Spelling suggestions: "subject:"martingales"" "subject:"martingale""
41 |
Decomposition Max-Plus des surmartingales et ordre convexe. Application aux options Americaines et a l'assurance de portefeuille.Meziou, Asma 29 November 2006 (has links) (PDF)
Nous établissons une nouvelle décomposition des surmartingales, additive dans l'algèbre Max-Plus. Elle consiste essentiellement à exprimer toute surmartingale quasi-continue à gauche de la classe (D) comme une espérance conditionnelle d'un certain processus de running supremum. Comme application, nous montrons comment la décomposition Max-Plus permet en particulier de résoudre le problème Américain d'arrêt optimal sans avoir à calculer le prix de l'option. Ensuite, nous donnons quelques exemples illustratifs basés sur des processus de diffusion uni-dimensionnels. Une autre application intéressante concerne l'assurance de portefeuille. Nous proposons en effet une nouvelle approche au problème classique de maximisation d'utilité, avec garantie Américaine. Pour cela, nous nous ramenons à un problème général de martingales, sous contrainte de dominer un obstacle, ou de façon équivalente son enveloppe de Snell, à toute date intermédiaire. L'optimisation est relative à l'ordre convexe sur la valeur terminale, de manière à minimiser le rôle de la fonction d'utilité. Nous montrons l'optimalité de la "martingale Max-Plus" et nous traitons un exemple explicite dans le cadre d'un Brownien géométrique. Par ailleurs, nous exploitons les liens entre les martingales d'Azéma-Yor et la décomposition Max-Plus pour résoudre certains problèmes d'optimisation de portefeuille sous contraintes d'état et d'autres relatifs aux options Américaines perpétuelles. Nous retrouvons en particulier, d'une manière élémentaire, la plupart des résultats classiques sur les frontières Américaines de processus de Lévy. Le dernier chapitre propose de nouvelles méthodes numériques pour valoriser les contrats Swing.
|
42 |
Portfolio optimization problems : a martingale and a convex duality approachTchamga, Nicole Flaure Kouemo 12 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The first approach initiated by Merton [Mer69, Mer71] to solve utility maximization portfolio
problems in continuous time is based on stochastic control theory. The idea of Merton
was to interpret the maximization portfolio problem as a stochastic control problem where
the trading strategies are considered as a control process and the portfolio wealth as the
controlled process. Merton derived the Hamilton-Jacobi-Bellman (HJB) equation and for
the special case of power, logarithm and exponential utility functions he produced a closedform
solution. A principal disadvantage of this approach is the requirement of the Markov
property for the stocks prices. The so-called martingale method represents the second
approach for solving utility maximization portfolio problems in continuous time. It was
introduced by Pliska [Pli86], Cox and Huang [CH89, CH91] and Karatzas et al. [KLS87]
in di erent variant. It is constructed upon convex duality arguments and allows one to
transform the initial dynamic portfolio optimization problem into a static one and to resolve
it without requiring any \Markov" assumption. A de nitive answer (necessary and
su cient conditions) to the utility maximization portfolio problem for terminal wealth has
been obtained by Kramkov and Schachermayer [KS99]. In this thesis, we study the convex
duality approach to the expected utility maximization problem (from terminal wealth) in
continuous time stochastic markets, which as already mentioned above can be traced back
to the seminal work by Merton [Mer69, Mer71]. Before we detail the structure of our
thesis, we would like to emphasize that the starting point of our work is based on Chapter
7 in Pham [P09] a recent textbook. However, as the careful reader will notice, we have
deepened and added important notions and results (such as the study of the upper (lower)
