• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • Tagged with
  • 23
  • 23
  • 15
  • 13
  • 12
  • 12
  • 11
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Condensação de kaons em estrelas de nêutrons

Mesquita, Alexandre January 2010 (has links)
Nesta tese descrevemos as propriedades de estrelas de nêutrons e pulsares cuja matéria nuclear apresenta processo de transição de fase da matéria hadrônica pura para a matéria hadrônica com um condensado de anti-káons em estado de onda-s. A matéria nuclear da estrela de nêutrons é considerada em equilíbrio β e apresenta energia térmica desprezível comparada aos autovalores de energia dos núcleons (ET = kT << E nuclear), portanto, no tratamento formal a contribuição da temperatura será aproximada como zero. Para tal descrição utilizamos um modelo efetivo desenvolvido por Razeira e Vasconcellos, que chamamos Modelo RV, no qual são considerados acoplamentos de natureza não-linear envolvendo o octecto fundamental bariônico e os campos dos mésons σ, w, q, ς, δ, σ* e Ø, e cuja formulação lagrangiana busca exaurir o espaço de fase dos campos mesônicos por meio de um tratamento perturbativo que apresente alto grau de consistência com o conceito de naturalidade, de modo a aprimorar as predições dos tratamentos teóricos mais convencionais. O Modelo RV incorpora a predição da existência de um novo estado ressonante mesônico no setor escalar-isovetorial leve, proposto por Vasconcellos e colaboradores, deduzido com base na conservação de simetria quiral, estado este representado pelo campo ς. No presente trabalho, para incorporarmos na formulação lagrangiana os termos de interação dos anti-káons com os núcleons, utilizamos uma versão do Modelo RV que leva em conta somente os campos dos núcleons, dos elétrons, dos múons, dos anti-káons, além dos mésons σ, w, q, ς, δ, σ*, compondo matéria nuclear em equilíbrio β e temperatura nula, afim de estudarmos apenas os efeitos da transição de fase para o condensado de anti-káons e os efeitos da subsequente presença dos anti-káons na equação de estado. A imposição da ausência do octeto bariônico está baseada em resultados da literatura, com reforço do próprio Modelo RV, que mostram que a presença dos híperons desloca o limiar de surgimento do condensado de anti-káons para valores de densidade muito acima da densidade central esperada de uma estrela de nêutrons realista. Entre as predições do Modelo RV para o cenário supra citado estão o limiar de densidade bariônica para o aparecimento do condensado de anti-káons K- e ¹K0, a largura da fase mista na transição de fase hádron-condensado de anti-káons, o comportamento da equação de estado da matéria nuclear. Estes resultados mostram que o Modelo RV desloca o limiar do nascimento dos anti-káons para valores maiores de densidade do que os usualmente obtidos na literatura, mas também evidenciam a sensível dependência dos anti-káons para a profundidade do potencial ótico dos káons UK e para a intensidade do acoplamento do méson escalar-isovetorial delta com os káons. Realizamos um estudo de intensidades para a constante de acoplamento delta-káon, g&K, extrapolando alguns valores além do usual, e com eles buscamos calcular as propriedades globais de uma estrela de nêutrons como massa máxima, raio, redshift gravitacional. Encontramos que para os valores de intensidade de acoplamento escolhidos por nós, os valores dos parâmetros acima referidos da estrela de nêutrons apresentam pouca ou nenhuma diferença entre si, nos possibilitando optar por um valor original para g&K. A equação de estado da matéria nuclear evidencia efeitos antagônicos de suavização e enrijecimento conduzidos pelos anti-káons e pelos mésons escalares-isovetoriais δ e ς, respectivamente. Em um capítulo a parte utilizamos o Modelo RV para calcular o resfriamento da estrela de nêutrons via emissividade de neutrinos produzidos pelo processo URCA relativístico, enfatizando a influência da fração de assimetria entre prótons e nêutrons neste processo; e enfatizando de forma equivalente o comportamento da emissividade de neutrinos dentro da fase mista entre a matéria hadrônica ordinária e a matéria com condensado de anti-káons. Em suma, as seguintes propostas e resultados apresentados nesta tese contém elementos de originalidade: Desenvolvimento de um formalismo para a introdução dos anti-káons K¡ e K 0 na matéria nuclear de uma estrela de nêutrons baseado numa extensão da formulação da teoria quântica de campos com acoplamento derivativo, chamada de Modelo RV. Nesta formulação os espaços de fase bariônico e mesônico contemplam respectivamente os campos N, P, σ, w, q, e os mésons escalares-isovetoriais ς e o novo estado ressonante no setor dos campos dos mésons leves ς. Estudo da intensidade da constante de acoplamento entre o méson ς e os kaons g±K. Análise através dos resultados do Modelo RV do papel do condensado de antikáons K¡ e ¹K 0 na emissividade de neutrinos na estrela de nêutrons via Processo URCA Direto (relativístico), com destaque para os efeitos neste sentido da transição de fase entre a matéria hadrônica ordinária e a matéria do condensado de anti-káons. Introdução de novas equações de estado correspondentes ao Modelo RV e a um modelo com acoplamento ajustável (versão preliminar apresentado no final deste capítulo). Os resultados obtidos neste trabalho apresentam uma