD3 compared to those activated with soluble anti-CD3. These amounts, further augmented by CTLA-4-CD80/CD86 interactions, probably became toxic to cells as increased proliferation was observed, using reagents that blocked these interactions. The opposite, however, was seen in cells activated with soluble anti-CD3. Also, CTLA4-CD80/CD86 interactions enhanced the generation of ROS. Studies with catalase revealed that H2O2 is required for IL-2 production and cell cycle progression during activation with a weak SOS. However, the high amounts of ROS produced during activation with a strong SOS reduced cell cycle progression. Together, this study identifies intracellular Ca2+ and ROS to play important roles in the modulation of T cell responses by CTLA4-CD80/CD86 interactions. II. SOS and CD4 downregulation: This study was initiated to identify early T cell functional responses that would help predict the strength of the primary signal. Using the in vitro culture system of varying signal strengths, it was found that CD4 surface expression was controlled by signal strength. CD4 is a surface glycoprotein expressed on the TH subset along with the TCR. It performs two main functions: First, binding to MHC class II and strengthening the TCR-MHC interaction, i.e. functioning as a coreceptor. Second, due to its association with p56lck a src family tyrosine kinase, the presence of CD4 along with the TCR enhances signal transduction. Also, CD4 acts as a receptor for entry for the AIDS virus. It is known that CD4 is downregulated from the surface and degraded upon T cell activation by a protein kinase-C dependent process in human and mouse T cells. Experiments presented in this study showed increased CD4 downregulation with a strong signal. The roles of intracellular mediators were assessed and high intracellular Ca2+ amounts, but not PMA activation, was required for sustained CD4 downregulation. Also, increased H2O2 amounts in cells activated with a strong SOS inhibited CD4 downregulation. Most interestingly, the pattern of CD4 downregulation was different between peripheral T cells and thymocytes, suggesting a correlation with CD4+ T cell development. III. Modulation of CD4+ T cell activation by small molecule plant growth regulators: An important area of investigation in T cell biology is the identification of molecules that modulate T cell activation. Towards this end, the mechanisms by which small molecule plant growth regulators, naphthalene acetic acid (NAA), 2,4 dichlorophenoxyacetic acid (2,4D) and indole acetic acid (IAA), influence CD4+ T cell activation was studied. It is useful to recall that IAA is the natural auxin present in plants, NAA is a synthetic auxin and 2,4D is a herbicide. These compounds, but not structurally similar control molecules, increased the activation and IL-2 production in CD4+ T cells activated with either soluble anti-CD3 or a combination of PMA and ionomycin. An investigation into the mechanisms of action by these compounds revealed increased early generation of intracellular ROS and Ca2+. Interestingly, the nature of their effects was found to rely on the strength of the primary signal: IL-2 and proliferation were increased in cells activated with a weak signal, but lowered proliferation was observed in cells activated with a strong signal. Cells activated with strong signal posses high amounts of ROS and Ca2+ and further increase in their amounts by IAA, NAA and 2,4D resulted in growth suppression. However, augmentation of Ca2+ and ROS amounts in cells activated with a weak signal was mitogenic. The role of these compounds during in vivo T cell responses needs to be addressed. Taken together, results presented in this study emphasize the importance of the role of SOS in determining T cell responses. In addition, the roles of Ca2+ and ROS downstream of the primary signal in modulating CD4+ T cell activation were demonstrated.
126

The Epigenetic Regulation of Cytokine Inducible Mammalian Transcription by the 26S Proteasome