hedge, the characterization of the essential supremum of all the possible prices, compare
Theorem 7.2.2 in Pham [P09] with our stated Theorem 2.4.9, the dynamic programming
equation 2.31, the superhedging theorem 2.6.1...) and we have made a considerable e ort
in the proofs. Indeed, several proofs of theorems in Pham [P09] have serious gaps (not to
mention typos) and even
aws (for example see the proof of Proposition 7.3.2 in Pham [P09] and our proof of Proposition 3.4.8). In the rst chapter, we state the expected utility
maximization problem and motivate the convex dual approach following an illustrative
example by Rogers [KR07, R03]. We also brie
y review the von Neumann - Morgenstern
Expected Utility Theory. In the second chapter, we begin by formulating the superreplication
problem as introduced by El Karoui and Quenez [KQ95]. The fundamental result in
the literature on super-hedging is the dual characterization of the set of all initial endowments
leading to a super-hedge of a European contingent claim. El Karoui and Quenez
[KQ95] rst proved the superhedging theorem 2.6.1 in an It^o di usion setting and Delbaen
and Schachermayer [DS95, DS98] generalized it to, respectively, a locally bounded
and unbounded semimartingale model, using a Hahn-Banach separation argument. The
superreplication problem inspired a very nice result, called the optional decomposition
theorem for supermartingales 2.4.1, in stochastic analysis theory. This important theorem
introduced by El Karoui and Quenez [KQ95], and extended in full generality by Kramkov
[Kra96] is stated in Section 2.4 and proved at the end of Section 2.7. The third chapter
forms the theoretical core of this thesis and it contains the statement and detailed
proof of the famous Kramkov-Schachermayer Theorem that addresses the duality of utility
maximization portfolio problems. Firstly, we show in Lemma 3.2.1 how to transform the
dynamic utility maximization problem into a static maximization problem. This is done
thanks to the dual representation of the set of European contingent claims, which can be
dominated (or super-hedged) almost surely from an initial endowment x and an admissible
self- nancing portfolio strategy given in Corollary 2.5 and obtained as a consequence of
the optional decomposition of supermartingale. Secondly, under some assumptions on the
utility function, the existence and uniqueness of the solution to the static problem is given
in Theorem 3.2.3. Because the solution of the static problem is not easy to nd, we will
look at it in its dual form. We therefore synthesize the dual problem from the primal
problem using convex conjugate functions. Before we state the Kramkov-Schachermayer
Theorem 3.4.1, we present the Inada Condition and the Asymptotic Elasticity Condition
for Utility functions. For the sake of clarity, we divide the long and technical proof of
Kramkov-Schachermayer Theorem 3.4.1 into several lemmas and propositions of independent
interest, where the required assumptions are clearly indicate for each step of the
proof. The key argument in the proof of Kramkov-Schachermayer Theorem is an in nitedimensional
version of the minimax theorem (the classical method of nding a saddlepoint
for the Lagrangian is not enough in our situation), which is central in the theory of Lagrange multipliers. For this, we have stated and proved the technical Lemmata 3.4.5 and
3.4.6. The main steps in the proof of the the Kramkov-Schachermayer Theorem 3.4.1 are:
We show in Proposition 3.4.9 that the solution to the dual problem exists and we
characterize it in Proposition 3.4.12.
From the construction of the dual problem, we nd a set of necessary and su cient
conditions (3.1.1), (3.1.2), (3.3.1) and (3.3.7) for the primal and dual problems to
each have a solution.
Using these conditions, we can show the existence of the solution to the given problem
and characterize it in terms of the market parameters and the solution to the dual
problem.
