• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1533
  • 126
  • 65
  • 28
  • 3
  • 1
  • 1
  • Tagged with
  • 1758
  • 1109
  • 1080
  • 1047
  • 855
  • 629
  • 629
  • 629
  • 629
  • 629
  • 560
  • 554
  • 454
  • 308
  • 298
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Discrete analytic continuation of a (p, q)- analytic function

Ahmad Khan, Mumtaz, Najmi, M. 25 September 2017 (has links)
In this paper a method is devised for the continuation into the discrete plane Q' of functions defined on the positive half-axes and the properties of continuation operator discussed.
22

Problems in incompressible linear elasticity involving tangential and normal components of the displacement field

Leckar, Hamilton F., Sampaio, Rubens 25 September 2017 (has links)
We consider the linear system -∆ u + grad p = f plus the divergence-free condition div u = O, in a bounded and conected but non simply connected open set Ω of R³, with a boundary ᴦ of C∞ class. Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω, we show well posedness for two boundary value problems involving normal or tangential components of the displacement field on ᴦ.
23

Ondículas : un modelo de enseñanza en matemática (Reflexiones sobre la enseñanza de la matemática)

Ortíz Fernández, Alejandro 25 September 2017 (has links)
No description available.
24

Estudio de modelo de tópicos aplicado a transcripciones de clases de matemáticas

Castillo Navarro, Roberto Eduardo January 2016 (has links)
Ingeniero Civil Matemático / El presente trabajo surge de la necesidad de explorar y luego evaluar métodos de clasificación para transcripciones de clases de matemáticas, en el contexto de la investigación del quehacer docente desde un punto de vista cualitativo y cuantitativo realizada desde el Centro de Investigación Avanzada en Eduación (CIAE). En su primera sección se encuentra una breve descripción de las técnicas utilizadas y a explorar. El segundo capítulo enumera y describe posibles metodologías para evaluar el desempeño de las técnicas de clasificación a utilizar u otras que podrían implementarse a futuro. Se observan algunas de sus características, con el fin de entender sus méritos como herramientas de evaluación y justificar la elección de alguna de ellas. Finalmente se presentan los resultados obtenidos al aplicar la metodología de evaluación a datos reales correspondientes a transcripciones de grabaciones de clases proporcionadas en forma voluntaria por docentes que decidieron colaborar con la investigación realizada por CIAE.
25

Cinco pequeñas joyas

Machicao Rossi, Marcelo 25 September 2017 (has links)
Ante el antiguo problema sociocultural en que la estética y la sensibilidad son contrapuestas ante el razonamiento científico, se exponen cinco ejemplos que abogan por la íntima conexión entre matemáticas y belleza.
26

Matemática básica para administradores - Tercera edición [Capítulo 1]

Curo Cubas, Agustín, Martínez Miraval, Mihály January 1900 (has links)
Guía teórico-práctica que permite al estudiante de administración y carreras afines entender los conceptos sobre los que se fundamenta cada tema y aplicarlos a sus análisis administrativos. Además de una breve explicación teórica, en cada tema se presentan ejemplos resueltos y luego por resolver para fijar el aprendizaje. Cada unidad se cierra con una serie de ejercicios aplicados. En esta tercera edición, se han incorporado algunos ejemplos y actividades colaborativas. Además, esta edición cuenta con una sección dedicada a ajuste de curvas y cada unidad cuenta con un texto introductorio.
27