Koues, Olivia I 08 July 2009 (has links)
It is evident that components of the 26S proteasome function beyond protein degradation in the regulation of transcription. Studies in yeast implicate the 26S proteasome, specifically the 19S cap, in the epigenetic regulation of transcription. Saccharomyces cerevisiae 19S ATPases remodel chromatin by facilitating histone acetylation and methylation. However, it is unclear if the 19S ATPases play similar roles in mammalian cells. We previously found that the 19S ATPase Sug1 positively regulates transcription of the critical inflammatory gene MHC-II and that the MHC-II promoter fails to efficiently bind transcription factors upon Sug1 knockdown. MHC-II transcription is regulated by the critical coactivator CIITA. We now find that Sug1 is crucial for regulating histone H3 acetylation at the cytokine inducible MHC-II and CIITA promoters. Histone H3 acetylation is dramatically decreased upon Sug1 knockdown with a preferential loss occurring at lysine 18. Research in yeast indicates that the ortholog of Sug1, Rpt6, acts as a mediator between the activating modifications of histone H2B ubiquitination and H3 methylation. Therefore, we characterized the role the 19S proteasome plays in regulating additional activating modifications. As with acetylation, Sug1 is necessary for proper histone H3K4 and H3R17 methylation at cytokine inducible promoters. In the absence of Sug1, histone H3K4me3 and H3R17me2 are substantially inhibited. Our observation that the loss of Sug1 has no significant effect on H3K36me3 implies that Sug1’s regulation of histone modifications is localized to promoter regions as H3K4me3 but not H3K36me3 is clustered around gene promoters. Here we show that multiple H3K4 histone methyltransferase subunits bind constitutively to the inducible MHC-II and CIITA promoters and that over-expressing one subunit significantly enhances promoter activity. Furthermore, we identified a critical subunit of the H3K4 methyltransferase complex that binds multiple histone modifying enzymes, but fails to bind the CIITA promoter in the absence of Sug1, implicating Sug1 in recruiting multi-enzyme complexes responsible for initiating transcription. Finally, Sug1 knockdown maintains gene silencing as elevated levels of H3K27 trimethylation are observed upon Sug1 knockdown. Together these studies strongly implicate the 19S proteasome in mediating the initial reorganization events to relax the repressive chromatin structure surrounding inducible genes.
127

Roles of the Ubiquitin-Proteasome System and Mono-ubiquitination in Regulating MHC class II Transcription

Bhat, Kavita Purnanda 12 February 2010 (has links)
Major Histocompatibility Complex (MHC) class II molecules are indispensable arms of the im-mune system that present extracellular antigens to CD4+T cells and initiate the adaptive immune response. MHC class II expression requires recruitment of a master regulator, the class II trans-activator (CIITA). How this master transcriptional regulator is recruited, stabilized and degraded is unknown. The 26S proteasome, a master regulator of protein degradation, is a multi-subunit complex composed of a 20S core particle capped on one or both ends by 19S regulatory particles. Previous findings have linked CIITA and MHC class II transcription to the ubiquitin proteasome system (UPS) as mono-ubiquitination of CIITA increases its transactivity whereas poly-ubiquitination targets CIITA for degradation. Increasing evidence indicates individual ATPase subunits of the 19S regulator play non-proteolytic roles in transcriptional regulation and histone modification. Our initial observations indicate proteasome inhibition decreases CIITA transac-tivity and MHC class II expression without affecting CIITA expression levels. Following cyto-kine stimulation, the 19S ATPase Sug1 associates with CIITA and with the MHC class II enhan-ceosome complex. Absence of Sug1 reduces promoter recruitment of CIITA and proteasome inhibition fails to restore CIITA binding, indicating Sug1 is required for CIITA mediated MHC class II expression. Furthermore, we identify a novel N-terminal 19S ATPase binding domain (ABD) within CIITA. The ABD of CIITA lies within the Proline/Serine/Threonine (P/S/T) re-gion of CIITA and encompasses a majority of the CIITA degron sequence. Absence of the ABD increases CIITA half-life, but blocks MHC class II surface expression, indicating that CIITA requires interaction with the 19S ATPases for both its deployment and destruction. Finally, we identify three degron proximal lysine residues, lysines (K): K315, K330 and K333, and a phosphorylation site, serine (S), S280, located within the CIITA degron, that regulate CIITA ubiquitination, stability and MHC class II expression. These are the first lysine residues identified as sites of CIITA ubiquitination that are essential for MHC class II expression. These observations increase our understanding of the role of the UPS in modulating CIITA mediated MHC class II transcription and will facilitate the development of novel therapies involving manipulation of MHC class II gene expression.
128

