• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 14
  • 11
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 137
  • 137
  • 46
  • 43
  • 27
  • 25
  • 23
  • 22
  • 22
  • 21
  • 20
  • 20
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Synergistic effects of neutrons and plasma on materials in fusion reactors & relaxation of merging magnetic flux ropes in fusion and solar plasmas

Hussain, Asad January 2018 (has links)
This thesis comprises of essentially two parts. The first deals with materials in a fusion reactor and examines how neutron damage affects material in a fusion reactor, with focus on how this is important for plasma damage. The methods used are neutron transport, primary event analysis and molecular dynamics. It found that the neutron damage by 14 MeV neutrons is restricted to back scatter events within the surface (first 20 microns). Molecular dynamics analysis showed that the issue of cascades is heavily dependent on direction of primary event and the energy of such. Statistical analysis was done to provide a standard approach for modelling of damage through neutrons. The second deals with the relaxation of magnetic flux ropes with an emphasis on kink unstable flux ropes. A relaxation model was developed which shows good approximation to simulation results of merging magnetic flux ropes. Subsequently, work was done to establish the physical processes involved in relaxation. This was done by examining magnetohydrodynamic (MHD) simulations of two flux ropes, one unstable and one stable. It was found that there is is a clear distance at which merger does not occur any more. Furthermore, a critical current seems to be a requirement at the edge a stable flux rope.
72

L'impression 3D polymère appliquée au packaging en microélectronique / 3D printing technologies for Electronic devices packaging