Procesos de Lévy: propiedades e integración estocástica

Chávez Bedoya Mercado, Luis Carlos 14 June 2011 (has links)
Los procesos de Lévy son procesos estocásticos que poseen incrementos estacionarios e independientes, y además son continuos en probabilidad. Muchas de las investigaciones teóricas y aplicaciones actuales de los procesos estocásticos en ingeniería, economía y finanzas están basadas en procesos de Lévy; tomamos esto como motivación para profundizar en el estudio de dichos procesos así como para difundir sus aspectos teóricos y prácticos. Asimismo, el cálculo estocástico es una de las principales herramientas teóricas en muchos campos, en especial las finanzas y más precisamente la valuación de instrumentos derivados. Uno de los resultados fundamentales del cálculo estocástico es la fórmula de Ito, cuya validez más allá del movimiento browniano, siendo lógica y necesaria su extensión a procesos de Lévy. Los objetivos de la presente tesis son los siguientes: (1) Enunciar y demostrar las principales propiedades de los procesos de Lévy. (2) Demostrar la descomposición de Lévy-Ito. (3) Desarrollar la teoría básica de integración estocástica cuando se tiene como integrador medidas martingala valuadas. (4) Demostrar la fórmula de Ito para procesos de Lévy. (5) Describir algunas aplicaciones de los procesos de Lévy en finanzas. El presente trabajo se encuentra dividido en cuatro capítulos. En el primer capítulo se presentan conceptos y definiciones importantes previos al estudio de los procesos de Lévy, los cuales serán de suma importancia y utilidad en los capítulos siguientes. Se desarrolla el proceso de Poisson y sus propiedades más importantes. Posteriormente, se hace una breve introducción a la convolución de medidas de probabilidad y las variables aleatorias infinitamente divisibles, terminando en la demostración parcial (la prueba se completa en el Capítulo 2, basándose en la descomposición de Ito-Lévy) de la celebrada fórmula de Lévy-Khintchine, la cual establece que toda medida de probabilidad en R que es infinitamente divisible tiene una función característica de la siguiente forma: φµ(u) = exp imu − σ 2u 2 + Z R−{0} [e iuy − 1 − iuy1 {|y|<1} (y) v*(dy), donde v* es una medida definida en R- {0}, la cual cumple que ZR-{0} (|y|2 1) v* 8dy) < ∞, m ∈ R, σ 2 > 0 y u ∈ R. El capítulo concluye con la demostración de un teorema que 6 afirma que cualquier medida de probabilidad infinitamente divisible puede ser obtenida como el límite en distribución de una sucesión de procesos de Poisson compuestos. En el Capítulo 2 se demuestran las propiedades más importantes de los procesos de Lévy, algunas de ellas son: divisibilidad infinita, una modificación de un proceso Lévy es un proceso de Lévy, todo proceso de Lévy tiene una modificación cadlag y todo proceso de Lévy es un proceso de Markov fuerte. Posteriormente, se realiza el estudio de los saltos de un proceso de Lévy, se definen y enuncian las propiedades de la medida salto y se define la integración Poisson. Finalmente, y después de resultados previos se demuestra la descomposición de Lévy-Ito, la cual afirma que si η un proceso de Lévy, entonces existe b ∈ R, un movimiento browniano B y una medida de Poisson N en R+ ×(R− {0}), independiente de B, tal que para todo t ≥ 0; η(t) = bt + B(t) + Z |x|<a xÑ(t,dx) + Z|x|>a xN (t,dx), con a> 0, es decir que un proceso de Lévy se puede descomponer en la suma de un movimiento browiniano, saltos compensados menores que a, saltos mayores que a y un componente de tendencia bt. En el Capítulo 3 se desarrolla la teoría de integración estocástica, pero teniendo como integrador a medidas martingala valuadas. Se desarrolla la teoría L 2 , demostrando las principales propiedades de la integral estocástica, para después extender la teoría de integración a una clase más general de funciones. Posteriormente, se mencionan algunos tipos de integrales basadas en procesos de Lévy, como son las integrales estocásticas brownianas, las integrales estocásticas del tipo Poisson y las integrales estocásticas del tipo Lévy. El principal resultado de este capítulo es la demostración de la fórmula de Ito para integrales del tipo Lévy, habiendo desarrollado antes de ello la fórmula de Ito para integrales brownianas y Poisson. En el Capítulo 4 se muestran dos aplicaciones de los procesos de Lévy en finanzas. La primera es la descripción y demostración de las principales propiedades de un modelo de precios y la segunda es la comparación de tres modelos de retornos de acciones en un mercado financiero de poca liquidez. Asimismo, en los dos apéndices se demuestran y/o enuncian resultados que son utilizados en las demostraciones de los cuatro capítulos. Si bien es cierto que los resultados que se presentan han sido demostrados y/o mencionados en la literatura, el principal aporte de la presente tesis consiste en brindar una introducción coherente, accesible, completa y sobre todo autocontenida de los procesos de Lévy y la derivación de la fórmula de Itˆo para procesos de Lévy. Esto es importante, ´ debido a que la complejidad y los diversos enfoques sobre el tema hacen difícil que se pueda dar un desarrollo completo y detallado utilizando una notación uniforme. Los resultados de los primeros tres capítulos se encuentran en diverso grado de dificultad y formalismo en Applebaum [1], Protter [14], Cont y Tankov [6], Oksendal y Sulem [13], Sato [16], Bertoin [3] y El Karoui y Méléard [7]. Sólo en los principales resultados de la tesis se indican la(s) fuente(s) de las que han sido tomados y el aporte hecho en cada demostración; aunque varios de los resultados y definiciones han sido completados y/o clarificados respecto a su versión original, sin ser ésto mencionado en el trabajo. / Tesis
28