In the last chapter we will present and study concrete examples of the utility maximization
portfolio problem in speci c markets. First, we consider the complete markets case, where
closed-form solutions are easily obtained. The detailed solution to the classical Merton
problem with power utility function is provided. Lastly, we deal with incomplete markets
under It^o processes and the Brownian ltration framework. The solution to the logarithmic
utility function as well as to the power utility function is presented. / AFRIKAANSE OPSOMMING: Die eerste benadering, begin deur Merton [Mer69, Mer71], om nutsmaksimering portefeulje
probleme op te los in kontinue tyd is gebaseer op stogastiese beheerteorie. Merton
se idee is om die maksimering portefeulje probleem te interpreteer as 'n stogastiese
beheer probleem waar die handelstrategi e as 'n beheer-proses beskou word en die portefeulje
waarde as die gereguleerde proses. Merton het die Hamilton-Jacobi-Bellman (HJB)
vergelyking afgelei en vir die spesiale geval van die mags, logaritmies en eksponensi ele
nutsfunksies het hy 'n oplossing in geslote-vorm gevind. 'n Groot nadeel van hierdie benadering
is die vereiste van die Markov eienskap vir die aandele pryse. Die sogenaamde
martingale metode verteenwoordig die tweede benadering vir die oplossing van nutsmaksimering
portefeulje probleme in kontinue tyd. Dit was voorgestel deur Pliska [Pli86], Cox
en Huang [CH89, CH91] en Karatzas et al. [KLS87] in verskillende wisselvorme. Dit word
aangevoer deur argumente van konvekse dualiteit, waar dit in staat stel om die aanvanklike
dinamiese portefeulje optimalisering probleem te omvorm na 'n statiese een en dit op te
los sonder dat' n \Markov" aanname gemaak hoef te word. 'n Bepalende antwoord (met
die nodige en voldoende voorwaardes) tot die nutsmaksimering portefeulje probleem vir
terminale vermo e is verkry deur Kramkov en Schachermayer [KS99]. In hierdie proefskrif
bestudeer ons die konveks dualiteit benadering tot die verwagte nuts maksimering probleem
(van terminale vermo e) in kontinue tyd stogastiese markte, wat soos reeds vermeld is
teruggevoer kan word na die seminale werk van Merton [Mer69, Mer71]. Voordat ons die
struktuur van ons tesis uitl^e, wil ons graag beklemtoon dat die beginpunt van ons werk
gebaseer is op Hoofstuk 7 van Pham [P09] se onlangse handboek. Die noukeurige leser
sal egter opmerk, dat ons belangrike begrippe en resultate verdiep en bygelas het (soos
die studie van die boonste (onderste) verskansing, die karakterisering van die noodsaaklike
supremum van alle moontlike pryse, vergelyk Stelling 7.2.2 in Pham [P09] met ons verklaarde
Stelling 2.4.9, die dinamiese programerings vergelyking 2.31, die superverskansing stelling 2.6.1...) en ons het 'n aansienlike inspanning in die bewyse gemaak. Trouens,
verskeie bewyse van stellings in Pham cite (P09) het ernstige gapings (nie te praat van
setfoute nie) en selfs foute (kyk byvoorbeeld die bewys van Stelling 7.3.2 in Pham [P09]
en ons bewys van Stelling 3.4.8). In die eerste hoofstuk, sit ons die verwagte nutsmaksimering
probleem uit een en motiveer ons die konveks duaale benadering gebaseer op 'n
voorbeeld van Rogers [KR07, R03]. Ons gee ook 'n kort oorsig van die von Neumann -
Morgenstern Verwagte Nutsteorie. In die tweede hoofstuk, begin ons met die formulering
van die superreplikasie probleem soos voorgestel deur El Karoui en Quenez [KQ95]. Die
fundamentele resultaat in die literatuur oor super-verskansing is die duaale karakterisering
van die versameling van alle eerste skenkings wat lei tot 'n super-verskans van' n Europese
voorwaardelike eis. El Karoui en Quenez [KQ95] het eers die super-verskansing stelling
2.6.1 bewys in 'n It^o di usie raamwerk en Delbaen en Schachermayer [DS95, DS98] het
dit veralgemeen na, onderskeidelik, 'n plaaslik begrensde en onbegrensde semimartingale
model, met 'n Hahn-Banach skeidings argument. Die superreplikasie probleem het 'n prag
resultaat ge nspireer, genaamd die opsionele ontbinding stelling vir supermartingales 2.4.1
in stogastiese ontledings teorie. Hierdie belangrike stelling wat deur El Karoui en Quenez