expressiva modificação na descrição do condensado de antikáons, em especial quanto ao seu limiar de aparecimento e à largura da fase mista da transição de fase, quando estes valores são comparados aos resultados correspondentes obtidos por outros autores. / In this thesis we describe the properties of neutron stars and pulsates whose nuclear matter presents transition of phase of the pure hadronic matter to a hadronic matter with the antikaons condensate in wave - s state. The nuclear matter of neutron star is in β equilibrium and presents thermal energy despicable compared to the eigenvalues of energy of the nucleons (εT = kT<< εnuclear). So, in formal treatment to contribution of the temperature will be brought near like zero. We use an effective model developed by Razeira and Vasconcellos, whom we call RV model, in which are considered couplings of non-linear nature with the basic barionic octet and the meson fields σ, w, q, ς, δ, σ* and δ, and whose lagrangean formulation looks to exhaust the space of phase of the meson fields through a perturbative treatment that presents high level of consistency with the concept of naturalness, in order to improve the predictions of more conventional theoretical treatments. The Model RV incorporates the predictions, based on the conservation of chiral symmetry, for a new resonant meson state in the scalar-isovectorial sector, this state represented by the symbol ς. In the present work, to incorporate in the lagrangean formulation the terms of antikaons interaction with them nucleons, we use a version of the RV model what takes into account only the fields of nucleons, electrons, muons, antikaons, besides the meson fields σ, w, q, ς, δ and ς, composing a nuclear matter in β equilibrium and null temperature, to study the pure effects of the transition of phase for the condensed of antikaons and the pure effects of the presence of the antikaons in the equation of state. The imposition of the absence of the barionic octet is based on results of the literature, with reinforcement of RV model himself, whom they show that the presence of the hiperons it moves the threshold of antikaons condensed for values of density very much above the central expected density of a realistic neutron star. Between the RV model predictions for the scenery above quoted are the threshold of barionic density for the appearance of antikaons K- and K0 condensed, the width of the mixed phase in the hadron - condensed of antikaons phase transition, the behaviour of the equation of state of nuclear matter. Our results show that the RV model moves the threshold of antikaons for density values bigger of what them usually found in the literature; the results also show the sensitive dependence of the antikaons for the depth of kaons optical potential UK and for the intensity of coupling of the scalar-isovectorial meson delta with the kaons. We carry out a magnitude sutdy for the coupling constant of the delta-kaon coupling, g&K, overstepping some values besides the usual one, and with them we calculate the global properties of a neutron star as maximum mass, radius, gravitational redshift. We find that for the intensity of g&K values chosen by us the values of the global properties of neutron star above-mentioned presents little or no difference between them, making possible to us opting for an original value for g&K. To equation of state of the nuclear matter shows antagonic effects of smoothling and stiffnnes driven for antikaons and for the scalar-isovectorial mesons δ and ς, respectively. In the final chapter we use the RV model to calculate the cooling of a neutron star by neutrino emissivity produced by the Relativistic URCA process, emphasizing the influence of the fraction of asymmetry between protons and neutrons in this process; and emphasizing too the behaviour of neutrino emissivity inside the mixed phase between the ordinary hadronic matter and the antikaons condensed hadronic matter. In summary, the following proposals and results presented in this thesis contains Development of a formalism for the introduction of antikaons K¡ and ¹K 0 in the nuclear matter of a neutron star based on an extension of the formulation of the quantum theory of fields with derivative coupling called RV model. In this formulation the baryons and mesons phase space contemplate respectively the fields N, P, σ, w, q, and the scalar-isovectorial meson δ besides the new resonant state in sector of the fields of the light mesons ς. Study of the intensity of the coupling constant between the δ meson and the kaons, g&K. Analysis, through the RV model, of the role of antikaons condensed K- and K 0 in the neutrino emissivity in the neutron star by Direct URCA Process (relativistic), with distinction for the effects in the transition of phase between the ordinary hadronic matter and the matter with antikaons condensed. The introduction of new equations of state for the RV model and also for a model with adjustable couplings (a preliminary version may be found in the conclusions of the thesis). The results obtained in this work present one expressive modification in the description of antikaons condensed when these values are compared with the results for other authors, in special the threshold of antikaons appearance and the width of the mixed phase of the transition of phase.
12