Aspar, Gabrielle 01 February 2019 (has links)
Afin de répondre aux exigences industrielles, aux besoins environnementaux ainsi qu’aux contraintes de fonctionnement, les composants électroniques doivent être protégés et interconnectés avec les autres éléments du système. Cette étape est appelée « Packaging ». Cependant, les technologies de packaging classiques, telles que le scellement de boitier, le brasage ou le moulage, sont généralement limitées au niveau de la géométrie du boitier, des interactions matières et ont un impact significatif sur le coût et la complexité de l’encapsulation. De plus, ces techniques sont peu évolutives au cours du développement de produit. En effet, la technique de packaging doit être définie dès le début de la conception du produit, en fonction du composant à encapsuler et des performances attendues. Le choix du mode d’encapsulation conditionne ainsi le processus de réalisation et d’assemblage du système.Dans cette thèse, une nouvelle approche du packaging, plus simple, plus flexible et moins coûteuse, est présentée. La fabrication additive, plus connue sous le nom d’impression 3D, permet de construire un packaging personnalisé, parfaitement adapté aux dimensions et spécifications des composants. Cette approche, simplifie le procédé d’encapsulation en fusionnant les différentes étapes de fabrication du boitier, de mise en place et d’étanchéité. De plus, elle permet également d’encapsuler facilement des composants déjà existants (composant sur étagère, du commerce).Afin de valider la faisabilité d’un packaging directe par fabrication additive, cette étude s’est tenue à un objectif principal : comprendre les mécanismes d’adhésion physico-chimiques (mécanique, chimie, …) mis en jeu entre un polymère ABS imprimé par fabrication additive et un substrat. Pour cela, plusieurs axes de recherches ont été développés, tels que :- Le choix du procédé de fabrication additive, basé sur l’adhésion du polymère imprimé sur substrat et la résolution du procédé. Cet axe, nous a permis de sélectionner la stéréolithographie (technique de fabrication reposant sur la polymérisation localisée de résine spécifique, réactive aux UV).- Les mécanismes d’adhésion entre un polymère ABS et un substrat. Cet axe, basé sur la connaissance des matériaux, leurs caractérisations chimiques ainsi que la caractérisation physique de l’adhérence, a permis de comprendre les mécanismes d’adhésion mis en jeux lors d’une impression directe sur substrat.- Des études pour améliorer l’adhérence, basées sur différentes chimies (organique, métalliques, inorganique) et topographies de surfaces (rugosité de surfaces, texturations de surfaces réalisées par découpe partielle ou gravure).- La réalisation d’un démonstrateur opérationnel, basé sur l’encapsulation directe d’une puce avec un routage conducteur et des interconnexions électriques. Cet axe nous a permis de valider la compatibilité de l’encapsulation par impression 3D avec un composant électronique.En conclusion, notre étude démontre que l’encapsulation des dispositifs de microélectronique à base de silicium peut être réalisée par de nouvelles techniques, notamment celles de fabrications additives. / In order to answer to industrial requirements and to withstand environment and functioning stresses, electronic components have to be packaged. State of the art of packaging technologies, such as lid sealing, brazing and molding, usually presents shape limitations, material issues and significant cost impact. Moreover, those technics have to be specified at the beginning of the product design in order to fit with the whole package and assembly processes, without decreasing the device performances.A new approach used to build a specific packaging allowing flexibility, simplicity and cost competitiveness is presented. Using the polymer additive manufacturing, more usually known as 3D printing, we propose to build customized structures and packages perfectly fitting with component dimensions and specifications. This approach simplifies the packaging process by merging the steps of package manufacturing, die encapsulation onto its substrate, and sealing. Moreover, it permits to easily package and encapsulate components off-the-shelf.In order to validate the feasibility of direct packaging by additive manufacturing, this study focused on a main objective: to understand the physical and chemical adhesion mechanisms (mechanics, chemistry, ...) involved between an ABS polymer printed by additive manufacturing and a substrate. For this, several research axes have been developed, such as :- The choice of additive manufacturing process, based on the adhesion of the printed polymer on the substrate and the resolution of the process. This axis allowed us to select the stereolithography process (manufacturing technique based on polymerization of specifics UV-reactive resins).- The adhesion mechanisms between an ABS polymer and a substrate. This axis, based on materials knowledge, their chemical characterizations and physical characterization of the adhesion, leads us to understand the adhesion mechanisms that occurred during a direct printing on substrate.- Studies to improve adhesion, based on different chemistries (organic, metallic, inorganic) and surfaces topographies (roughness, surface patterns obtained by partial dicing or chemical etching).- The realization of an operational prototype, based on the direct encapsulation of a chip with a conductive routing and electrical interconnections. This axis allowed us to validate the compatibility of 3D printing encapsulation with an electronic component.In conclusion, our study demonstrates that the encapsulation of silicon-based microelectronic devices can be achieved by new techniques, including additive manufacturing.
73

Study Of Evaluation Of Texture And Microstructure During Different Modes Of Rolling And Annealing Of Two Phase α-β Brass