Sobre la conjetura de Zassenhaus y el problema de los subgrupos de congruencia para anillos de grupo con coeficientes enteros= On Zassenhaus conjecture and the congruence subgroup problem for integral group rings

Caicedo Borrero, Mauricio José 21 February 2014 (has links)
Esta Tesis Doctoral está enmarcada dentro del área del Álgebra, concretamente, de los Anillos de Grupo. El objetivo principal de la misma es el estudio del grupo de unidades del anillo de grupo con coeficientes enteros de un grupo finito. El primer trabajo que se conoció sobre este grupo de unidades lo presento Higman en 1940 en su tesis doctoral. Éste describe el grupo de unidades para el anillo de grupo con coeficientes enteros de un grupo abeliano y como consecuencia de este resultado se tiene que las unidades centrales del anillo de grupo con coeficientes enteros no son mas que las triviales. A partir de este momento, muchos autores se interesaron en dicho grupo de unidades. Sobre este grupo de unidades se sabe que es finitamente generado, pero no se conoce un conjunto finito de generadores, y que en muchos casos contiene un subgrupo libre de rango dos. También se ha intentado describir las unidades de orden finito y los subgrupos finitos de este grupo de unidades. Justamente este es el propósito de las tres Conjeturas de Zassenhaus, planteadas por Hans Zassenhaus en los años sesenta. Unos años después se presento un contraejemplo para dos de ellas. Otro punto interesante sobre el grupo de unidades del anillo de grupo con coeficientes enteros de un grupo finito, es conocer sus subgrupos de índice finito. Problemas como el de los subgrupos de congruencia traducidos a este contexto son de gran ayuda para este propósito. En esta Tesis hemos abordado dos problemas clásicos como son la Conjetura de Zassenhaus y el Problema de los Subgrupos de Congruencia para anillos de grupo con coeficientes enteros. Durante la realización de la Tesis doctoral, localizamos y estudiamos en profundidad la bibliografía existente relacionada con nuestro objeto de estudio. Establecimos contacto continuo con expertos en la materia y realice una estancia de tres meses en la Universidad Libre de Bruselas. El fruto de este trabajo se vio reflejado en los artículos “Zassenhaus Conjecture for cyclic-by-abelian groups” el cual esta aceptado en “Journal of the London Mathematical Society” y “On the Congruence Subgroup Problem for integral group rings” el cual esta sometido. La monografía, que consta de una introducción, tres capítulos y las conclusiones, está dividida principalmente en dos partes. Uno de los tópicos centrales es la Conjetura de Zassenhaus. Esta pretende describir las unidades de orden finito del anillo de grupo con coeficientes enteros de un grupo finito. Nuestra aportación principal en este aspecto consiste en probar la Conjetura de Zassenhaus para grupos cíclicos-por-abelianos. El segundo problema que abordamos es el de clasificar los grupos finitos para los cuales el grupo de unidades del anillo de grupo con coeficientes enteros tiene núcleo de congruencia finito. Desafortunadamente en este problema encontramos un gran obstáculo, por lo que dimos una clasificación muy cercana a la planteada originalmente y que resulta de gran utilidad porque nos da mucha información sobre los subgrupos de índice finito del anillo de grupo con coeficientes enteros. / This thesis is placed in the general framework of Algebra, concretely, in Group Rings. The main aim of it is to study the group of units of the integral group ring of a finite group. Higman presented the first work about this group of units in 1940 in his thesis. It describe the group of units of the integral group ring of an abelian group, moreover shows that the central units are exactly the trivial ones. From here, it has attracted the interest of many authors. About the group of units of the integral group ring of a finite group we know that it is finite generated, however a finite set of generators is not known in general, and also it contains in many cases a free subgroup of rank two. On the other hand, many authors have attempted to describe the units of finite order and the finite subgroups of such group of units. This is just the goal of the three Zassenhaus conjectures, posed by Hans Zassenhaus in the 60s. Some years later, a counterexample for two of them appeared. Another interesting point on the group of units of the integral group ring of a finite group is to know its subgroups of finite index. One way to do so is to translate the Congruence Subgroup Problem to the context of integral group rings. In this thesis we have addressed two classical problems, namely Zassenhaus Conjecture and the Congruence Subgroup Problem for integral group rings of a finite group. During the realization of this thesis, we found and study in depth the existing literature concerning our subject. We established contact with experts and I did my stay in “Vrije Universiteit Brussel”. This work has given rise to my two papers “Zassenhaus Conjecture for cyclic-by-abelian groups ” which is accepted in “Journal of the London Mathematical Society” and “On the Congruence Subgroup Problem for integral group rings ” which is submitted. The monograph, consisting of an introduction, three chapters and the conclusions, is divided into two parts. A central topic is the Zassenhaus Conjecture. This tries to describe the units of finite order of the integral group ring of a finite group. Our main contribution consists in proving the Zassenhaus Conjecture for cyclic-by-abelian groups. Later on we deal with the problem of classifying the finite groups for which the group of units of the integral group ring has finite congruence kernel. Unfortunately, in this problem we encountered an obstacle. So we give a classification, which is very close to the original one, and it gives us relevant information on the subgroups of finite index of the group of units of the integral group ring of a finite group.
29