Estrutura nuclear de estrelas compactas

Marranghello, Guilherme Frederico January 2000 (has links)
Este trabalho tem como objetivo o estudo da matéria nuclear a altas densidades considerando-se as fases hadrônica e de quarks à temperatura nula e finita, com vistas a aplicações no estudo de propriedades estáticas globais de estrelas compactas. Parte dos cálculos apresentados nesta dissertação foram realizados por diferentes autores. Entretanto, em geral, estes trabalhos limitaram-se ao estudo da matéria nuclear em regiões de densidades e temperaturas específicas. Este estudo visa, por sua vez, o desenvolvimento de um tratamento amplo e consistente para estes sistemas, considerando-se diferentes regimes de densidade e temperatura para ambas as fases, hadrônica e de quarks. Buscamos com isso adquirir conhecimento suficiente que possibilite, não somente a ampliação do escopo dos modelos considerados, como também o desenvolvimento, no futuro, de um modelo mais apropriado à descrição de propriedades estáticas e dinâmicas de estrelas compactas. Ainda assim, este trabalho apresenta novos aspectos e resultados inéditos referentes ao estudo da matéria nuclear, como descrevemos a seguir. No estudo da matéria nuclear na fase hadrônica, consideramos os modelos da teoria quântica de campos nucleares desenvolvidos por J. D. Walecka, J. Zimanyi e S. A. Moszkowski, e por J. Boguta e A. R. Bodmer, e conhecidos, respectivamente, como Hadrodinâmica Quântica, ZM e Não-Linear. Nestes modelos a matéria nuclear é descrita a partir de uma formulação lagrangeana com os campos efetivos dos bárions acoplados aos campos dos mésons, responsáveis pela interação nuclear Neste estudo consideramos inicialmente a descrição de propriedades estáticas globais de sistemas nucleares de muitos corpos à temperatura nula, como por exemplo, a massa efetiva do núcleon na matéria nuclear simétrica e de nêutrons. A equação de estado da matéria de nêutrons possibilita a descrição de propriedades estáticas globais de estrelas compactas, como sua massa e raio, através da sua incorporação nas equações de Tolman, Oppenheimer e Volkoff (TOV). Os resultados obtidos nestes cálculos estão em plena concordância com os resultados apresentados por outros autores. Consideramos posteriormente o estudo da matéria nuclear com graus de liberdade de bárions e mésons à temperatura finita, com particular atenção na região de transição de fase. Para este estudo, incorporamos aos modelos considerados, o formalismo da mecânica estatística à temperatura finita. Os resultados obtidos, para as propriedades da matéria nuclear à temperatura finita, concordam também com os resultados obtidos por outros autores. Um aspecto inédito apresentado neste trabalho refere-se à incorporação de valores para os pontos críticos da transição de fase, ainda não determinados por outros autores. O comportamento do calor específico também é analisado de forma inédita nesta dissertação no tratamento utilizado com os modelos Não-Linear e ZM. Utilizamos a equação de estado da matéria de nêutrons à temperatura finita nas equações TOV, determinando propriedades globais de uma estrela protoneutrônica Observamos neste trabalho que ocorre um aumento da massa máxima da estrela com o aumento da temperatura, comportamento este já previsto por outros autores em diferentes modelos. Posteriormente incorporamos ao formalismo à temperatura finita, o equilíbrio químico, a presença de graus de liberdade leptônicos para elétrons e múons e a neutralidade de carga. Apresentamos nesta etapa do trabalho, uma forma alternativa para a incorporação destes ingredientes, baseada na determinação de uma fração relativa entre os potenciais químicos de prótons e nêutrons, à temperatura nula, extendendo este resultado à temperatura finita. Este procedimento permite a determinação da distribuição de núcleons e léptons no interior de uma estrela protoneutrônica, onde incluímos ainda a presença de neutrinos confinados. No estudo da matéria de quarks, consideramos o modelo de sacola do Massachussets Institute of Technology (MIT). Incorporando as equações TOV neste estudo, determinamos propriedades globais de estrelas de quarks, bem como a distribuição dos diferentes sabores de quarks no interior estelar. Como principal resultado, obtivemos uma equação de estado geral para a matéria hadrônica e de quarks, introduzida nas equações TOV, e analisamos a existência de estrelas híbridas. Os resultados obtidos nesta etapa do trabalho são totalmente coerentes com aqueles obtidos por outros autores.
13