Garg, Rohini 10 1900 (has links)
It is well known that texture and microstructure play a crucial role in determining properties of metallic materials. The evolution of microstructure and texture during deformation and annealing of copper and some copper base alloys have been investigated to some extent. However, the knowledge about the role of the mode of deformation, particularly different variants of rolling deformation, is still very limited for deformation and annealing texture of two-phase copper alloys. Therefore it appeared important to study the influence of deformation path (in the present case, mode of rolling) on texture and microstructure in two-phase copper alloy Cu-40Zn alloy. Hot rolled bar of Cu-40Zn alloy (as-received material) was subjected to unidirectional and cross rolling ( multi-step cross-rolling) at room temperature with strain per pass (true strain) being constant for each step. In multi-step cross-rolling, the rolling direction was altered (rotated by 90°)after each pass. Strains corresponding to rolling reduction of 50% and 80% were given to as-received material through each of the different mode of rolling. In a second route, the as-received material was solution treated at 800°C for 4 hours first and then subjected to rolling in the same manner as above. A piece was cut from each of the as-rolled materials and was subjected to annealing at 560°C for one hour for recrystallization. The bulk textures were determined by measuring the pole figures at the center of the rolled as well as the annealed specimen using X-ray texture goniometer based on Schultz reflection geometry. Three dimensional texture analyses were carried out using the method of orientation distribution function(ODF). Micro-textures and associated microstructural parameters were determined using a Field Emission Gun Scanning Electron Microscope(FEG-SEM) operated at 20KV, equipped with Electron back scattering detector(EBSD). In the experimental material, texture was examined for both the α (fcc) and the β (ordered cubic) phases. In the present investigation, α phase of unidirectional rolled as-received material had Bs {011}<112> orientation as the strongest component whereas for multi-step cross rolled material P(BND) {011}<111> orientation had the maximum intensity, which could be obtained by rotating the Bs orientation and about ND.The texture development of β phase of as-received unidirectional rolled sample could be understood in terms of relaxed constraints Taylor model. The initial texture had a pronounced effect on texture development of α phase for solution treated alloy during deformation. This material exhibited very strong P(BND) {011}<111> orientation for unidirectional as well as for multi-step cross rolling. For cross rolled alloys, this orientation is promoted by two factors simultaneously, (i) initial texture and (ii) special attributes of cross rolling process. The volume fraction of cube oriented grains was very low for all recrystallized samples because of dominance of Bs orientation in the deformation texture plus formation of shear bands in the microstructure. The texture of β phase for unidirectionally rolled solution treated alloy got sharpened on annealing. However, strength of texture decreased with increasing deformation. Grain boundary (and CSL boundary) analyses were carried out with EBSD data. These analyses indicated that all the recrystallized samples had a high number of Σ3 boundaries. The proportion of Σ3 boundaries was higher in multi-step cross-rolled annealed material. The deformed material had higher number fraction of low angle boundary than any other special boundary. Solution treated material had an average grain size of α phase smaller than the as-received material. Another dimension of the present investigation was to characterize the microstructural features in three dimension(3D) in order to examine the morhphology of constituent phases using serial sectioning. In the present work, 3D studies were carried out on the alloy after post deformation annealing. The alignment of serial section images and generation of 3D image out of the stack of 2D images was carried out through standard software. The same was used to measure the suitable 3D microstructural parameters from the 2D sections. Three dimensional microstructural parameters like mean caliper diameter of β particle, number of β particles per unit volume ‘Nv’, surface to volume ratio for β phase particles (α- β interface) ‘Sv’, were calculated. Number of β particle intercepts per unit area ‘NA’ was determined by measuring number of β phase particle in each section. The volume of a β particle as calculated from the caliper diameter using three-dimensional microstructural analysis, which could not get directly determined with conventional two-dimensional microscopy.
74

3. Dresdner Werkstoffsymposium

12 February 2013 (has links) (PDF)
Das 3. Dresdner Werkstoffsymposium wurde am 6./7. Dezember im Westin Bellevue Hotel Dresden abgehalten. Das Thema lautete "Werkstoffoberflächen für Mensch und Technik".
75

Material science and garment technology towards circular economies within the fashion industry