Álgebras de malla finito dimensionales y sus propiedades homológicas= Finite dimensional mesh algebras and their homological properties.

Andreu Juan, Estefanía 14 November 2013 (has links)
Esta Tesis Doctoral está enmarcada dentro del área del Álgebra, concretamente, de la Teoría de Representación de Álgebras. El objetivo principal de la misma es el estudio de propiedades homológicas de una clase de álgebras finito dimensionales conocidas como Álgebras de malla finito dimensionales. Dichas álgebras, introducidas por primera vez por K. Erdmann y A. Skowronski en 2008, surgieron como generalización de las álgebras preproyectivas y han suscitado un gran interés en los últimos años en el contexto general de las álgebras finito dimensionales. Entre otras, cabe destacar su aplicación en problemas de álgebras de conglomerado, grupos cuánticos, clasificación de ecuaciones diferenciales, singularidades de Klenian y geometría diferencial. Durante el primer periodo de la realización de la Tesis doctoral, localizamos y estudiamos en profundidad la bibliografía existente relacionada con nuestro objeto de estudio. Establecimos contacto continuo con expertos en la materia e incluso tuve la oportunidad de trabajar con Karin Erdmann durante mis tres meses de estancia en la Universidad de Oxford. El fruto de este trabajo se vio reflejado en mis dos primeros artículos publicados “The Hochschild cohomology ring of preprojective algebras of type Ln” y “The Hochschild cohomology ring of preprojective algebras of type Ln over a field of characteristic 2”. La monografía, que consta de un total de 6 capítulos, está dividida en dos partes. Uno de los tópicos centrales es el anillo de cohomología de Hochschild de un álgebra. Este anillo tiene una notable influencia en diversas partes de las matemáticas como el Álgebra Conmutativa, la Teoría de Anillos, la Geometría Conmutativa y no Conmutativa, la Teoría de Representación, la Física Matemática, … Además, su estructura multiplicativa está estrechamente relacionada con el estudio de las variedades de módulos y su álgebra de Yoneda. La definición del anillo de cohomología de Hochschild es bien sencilla, sin embargo, muy poco se sabe acerca de él. Es más, en la gran mayoría de los casos resulta extremadamente difícil calcularlo. Nuestra aportación principal en este aspecto consiste en la descripción explícita, mediante generadores y relaciones, de la estructura multiplicativa del anillo de cohomología de Hochschild de las álgebras de malla finito dimensionales de tipo Ln y Bn. Nuestras conclusiones resultan sorprendentes pues muestran grandes diferencias en el comportamiento de dicho anillo asociado no sólo a distintas álgebras, sino a una misma álgebra. Por otra parte, abordamos las propiedades homológicas de simetría, periodo y dimensión de Calabi-Yau de las álgebras de malla finito dimensionales. Consideramos primeramente la simetría y, como resultado, identificamos aquellas álgebras que son débilmente simétricas y las que son a su vez simétricas. A pesar de que una de las características más conocidas de estas álgebras es que son periódicas, sólo en muy pocos casos se ha conseguido calcular su periodo. En esta Tesis calculamos explícitamente el periodo de cada una de ellas. Finalmente tratamos la noción Calabi-Yau, definida por M.Kontsevich a finales de los años 90 y que ha sido intensamente estudiada por muchos matemáticos en los últimos años. Nuestro resultado principal es la caracterización de las álgebras de malla finito dimensionales que son establemente Calabi-Yau y Calaib-Yau Frobenius. Además, en tal caso, calculamos ambas dimensiones probando que, a pesar de que en la mayoría de los casos coinciden, no siempre son iguales, hecho que a día de hoy era desconocido. / This thesis is placed in the general framework of Algebra, concretely, in Representation Theory of Algebras. The main aim of it is to study homological properties of a class of finite dimensional algebras known as finite dimensional mesh algebras. Such algebras, first introduced by K. Erdmann and A. Skowronski in 2008, arise as a generalization of preprojective algebras and have attracted great interest in the general context of finite dimensional algebras in recent years. Among others, it is worth mentioning their application to problems related with cluster algebras, quantum groups, classification of differential equations, Klenian singularities and differential geometry. During the first period of the realization of this thesis, we found and study in depth the existing literature concerning our subject. We established contact with experts and I even had the opportunity of working with K. Erdmann for three months during my stay at University of Oxford. This work have given rise to my two first published papers “The Hochschild cohomology ring of preprojective algebras of type Ln” y “The Hochschild cohomology ring of preprojective algebras of type Ln over a field of characteristic 2”. The monograph, consisting of six chapters, is divided into two parts. A central topic is the Hochschild cohomology ring of an algebra. This ring has great influence in many diverse areas of mathematics such as commutative algebra, ring theory, commutative and noncommutative geometry, representation theory, mathematical physics, … Also, its multiplicative structure is closely related to the study of module varieties and its Yoneda algebra. The definition of the ring is quite simple , however, only little information is known. Moreover, in most of the cases is extremely difficult the computation. Our main contribution consists of an explicit description, by means of generators and relators, of the multiplicative structure of the Hochschild cohomology ring of the finite dimensional mesh algebras of type Ln and Bn. Our conclusions are surprising since they show big differences in the behavior of this ring associated not only to two different algebras but also to the same one. On the other hand, we deal with the homological properties of symmetry, period and Calabi-Yau dimension of finite dimensional mesh algebras. We first consider the symmetry and, as a result, we identify those algebras being weakly symmetric and those which are in turn symmetric. Despite of the fact that it is well known that finite dimensional mesh algebras are periodic, the precise calculation of the period is only known in a few cases. In this thesis, we explicitly compute the period of any of this algebras. Finally, we deal with the Calabi-Yau notion, defined by M. Kontsevich in the late 90s and that has been intensively studied by many mathematicians in recent years. Our main result is the characterization of the stably Calabi-Yau and Calabi-Yau Frobenius finite dimensional mesh algebras. Moreover, in this case, we compute both dimensions showing that they need not to be equal, an unknown fact so far.
30