Um modelo de sacola difusa para a matéria nuclear

Rocha, Alberto Sperotto dos Santos January 2004 (has links)
Neste trabalho desenvolvemos um modelo efetivo para a descrição da matéria nuclear, que incorpora os resultados obtidos, para a descrição de um núcleon, pelo modelo de sacola difusa. O sistema nuclear será descrito via uma função de energia interna, que compreende um termo livre e outro que leva em conta a interação entre os núcleons. A parte livre, por se tratar de um sistema de férmions, corresponderá à energia de um gásde Fermi livre. Além disso, para evitar a superposição de dois ou mais núcleons, introduzimos um volume de exclusão a la Van der Waals. Na parte integrante, a troca de píons entre os núcleons será levada em conta via um potêncial efetivo. A função energia interna dependerá da densidade da matéria nuclear e também de um parâmetro que determinará o volume esperado de cada núcleon na matéria nuclear. O valor deste parâmetro será um pouco diferente do valor encontrado para um núcleons isolado, devido à interação entre eles. Obtém-se então resultados para a energia de ligação por núcleon para a matéria nuclear simétrica e para a matéria de nêutrons, bem como para a equação de estado da matéria de nêutrons.
14

Compressibilidade da matéria nuclear em estrelas de nêutrons

Dexheimer, Veronica Antocheviz January 2006 (has links)
Neste trabalho, são discutidos modelos da hadrodinâmica quântica com aproximação de campo médio aplicados a estrelas de nêutrons. O modelo de Walecka define o ponto de partida para desenvolver o modelo de acoplamento derivativo ajustável. A presente dissertação visa a um estudo detalhado sobre a influência dos parâmetros do modelo ajustável no sistema, analisando seus limites, inclusive quando os parâmetros são iguais a zero ou infinito (modelo exponencial). Esta análise tem o propósito de estabelecer um conjunto de parâmetros que defina um modelo que esteja de acordo com as propriedades fenomenológicas tais como módulo de compressão da matéria nuclear, massa efetiva na saturação da matéria nuclear e também algumas propriedades estáticas globais das estrelas de nêutrons como, por exemplo, massa e raio. Estabelecido o modelo a ser considerado, a autora dessa dissertação introduz, como inovação, a compressibilidade hadrônica como função da densidade. Tradicionalmente, determinam-se propriedades da matéria apenas para a densidade de saturação.
15

Um modelo de sacola difusa para a matéria nuclear

Rocha, Alberto Sperotto dos Santos January 2004 (has links)
Neste trabalho desenvolvemos um modelo efetivo para a descrição da matéria nuclear, que incorpora os resultados obtidos, para a descrição de um núcleon, pelo modelo de sacola difusa. O sistema nuclear será descrito via uma função de energia interna, que compreende um termo livre e outro que leva em conta a interação entre os núcleons. A parte livre, por se tratar de um sistema de férmions, corresponderá à energia de um gásde Fermi livre. Além disso, para evitar a superposição de dois ou mais núcleons, introduzimos um volume de exclusão a la Van der Waals. Na parte integrante, a troca de píons entre os núcleons será levada em conta via um potêncial efetivo. A função energia interna dependerá da densidade da matéria nuclear e também de um parâmetro que determinará o volume esperado de cada núcleon na matéria nuclear. O valor deste parâmetro será um pouco diferente do valor encontrado para um núcleons isolado, devido à interação entre eles. Obtém-se então resultados para a energia de ligação por núcleon para a matéria nuclear simétrica e para a matéria de nêutrons, bem como para a equação de estado da matéria de nêutrons.
16

Compressibilidade da matéria nuclear em estrelas de nêutrons

Dexheimer, Veronica Antocheviz January 2006 (has links)
Neste trabalho, são discutidos modelos da hadrodinâmica quântica com aproximação de campo médio aplicados a estrelas de nêutrons. O modelo de Walecka define o ponto de partida para desenvolver o modelo de acoplamento derivativo ajustável. A presente dissertação visa a um estudo detalhado sobre a influência dos parâmetros do modelo ajustável no sistema, analisando seus limites, inclusive quando os parâmetros são iguais a zero ou infinito (modelo exponencial). Esta análise tem o propósito de estabelecer um conjunto de parâmetros que defina um modelo que esteja de acordo com as propriedades fenomenológicas tais como módulo de compressão da matéria nuclear, massa efetiva na saturação da matéria nuclear e também algumas propriedades estáticas globais das estrelas de nêutrons como, por exemplo, massa e raio. Estabelecido o modelo a ser considerado, a autora dessa dissertação introduz, como inovação, a compressibilidade hadrônica como função da densidade. Tradicionalmente, determinam-se propriedades da matéria apenas para a densidade de saturação.
17