[KQ95] voorgestel is en tot volle veralgemening uitgebrei is deur Kramkov [Kra96] is uiteengesit
in Afdeling 2.4 en bewys aan die einde van Afdeling 2.7. Die derde hoofstuk vorm
die teoretiese basis van hierdie proefskrif en bevat die verklaring en gedetailleerde bewys
van die beroemde Kramkov-Schachermayer stelling wat die dualiteit van nutsmaksimering
portefeulje probleme adresseer. Eerstens, wys ons in Lemma 3.2.1 hoe om die dinamiese
nutsmaksimering probleem te omskep in 'n statiese maksimerings probleem. Dit kan gedoen
word te danke aan die duaale voorstelling van die versameling Europese voorwaardelike
eise, wat oorheers (of super-verskans) kan word byna seker van 'n aanvanklike skenking x en
'n toelaatbare self- nansierings portefeulje strategie wat in Gevolgtrekking 2.5 gegee word
en verkry is as gevolg van die opsionele ontbinding van supermartingale. In die tweede plek,
met sekere aannames oor die nutsfunksie, is die bestaan en uniekheid van die oplossing van
die statiese probleem gegee in Stelling 3.2.3. Omdat die oplossing van die statiese probleem
nie maklik verkrygbaar is nie, sal ons kyk na die duaale vorm. Ons sintetiseer dan die
duale probleem van die prim^ere probleem met konvekse toegevoegde funksies. Voordat ons
die Kramkov-Schachermayer Stelling 3.4.1 beskryf, gee ons die Inada voorwaardes en die
Asimptotiese Elastisiteits Voorwaarde vir Nutsfunksies. Ter wille van duidelikheid, verdeel
ons die lang en tegniese bewys van die Kramkov-Schachermayer Stelling ref in verskeie lemmas en proposisies op, elk van onafhanklike belang waar die nodige aannames duidelik
uiteengesit is vir elke stap van die bewys. Die belangrikste argument in die bewys van die
Kramkov-Schachermayer Stelling is 'n oneindig-dimensionele weergawe van die minimax
stelling (die klassieke metode om 'n saalpunt vir die Lagrange-funksie te bekom is nie genoeg
in die geval nie), wat noodsaaklik is in die teorie van Lagrange-multiplikators. Vir
die, meld en bewys ons die tegniese Lemmata 3.4.5 en 3.4.6. Die belangrikste stappe in
die bewys van die die Kramkov-Schachermayer Stelling 3.4.1 is:
Ons wys in Proposisie 3.4.9 dat die oplossing vir die duale probleem bestaan en ons
karaktiriseer dit in Proposisie 3.4.12.
Uit die konstruksie van die duale probleem vind ons 'n versameling nodige en voldoende
voorwaardes (3.1.1), (3.1.2), (3.3.1) en (3.3.7) wat die prim^ere en duale probleem
oplossings elk moet aan voldoen.
Deur hierdie voorwaardes te gebruik, kan ons die bestaan van die oplossing vir die
gegewe probleem wys en dit karakteriseer in terme van die mark parameters en die
oplossing vir die duale probleem.
In die laaste hoofstuk sal ons konkrete voorbeelde van die nutsmaksimering portefeulje
probleem bestudeer vir spesi eke markte. Ons kyk eers na die volledige markte geval waar
geslote-vorm oplossings maklik verkrygbaar is. Die gedetailleerde oplossing vir die klassieke
Merton probleem met mags nutsfunksie word voorsien. Ten slotte, hanteer ons onvolledige
markte onderhewig aan It^o prosesse en die Brown ltrering raamwerk. Die oplossing vir
die logaritmiese nutsfunksie, sowel as die mags nutsfunksie word aangebied.
|
43 |
Law of large numbers for monotone convolution2014 September 1900 (has links)
In this thesis, we use martingales to show that the dilation of a sequence of monotone convolutions $D_\frac{1}{b_n} (\mu_1 \triangleright \mu_2 \triangleright \cdots \triangleright \mu_n)$ is stable, where $\mu_j$ are probability distributions with the condition $\sum \limits_{n=1}^\infty \frac{1}{b_n} \text{var}(\mu_n) < \infty$. This proves a law of large numbers for monotonically independent random variables.
|
44 |
The law of the iterated logarithm for tail sumsGhimire, Santosh January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Charles N. Moore / The main purpose of this thesis is to derive the law of the iterated logarithm for tail sums in various contexts in
analysis. The various contexts are sums of Rademacher functions, general dyadic martingales, independent random variables and
lacunary trigonometric series. We name
the law of the iterated logarithm for tail sums as tail law of the iterated logarithm.