Bases de wavelets para la representación de funciones definidas sobre volúmenes

Boscardín, Liliana B. 17 October 2013 (has links)
El aporte principal de esta tesis es la de nición de wavelets sobre grillas tetraédricas no anidadas, lo que permite representar funciones de nidas sobre una tetraedrización irregular dada. La aplicación inmediata es la posibilidad de representar distintos atributos de nidos sobre un objeto como pueden ser su color, su brillo, su densidad, etc. En general, un objeto 3D admite una representación mediante una red tetraédrica no anidada sobre la cual están de nidas algunas propiedades del objeto. Esta representaci ón consiste de un conjunto de coe cientes correspondientes a una aproximación gruesa seguida por una sucesión de coe cientes de detalle que, en el caso clásico, miden el error entre dos aproximaciones sucesivas. En esta tesis se hallan la matriz de análisis que permite pasar de una resolución fina a una más gruesa y la de síntesis, necesaria para pasar de una resolución gruesa a una más fina, todo en el marco de grillas tetraédricas no anidadas. En este trabajo se resuelve entonces el problema que se presenta en Computación Gráfica cuando se quiere representar alguna propiedad que posee un objeto representado por una grilla que se reina de manera irregular. Para ilustrar esta aplicación se desarrolla un ejemplo en el cual se define un operador proyección sobre una tetraedrización dada y se hallan las matrices de análisis y de síntesis para dos resoluciones consecutivas. / The main contribution of this thesis is the definition of wavelets over non nested tetrahedral grids, allowing the representation of functions defined on an irregular tetrahedrization. In this way, it is possible to represent diferent attributes of a 3D object such as its color, brightness, density, etc. In general, a 3D object can be represented using a non nested tetrahedral grid over which some of its properties are defined. This representation consists of a set of coef- ficients corresponding to a coarse resolution followed by a set of detail coeficients that measure the error between two successive approximations in the classic wavelet theory. In this thesis the analysis matrix that allows going from a fine to a coarser resolution and the synthesis matrix needed for going from a coarse resolution to a finer one, are found. All this is within the framework of non nested tetrahedral grids. In this work is then completely solved the problem that appears in Graphic Computing when it is desired to represent a property of a given 3D object modeled by a tetrahedral grid irregularly refined. In order to illustrate the developed work, an example of a projection operator defined over an irregular tetrahedrization, together with the analysis and synthesis matrices that allow going from one resolution to the next are given.

Page generated in 0.0802 seconds