The 26S Proteasome and Histone Modifying Enzymes Regulate

Truax, Agnieszka D 07 May 2011 (has links)
Major Histocompatibility Complex Class-II (MHC-II) molecules are critical regulators of adaptive immunity that present extracellular antigens required to activate CD4+ T cells. MHC-II are regulated at the level of transcription by master regulator, the Class II Transactivator (CIITA), whose association with the MHC-II promoter is necessary to initiate transcription. Recently, much research focused on novel mechanisms of transcriptional regulation of critical genes like MHC-II and CIITA; findings that the macromolecular complex of the 26S-proteasome is involved in transcription have been perhaps the most exciting as they impart novel functions to a well studied system. Proteasome is a multi-subunit complex composed of a 20S-core particle capped by a 19S-regulatory particle. The 19S contains six ATPases which are required for transcription initiation and elongation. We demonstrate that 19S ATPase-S6a inducibly associates with CIITA promoters. Decreased expression of S6a negatively impacts recruitment of the transcription factors STAT-1 and IRF-1 to the CIITA due to significant loss in histone H3 and H4 acetylation. S6a is robustly recruited to CIITA coding regions, where S6a binding coordinates with that of RNA polymerase II. RNAi mediated S6a knockdown significantly diminishes recruitment of Pol II and P-TEF-b components to CIITA coding regions, indicating S6a plays important roles in transcriptional elongation. Our research is focused on the ways in which accessibility to and transcription of DNA is regulated. While cancers are frequently linked to dysregulated gene expression, contribution of epigenetics to cancers remains unknown. To achieve metastatic ability, tumors alter gene expression to escape host immunosurveilance. MHC-II and CIITA expression are significantly downregulated in highly metastatic MDA-MB-435 breast cancer cells. This suppression correlates with elevated levels of the silencing modification H3K27me3 at CIITA and a significant reduction in Pol II recruitment. We observe elevated binding of the histone methyltransferase to CIITApIV and demonstrate this enzyme is a master regulator of CIITA gene expression. EZH2 knockdown results in significant increases in CIITA and MHC-II transcript levels in metastatic cells. In sum, transcriptional regulation by the 19S-proteasome and histone modifying enzymes represents novel mechanisms of control of mammalian gene expression and present novel therapeutic targets for manipulating MHC expression in disease.
129