Estrutura nuclear de estrelas compactas

Marranghello, Guilherme Frederico January 2000 (has links)
Este trabalho tem como objetivo o estudo da matéria nuclear a altas densidades considerando-se as fases hadrônica e de quarks à temperatura nula e finita, com vistas a aplicações no estudo de propriedades estáticas globais de estrelas compactas. Parte dos cálculos apresentados nesta dissertação foram realizados por diferentes autores. Entretanto, em geral, estes trabalhos limitaram-se ao estudo da matéria nuclear em regiões de densidades e temperaturas específicas. Este estudo visa, por sua vez, o desenvolvimento de um tratamento amplo e consistente para estes sistemas, considerando-se diferentes regimes de densidade e temperatura para ambas as fases, hadrônica e de quarks. Buscamos com isso adquirir conhecimento suficiente que possibilite, não somente a ampliação do escopo dos modelos considerados, como também o desenvolvimento, no futuro, de um modelo mais apropriado à descrição de propriedades estáticas e dinâmicas de estrelas compactas. Ainda assim, este trabalho apresenta novos aspectos e resultados inéditos referentes ao estudo da matéria nuclear, como descrevemos a seguir. No estudo da matéria nuclear na fase hadrônica, consideramos os modelos da teoria quântica de campos nucleares desenvolvidos por J. D. Walecka, J. Zimanyi e S. A. Moszkowski, e por J. Boguta e A. R. Bodmer, e conhecidos, respectivamente, como Hadrodinâmica Quântica, ZM e Não-Linear. Nestes modelos a matéria nuclear é descrita a partir de uma formulação lagrangeana com os campos efetivos dos bárions acoplados aos campos dos mésons, responsáveis pela interação nuclear Neste estudo consideramos inicialmente a descrição de propriedades estáticas globais de sistemas nucleares de muitos corpos à temperatura nula, como por exemplo, a massa efetiva do núcleon na matéria nuclear simétrica e de nêutrons. A equação de estado da matéria de nêutrons possibilita a descrição de propriedades estáticas globais de estrelas compactas, como sua massa e raio, através da sua incorporação nas equações de Tolman, Oppenheimer e Volkoff (TOV). Os resultados obtidos nestes cálculos estão em plena concordância com os resultados apresentados por outros autores. Consideramos posteriormente o estudo da matéria nuclear com graus de liberdade de bárions e mésons à temperatura finita, com particular atenção na região de transição de fase. Para este estudo, incorporamos aos modelos considerados, o formalismo da mecânica estatística à temperatura finita. Os resultados obtidos, para as propriedades da matéria nuclear à temperatura finita, concordam também com os resultados obtidos por outros autores. Um aspecto inédito apresentado neste trabalho refere-se à incorporação de valores para os pontos críticos da transição de fase, ainda não determinados por outros autores. O comportamento do calor específico também é analisado de forma inédita nesta dissertação no tratamento utilizado com os modelos Não-Linear e ZM. Utilizamos a equação de estado da matéria de nêutrons à temperatura finita nas equações TOV, determinando propriedades globais de uma estrela protoneutrônica Observamos neste trabalho que ocorre um aumento da massa máxima da estrela com o aumento da temperatura, comportamento este já previsto por outros autores em diferentes modelos. Posteriormente incorporamos ao formalismo à temperatura finita, o equilíbrio químico, a presença de graus de liberdade leptônicos para elétrons e múons e a neutralidade de carga. Apresentamos nesta etapa do trabalho, uma forma alternativa para a incorporação destes ingredientes, baseada na determinação de uma fração relativa entre os potenciais químicos de prótons e nêutrons, à temperatura nula, extendendo este resultado à temperatura finita. Este procedimento permite a determinação da distribuição de núcleons e léptons no interior de uma estrela protoneutrônica, onde incluímos ainda a presença de neutrinos confinados. No estudo da matéria de quarks, consideramos o modelo de sacola do Massachussets Institute of Technology (MIT). Incorporando as equações TOV neste estudo, determinamos propriedades globais de estrelas de quarks, bem como a distribuição dos diferentes sabores de quarks no interior estelar. Como principal resultado, obtivemos uma equação de estado geral para a matéria hadrônica e de quarks, introduzida nas equações TOV, e analisamos a existência de estrelas híbridas. Os resultados obtidos nesta etapa do trabalho são totalmente coerentes com aqueles obtidos por outros autores.
18

Efeitos da temperatura no emparelhamento em matéria nuclear assimétrica e propriedades estatísticas de núcleos quentes