We first establish the tail law of the iterated logarithm for sums of Rademacher functions and obtain both upper and lower bound in it. Sum of Rademacher functions is a nicely behaved dyadic martingale. With the ideas from the Rademacher case, we then establish the tail
law of the iterated logarithm for general dyadic martingales. We obtain both upper and lower bound in the case of martingales. A lower
bound is obtained for the law of the iterated logarithm for tail sums of bounded symmetric independent random variables. Lacunary trigonometric series exhibit many of the properties of partial
sums of independent random variables. So we finally obtain
a lower bound for the tail law of the iterated logarithm for lacunary
trigonometric series introduced by Salem and Zygmund.
|
45 |
Martingale estimation of Lévy processes and its extension to structural credit risk models.January 2010 (has links)
Lam, Ho Man. / "August 2010." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 42-43). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Levy Process --- p.5 / Chapter 2.1 --- Merton's Jump-Diffusion model (1976) --- p.8 / Chapter 2.2 --- Estimation of Levy processes --- p.9 / Chapter 3 --- Transform Martingale Estimation --- p.11 / Chapter 3.1 --- Maximum Likelihood Estimation --- p.11 / Chapter 3.2 --- Transform Martingale Estimating Functions --- p.13 / Chapter 3.2.1 --- Transform Quasi-Score Function --- p.15 / Chapter 3.2.2 --- Composite Quasi-Score Function --- p.17 / Chapter 3.2.3 --- Implementation Issue --- p.18 / Chapter 3.2.4 --- Transform Martingale Estimation on Levy process --- p.21 / Chapter 4 --- Structural Models of Credit Risk --- p.22 / Chapter 4.1 --- Overview --- p.22 / Chapter 4.2 --- Merton's structural credit risk model (1974) --- p.23 / Chapter 4.3 --- Estimation Methodologies --- p.24 / Chapter 4.4 --- Martingale Estimation with KMV's Method --- p.26 / Chapter 5 --- Simulation Study --- p.28 / Chapter 5.1 --- Equity Estimation --- p.28 / Chapter 5.2 --- Estimation of Structural Models --- p.37 / Chapter 6 --- Conclusion --- p.41 / Bibliography --- p.42
|
46 |
Etude asymptotique de certains estimateurs dans des modèles ARMA spatiauxILLIG, Aude 15 December 2004 (has links) (PDF)
Nous nous intéressons à l'étude asymptotique de certaines statistiques dans des modèles ARMA spatiaux quadrantaux<br />dont les innovations sont supposées être indépendantes et identiquement distribuées ou plus généralement vérifier une propriété de martingales fortes. Après une revue des théorèmes limites pour des martingales spatiales sur un réseau, nous démontrons d'abord un théorème de la limite centrale et un principe d'invariance sous la condition de Lindeberg conditionnelle pour des tableaux de martingales fortes. Afin de mieux situer notre étude des champs ARMA quadrantaux, nous rappelons divers résultats conçernant l'estimation et l'identification dans d'autres modèles ARMA spatiaux. Puis, dans le but de sélectionner les ordres et d'estimer les paramètres autorégressifs de modèles ARMA spatiaux quadrantaux, nous introduisons un nouvel estimateur obtenu à partir des équations de Yule-Walker généralisées. Nous démontrons sa consistance et sa normalité asymptotique. Enfin, pour un certain nombre de modèles ARMA spatiaux, nous illustrons leurs comportements par des représentations graphiques et nous <br />présentons une étude de procédures pour les identifier à partir de nombreuses simulations.