Genèse de l'immunopeptidome du CMH de classe I

Caron, Etienne 04 1900 (has links)
La différentiation entre le « soi » et le « non-soi » est un processus biologique essentiel à la vie. Les peptides endogènes présentés par les complexes majeurs d’histocompatibilité de classe I (CMH I) représentent le fondement du « soi » pour les lymphocytes T CD8+. On donne le nom d’immunopeptidome à l’ensemble des peptides présentés à la surface cellulaire par les molécules du CMH I. Nos connaissances concernant l’origine, la composition et la plasticité de l’immunopeptidome restent très limitées. Dans le cadre de cette thèse, nous avons développé une nouvelle approche par spectrométrie de masse permettant de définir avec précision : la nature et l’abondance relative de l’ensemble des peptides composant l’immunopeptidome. Nous avons trouvé que l’immunopeptidome, et par conséquent la nature du « soi » immun, est surreprésenté en peptides provenant de transcrits fortement abondants en plus de dissimuler une signature tissu-spécifique. Nous avons par la suite démontré que l’immunopeptidome est plastique et modulé par l’activité métabolique de la cellule. Nous avons en effet constaté que les modifications du métabolisme cellulaire par l’inhibition de mTOR (de l’anglais mammalian Target Of Rapamycin) provoquent des changements dynamiques dans la composition de l’immunopeptidome. Nous fournissons également la première preuve dans l’étude des systèmes que l’immunopeptidome communique à la surface cellulaire l’activité de certains réseaux biochimiques ainsi que de multiples événements métaboliques régulés à plusieurs niveaux à l’intérieur de la cellule. Nos découvertes ouvrent de nouveaux horizons dans les domaines de la biologie des systèmes et de l’immunologie. En effet, notre travail de recherche suggère que la composition de l’immunopeptidome est modulée dans l’espace et le temps. Il est par conséquent très important de poursuivre le développement de méthodes quantitatives au niveau des systèmes qui nous permettront de modéliser la plasticité de l’immunopeptidome. La simulation et la prédiction des variations dans l’immunopeptidome en réponse à différents facteurs cellulaires intrinsèques et extrinsèques seraient hautement pertinentes pour la conception de traitements immunothérapeutiques. / Self/non-self discrimination is a fundamental requirement of life. Endogenous peptides presented by major histocompatibility complex class I (MHC I) molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) are collectively referred to as the immunopeptidome. Very little is known about the origin, composition and plasticity of the immunopeptidome. Here, we developed a novel high-throughput mass spectrometry approach that yields an accurate definition of the nature and relative abundance of peptides presented by MHC I molecules. Surprisingly, we found that the immunopeptidome, and therefore the nature of the immune self, is biased toward peptides derived from highly abundant transcripts and conceals a tissue-specific signature. Then, we showed that the immunopeptidome is plastic and moulded by cellular metabolic activity. In fact, we found that altering cellular metabolism via the inhibition of the mammalian target of rapamycin (mTOR) results in dynamic changes in the cell surface MIPs landscape. Importantly, we provide the first systems-level evidence that the immunopeptidome projects at the cell surface a faithful representation of biochemical networks and metabolic events regulated at multiple levels inside the cell. Our discoveries open up new perspectives in systems biology and immunology. Indeed, our work suggests that the composition of the immunopeptidome is modulated in space and time. Therefore, it is imperative to further develop and exploit systems-level quantitative methods that will enable modelling of the immunopeptidome’s plasticity. Simulating and predicting variations in the immunopeptidome in response to cell-intrinsic and -extrinsic factors could be relevant to numerous contexts, including the rational design of immunotherapeutic interventions.
130

Development and Application of Genomic Resources in Non-model Bird Species

Wang, Biao January 2012 (has links)
Understanding the genetic basis of biological processes is a fundamental component of modern ecology and evolutionary biology studies. With the recent advent of next generation sequencing (NGS) technologies, it is now possible to perform large genome and transcriptome projects for ecologically important non-model species. In this thesis, I focused on the development and application of genomic resources of two non-model bird species, the black grouse (Tetrao tetrix) and the great snipe (Gallinago media). Using the chicken genome as a reference, I developed a reference guided NGS pipeline to assemble the complete draft genome of black grouse. The draft genome has a good coverage of the main 29 chromosomes of the chicken genome. The genome was used to develop a vast number of genetic markers. Comparing this genome with that of other species, I identified the genomic regions which were important for the lineage specific evolution of black grouse. I also sequenced and characterised the spleen transcriptome of the black grouse. I identified and validated a large number of gene-based microsatellite markers from the transcriptome and identified and confirmed the expression of immune related genes. Using a similar RNA-Seq approach, I also sequenced the blood transcriptomes of 14 great snipe males with different mating success. I identified genes and single nucleotide polymorphisms (SNPs) which might be related to male mating success in this species, both in terms of gene expression levels and genetic variation structure. For the immunologically important major histocompatibility complex (MHC) gene region of black grouse, I constructed a fosmid library and used it to sequence the complete core MHC region of this species. This resource allowed me to perform a comprehensive comparative genomics analysis of the galliform MHC, by which I found that some genes in this region were affected by selective forces. I was also able to develop a single locus genotyping protocol for the duplicated MHC BLB (class IIB) genes and found that the two black grouse BLB loci followed different evolutionary trajectories. This thesis set an example of developing genomic resources in non-model species and applying them in addressing questions relevant to ecology and evolutionary biology.

Page generated in 0.1235 seconds