Fabrício Tronco Dalmolin 11 April 2012 (has links)
Na primeira parte, estudamos os efeitos da temperatura sobre o emparelhamento normal e quase-dêuteron na matéria nuclear assimétrica usando a interação do tipo Bonn para a interação via troca de mésons. Analisamos os campos médios de emparelhamento como função da densidade, assimetria nêutron-próton e temperatura. Na segunda parte estudamos um dos ingredientes básicos para o cálculo estatístico do decaimento do núcleo quente, a densidade de estados. Bonche, Levit e Vautherin estudaram as propriedades estatísticas do núcleo quente usando um cálculo de Hartree-Fock estático para temperaturas finitas que descreve um núcleo quente em equilíbrio com um vapor de nucleons externo e após o cálculo extraiam a contribuição do vapor. Uma maneira alternativa para o cálculo de tais propriedades é através da contribuição dos estados ligados de partícula única. Calculamos as propriedades do núcleo quente usando ambos os formalismos em uma aproximação de Hartree relativística com as interações NL3 e DDME1 e comparamos os resultados obtidos nos dois formalismos. Por fim, obtivemos uma parametrização para a energia livre de Helmholtz para os quatro conjuntos de cálculos citados. Calculamos as propriedades estatísticas para um amplo conjunto de núcleos até temperaturas onde soluções auto-consistentes não existem mais e com estas propriedades realizamos ajustes globais a uma expressão estendida do modelo da gota-líquida dependente da temperatura similar às utilizadas em modelos de multifragmentação estatística.
19

Plasma de quarks e glúons no interior de estrelas de nêutrons

Jacobsen, Rafael Bán January 2007 (has links)
Este trabalho tem como objetivo o estudo da matéria nuclear em altas densidades, considerando-se as fases hadrônica e de quarks à temperatura nula, com a perspectiva de aplicar o formalismo desenvolvido no trabalho à análise das propriedades estáticas globais das estrelas de nêutrons. No trabalho, depois de apresentarmos aspectos importantes da evolução estelar e da teoria das estrelas de nêutrons, estudamos as propriedades e os modelos da matéria nuclear. No estudo da matéria nuclear para a fase hadrônica, consideramos os modelos relativísticos da teoria quântica de campos nucleares desenvolvida por J. D. Walecka, J. Zimanyi e S. A. Moszkowski, e por J. Boguta e A. R. Bodmer, também conhecidos, respectivamente, como modelos Sigma-ômega, ZM e Não-linear. Nesses modelos, a matéria nuclear é descrita a partir de uma formulação lagrangeana relativística de muitos corpos, com os campos efetivos dos bárions acoplados aos campos dos mésons, responsáveis pela interação nuclear. Nesse estudo, consideramos, inicialmente, a descrição de propriedades estáticas globais de sistemas nucleares de muitos corpos à temperatura nula, como, por exemplo, a massa efetiva do núcleon para matéria nuclear simétrica e matéria de nêutrons. O conhecimento da equação de estado da matéria de nêutrons torna possível a descrição de propriedades estáticas globais de uma estrela de nêutrons, como sua massa e seu raio, através das equações de Tolman, Oppenheimer e Volko . Os resultados obtidos neste trabalho estão em plena concordância com os resultados apresentados por outros autores. Posteriormente, incorporamos ao formalismo as equações de equilíbrio químico, a presen ça de graus de liberdade leptônicos de elétrons e múons, o octeto bariônico fundamental e a condição de neutralidade de carga. Nossa escolha para as constantes de acoplamento dos híperons está baseada na simetria SU(6) e nas regras de contagem para quarks. A consideração, no formalismo, do equilíbrio beta generalizado entre as partículas gera um sistema de onze equações acopladas que deve ser resolvido numericamente para se encontrar as diferentes populações fermiônicas. Por m, estudamos um modelo fenomenológico para a matéria nuclear com acoplamento derivativo ajustável, no qual a intensidade dos acoplamentos méson-núcleon é parametrizada por expressões matemáticas com coe cientes ajustáveis. Estudamos a in- uência desses acoplamentos na determinação das principais propriedades nucleares e nas propriedades estáticas globais das estrelas de nêutrons. Esse modelo é o que utilizamos, na parte nal do trabalho, para desenvolver nosso estudo da transição