|
47 |
Analyse de durées de vie : analyse séquentielle du modèle des risques proportionnels et tests d'homogénéitéBreuils, Christelle 15 December 2003 (has links) (PDF)
La première partie concerne l'estimation séquentielle du paramètre de régression pour le modèle de Cox pour des données censurées à droite. Il est ainsi possible de définir des règles d'arrêt garantissant une bonne estimation. Celles-ci conduisent alors à des estimateurs dépendant de tailles d'échantillons aléatoires pour lesquels le comportement asymptotique est le même que celui des estimateurs non séquentiels. Les propriétés démontrées sont étendues au cadre multidimensionnel et illustrées par des simulations. Cette première partie s'achève par l'étude théorique du comportement de la variable d'arrêt dans le cadre d'intervalles de confiance séquentiels. La règle d'arrêt normalisée est alors asymptotiquement normale. La seconde partie porte sur la construction de tests d'homogénéité dans le cadre d'un modèle de durées de vie non paramétrique incluant des covariables ainsi que la censure à droite. Une statistique de test est proposée et son comportement asymptotique est établi.
|
48 |
Analyse asymptotique de jeux répétés à information incomplète.Gensbittel, Fabien 10 December 2010 (has links) (PDF)
Cette thèse étudie différents aspects asymptotiques du modèle de jeux répétés à information incomplète d'un côté à travers une approche temps discret/temps continu. On relie les fonctions valeurs et les stratégies optimales du joueur informé à des problèmes de contrôle stochastique. On étudie la représentation duale de ces problèmes en termes de solution de viscosité d'EDP non-linéaires du premier et du second ordre. Ces résultats sont appliqués dans des modèles de jeux d'échanges financiers servant à identifier des dynamiques de prix d'équilibre en temps continu. Le dernier chapitre étudie un modèle de jeu à somme non-nulle dans lequel des techniques propres aux jeux à somme nulle sont adaptées pour obtenir des résultats asymptotiques.
|
49 |
Mouvement Brownien Fractionnaire, applications aux télécommunications. Calcul Stochastique relativement à des processus fractionnaires.Savy, Nicolas 02 June 2003 (has links) (PDF)
Le mouvement Brownien fractionnaire (mBf) est devenu un processus incontournable dès que l'on veut s'affranchir des propriétés de Markov et d'indépendance des accroissements. Nous verrons les principales propriétés de ce processus, nous insisterons sur certains aspects de son utilisation comme modèle de file fluide. On développe ensuite la construction d'une intégrale anticipative relative au mBf à partir de l'intégrale anticipative relative au mouvement Brownien. Fort de cette idée, nous avons introduit une intégrale anticipative relative à des processus de Poissons filtrés (pPf) à partir d'une intégrale anticipative pour des processus de Poissons marqués, intégrale que nous relions à l'intégrale de Stieltjès. L'étude se poursuit par une formule de Itô pour des fonctionnelles cylindriques et par un résultat sur la continuité de Holdër des processus intégrés. Pour finir, un théorème de convergence en loi d'une suite de pPf vers un processus de Volterra est établi.
|
50 |
Réduction de dimension en présence de données censuréesLopez, Olivier 06 December 2007 (has links) (PDF)
Nous considérons des modèles de régression où la variable expliquée est censurée à droite aléatoirement. Nous proposons de nouveaux estimateurs de la fonction de régression dans des modèles paramétriques, et nous proposons une procédure de test non paramétrique d'adéquation à ces modèles. Nous prolongeons ces méthodes à l'étude du modèle semi-paramétrique "single-index", généralisant ainsi des techniques de réduction de dimension utilisées en l'absence de censure. Nous nous penchons tout d'abord sur le cas d'un modèle où la variable de censure est indépendante de la variable expliquée ainsi que des variables explicatives. Nous travaillons dans un second temps dans un cadre moins restrictif où la variable expliquée et la censure sont indépendantes conditionnellement aux variables explicatives. Une difficulté spécifique à ce dernier type de modèle tient en l'impossibilité des techniques actuelles à estimer une espérance conditionnelle (de façon paramétrique ou non) en présence de plus d'une<br />variable explicative. Nous développons une nouvelle approche de réduction de la dimension afin de résoudre ce problème.
|
Page generated in 0.0626 seconds