de fase entre matéria hadrônica e matéria de quarks livres, usando o critério de Gibbs. No estudo da matéria de quarks, consideramos o modelo de sacola desenvolvido no Massachusetts Institute of Technology (MIT) por A. Chodos, R. L. Ja e, K. Johnson, C. B. Thorn e V. F. Weisskopf. Como resultado principal, determinamos uma equação de estado geral para a matéria hadrônica e para a matéria de quarks e analisamos condições de equilíbrio de estrelas híbridas. Enfocamos, então, a in uência dos acoplamentos do modelo ajustável na determina ção da densidade bariônica em que ocorre a transição de fase. Analisamos, também, como a existência de um caroço de quarks na estrela repercute em suas propriedades estáticas globais (tais como raio e massa máxima) e na propriedade termodinâmica conhecida como índice adiabático. Os resultados obtidos nessa etapa do trabalho, embora inéditos, são coerentes com aqueles obtidos por outros autores. / The purpose of this work is the study of nuclear matter at high densities considering the hadronic and quark phases at zero temperature, with the perspective of applying the developed formalism to the analysis of global static properties of neutron stars. in this work, after presenting important aspects of stellar evolution and neutron star theory, we study the properties and models of nuclear matter. In the nuclear matter studies for the hadronic phase, we have considered the relativistic nuclear quantum eld theory developed by J. D. Walecka, J. Zimanyi and S. A. Moszkowski, and by J. Boguta and A. R. Bodmer, also known, respectively, as Sigma-omega, ZM and Non-linear models. In these models the nuclear matter is described by a relativistic and strong interaction lagrangian many-body formulation with baryon e ective elds coupled to scalar, vector and iso-vector mesons. In this study we consider initially the description of global static properties of manybody nuclear systems at zero temperature as, for instance, the nucleon e ective mass for symmetric nuclear and neutron matter. Knowledge of the neutron matter equation of state makes it possible the description of global static properties of a neutron star, such as its mass and radius, through the Tolman, Oppenheimer and Volko equations. The results we have obtained in this work are in agreement with the corresponding ones presented by other authors. We have further included into the formalism the chemical equilibrium equations, lepton degrees of freedom for electrons and muons, the fundamental octet of baryons and the charge neutrality condition. Our choice for the hyperonic coupling constants is based on the SU(6) symmetry and on the counting rules for quarks. The consideration of generalized beta equilibrium among the particles in our formalism generates a strongly coupled system of eleven equations to be numerically solved to nd the di erent fermionic populations. At last we study a phenomenological lagrangian model of nuclear matter with adjustable derivative coupling, which exhibits a parametrization, through mathematical expressions with adjustable coe cients, of the intensity of the meson-nucleon coupling. We study the in uence of these couplings in the determination of the main nuclear properties and global static properties of neutron stars. This model is the one we use to develop our study of the hadronic matter to quark matter phase transition in the last part of our work, using the Gibbs criteria. In the quark matter study, we have considered the bag model developed ih the Massachusetts Institute of Technology (MIT) by A. Chodos, R. L. Ja e, K. Johnson, C. B. Thorn and V. F. Weisskopf. As a main result, we have determined a general equation of state for hadronic and quark matter, and we have analyzed the equilibrium conditions for hybrid stars. We have then focused the in uence of the adjustable model couplings in the determination of the phase transition baryon density. We have also analyzed how the existence of the quarkgluon plasma core in the star repercutes in its global static properties (such as radius and maximum mass) and in the thermodynamical property known as the adiabatic index. The predictions of our work, even though based on new results, are in complete agreement with the corresponding ones obtained by other authors.
20

Plasma de quarks e glúons no interior de estrelas de nêutrons

Jacobsen, Rafael Bán January 2007 (has links)
Este trabalho tem como objetivo o estudo da matéria nuclear em altas densidades, considerando-se as fases hadrônica e de quarks à temperatura nula, com a perspectiva de aplicar o formalismo desenvolvido no trabalho à análise das propriedades estáticas globais das estrelas de nêutrons. No trabalho, depois de apresentarmos aspectos importantes da evolução estelar e da teoria das estrelas de nêutrons, estudamos as propriedades e os modelos da matéria nuclear. No estudo da matéria nuclear para a fase hadrônica, consideramos os modelos relativísticos da teoria quântica de campos nucleares desenvolvida por J. D. Walecka, J. Zimanyi e S. A. Moszkowski, e por J. Boguta e A. R. Bodmer, também conhecidos, respectivamente, como modelos Sigma-ômega, ZM e Não-linear. Nesses modelos, a matéria nuclear é descrita a partir de uma formulação lagrangeana relativística de muitos corpos, com os campos efetivos dos bárions acoplados aos campos dos mésons, responsáveis pela interação nuclear. Nesse estudo, consideramos, inicialmente, a descrição de propriedades estáticas globais de sistemas nucleares de muitos corpos à temperatura nula, como, por exemplo, a massa efetiva do núcleon para matéria nuclear simétrica e matéria de nêutrons. O conhecimento da equação de estado da matéria de nêutrons torna possível a descrição de propriedades estáticas globais de uma estrela de nêutrons, como sua massa e seu raio, através das equações de Tolman, Oppenheimer e Volko . Os resultados obtidos neste trabalho estão em plena concordância com os resultados apresentados por outros autores. Posteriormente, incorporamos ao formalismo as equações de equilíbrio químico, a presen ça de graus de liberdade leptônicos de elétrons e múons, o octeto bariônico fundamental e a condição de neutralidade de carga. Nossa escolha para as constantes de acoplamento dos híperons está baseada na simetria SU(6) e nas regras de contagem para quarks. A consideração, no formalismo, do equilíbrio beta generalizado entre as partículas gera um sistema de onze equações acopladas que deve ser resolvido numericamente para se encontrar as diferentes populações fermiônicas. Por m, estudamos um modelo fenomenológico para a matéria nuclear com acoplamento derivativo ajustável, no qual a intensidade dos acoplamentos méson-núcleon é parametrizada por expressões matemáticas com coe cientes ajustáveis. Estudamos a in- uência desses acoplamentos na determinação das principais propriedades nucleares e nas propriedades estáticas globais das estrelas de nêutrons. Esse modelo é o que utilizamos, na parte nal do trabalho, para desenvolver nosso estudo da transição de fase entre matéria hadrônica e matéria de quarks livres, usando o critério de Gibbs. No estudo da matéria de quarks, consideramos o modelo de sacola desenvolvido no Massachusetts Institute of Technology (MIT) por A. Chodos, R. L. Ja e, K. Johnson, C. B. Thorn e V. F. Weisskopf. Como resultado principal, determinamos uma equação de estado geral para a matéria hadrônica e para a matéria de quarks e analisamos condições de equilíbrio de estrelas híbridas. Enfocamos, então, a in uência dos acoplamentos do modelo ajustável na determina ção da densidade bariônica em que ocorre a transição de fase. Analisamos, também, como a existência de um caroço de quarks na estrela repercute em suas propriedades estáticas globais (tais como raio e massa máxima) e na propriedade termodinâmica conhecida como índice adiabático. Os resultados obtidos nessa etapa do trabalho, embora inéditos, são coerentes com aqueles obtidos por outros autores. / The purpose of this work is the study of nuclear matter at high densities considering the hadronic and quark phases at zero temperature, with the perspective of applying the developed formalism to the analysis of global static properties of neutron stars. in this work, after presenting important aspects of stellar evolution and neutron star theory, we study the properties and models of nuclear matter. In the nuclear matter studies for the hadronic phase, we have considered the relativistic nuclear quantum eld theory developed by J. D. Walecka, J. Zimanyi and S. A. Moszkowski, and by J. Boguta and A. R. Bodmer, also known, respectively, as Sigma-omega, ZM and Non-linear models. In these models the nuclear matter is described by a relativistic and strong interaction lagrangian many-body formulation with baryon e ective elds coupled to scalar, vector and iso-vector mesons. In this study we consider initially the description of global static properties of manybody nuclear systems at zero temperature as, for instance, the nucleon e ective mass for symmetric nuclear and neutron matter. Knowledge of the neutron matter equation of state makes it possible the description of global static properties of a neutron star, such as its mass and radius, through the Tolman, Oppenheimer and Volko equations. The results we have obtained in this work are in agreement with the corresponding ones presented by other authors. We have further included into the formalism the chemical equilibrium equations, lepton degrees of freedom for electrons and muons, the fundamental octet of baryons and the charge neutrality condition. Our choice for the hyperonic coupling constants is based on the SU(6) symmetry and on the counting rules for quarks. The consideration of generalized beta equilibrium among the particles in our formalism generates a strongly coupled system of eleven equations to be numerically solved to nd the di erent fermionic populations. At last we study a phenomenological lagrangian model of nuclear matter with adjustable derivative coupling, which exhibits a parametrization, through mathematical expressions with adjustable coe cients, of the intensity of the meson-nucleon coupling. We study the in uence of these couplings in the determination of the main nuclear properties and global static properties of neutron stars. This model is the one we use to develop our study of the hadronic matter to quark matter phase transition in the last part of our work, using the Gibbs criteria. In the quark matter study, we have considered the bag model developed ih the Massachusetts Institute of Technology (MIT) by A. Chodos, R. L. Ja e, K. Johnson, C. B. Thorn and V. F. Weisskopf. As a main result, we have determined a general equation of state for hadronic and quark matter, and we have analyzed the equilibrium conditions for hybrid stars. We have then focused the in uence of the adjustable model couplings in the determination of the phase transition baryon density. We have also analyzed how the existence of the quarkgluon plasma core in the star repercutes in its global static properties (such as radius and maximum mass) and in the thermodynamical property known as the adiabatic index. The predictions of our work, even though based on new results, are in complete agreement with the corresponding ones obtained by other authors.

Page generated in 0.0533 seconds