Lina, Wahrer January 2015 (has links)
There has been an increase of the consumption rate and consumers are buying garments that they dispose in too early of a stage of the product lifecycle. This has caused an increase regarding landfill of waste. The aspect of implementing environmental oriented material science and garment technology has not been taken into consideration in the design process, something that quickly became an issue when the consumption rate increased. Therefore it is essential to rethink and restructure the business models applied today. The implementation of a circular economy, which focuses on giving textiles and garments a second life and basing production on used fibres whilst not harming the natural resources in the process, is a good start of the long journey to recovery which lies ahead. Both fast fashion companies and premium lifestyle brands are nowadays applying and integrating new business models into their daily operations, Tommy Hilfiger is an example of such a company. Purpose: The purpose of this thesis is to explore the relationship between material science, garment technology and the concept of circular economies from a premium lifestyle brand perspective The researcher will explore how material science and garment technology can prevent faulty items and short product lifecycles. Furthermore, the researcher will investigate how a company develops underwear collections with regards to material science, garment technology, and the concept of circular economies. The company Tommy Hilfiger will be implemented as an exponent throughout this report. Research questions: • What is the relationship between material science, garment technology, and the concept of circular economies? • What does a premium lifestyle brand take into consideration regarding the concept of circular economies when developing a collection of underwear? Methodology: This thesis was conducted by applying a qualitative method and by implementing a deductive approach. The gathering of secondary data was done through assembling suitable concepts and theories. The researcher collected the primary data through a participating observation and four qualitative interviews. The participating observation corresponded of an internship at the European headquarters of Tommy Hilfiger in Amsterdam, Netherlands. The researcher executed the interviews via email with key people within the departments of Design, Production, Central Sourcing and Production, and Corporate Responsibility. Conclusion: Material science and garment technology are correlated given that the choice of material and manufacturing technique utilized in production determines the durability and sustainability level of the fabric output. Therefore the two concepts are further correlated to the product aspect, which can enable a closed textile value chain loop, of a circular economy based business model. A premium lifestyle brand takes the aspects of design out waste, build resilience through diversity, work towards using energy from renewable sources, and think in consecutive processes into consideration regarding the concept of circular economies when developing a collection of underwear.
76

Studies of Oxygen Reduction Electrocatalysts Enhanced by Dealloying

Liu, Gary Chih-Kang 22 August 2011 (has links)
Dealloying refers to the partial, selective dissolution of the less noble component(s) of a binary or ternary alloy precursor, resulting in a noble-rich, porous structure that has high surface area. Such surface structure is beneficial for fuel cells (FC) because FC uses platinum (Pt), a scarce metal, to catalyze the oxygen reduction reaction (ORR) at the cathode surface. In order to characterize the benefit of the dealloying process in FC ORR catalysts with the rotating disk electrode (RDE) technique, a high surface area catalyst support, namely 3M Co’s nanostructured thin film (NSTF), was incorporated into the RDE measurements. NSTF-coated glassy carbon (GC) disks were used in RDE experiments on a Pt/Pt1-xIrx (0.05 < x < 0.3) composition spread. ORR measurements using NSTF-coated GC disks measure the catalytic properties with the same morphology, composition and surface structure as would be found in a fuel cell. A series of Pt1-xCox and Pt1-xNix (0.5 < x < 0.8) dealloy catalyst precursor films were tested using NSTF-coated GC disks in RDE studies. The value of x in Pt1-xMx (M = Ni, Co) was selected to be high in order to examine the dealloying process. The catalyst films were examined by a RDE test protocol that tracked the surface enhancement factor (SEF) and ORR current densities over a large number of test cycles. The aim was to measure the catalytic performance of the Pt-M materials as dealloying took place. The SEF of the PtCo and PtNi materials increased rapidly at the beginning and reached a plateau as high as 50 cm2/cm2 while the specific ORR activities increased as the initial M content in the catalyst precursor increased. The impact of the dealloying process on morphology was examined by completely dealloying a Pt3Ni7 precursor, deposited on mirror-polished GC disks, at a constant potential. As the dealloying process continued, the SEF of the material increased from about 1 cm2/cm2 to > 30 cm2/cm2 and resulted in the formation of whisker-like structures.
77

Zusammenstellung der Abstracts der Posterbeiträge

12 February 2013 (has links) (PDF)
Im Volltext enthalten sind alle Abstracts der Posterbeiträge, die im Rahmen des 3. Dresdner Werkstoffsymposium präsentiert wurden.
78

Zusammenstellung der Abstracts der Vorträge

12 February 2013 (has links) (PDF)
Im Volltext enthalten sind ausgewählte Abstracts der Vorträge, die im Rahmen des 3. Dresdner Werkstoffsymposium gehalten wurden.
79

Χρονικός προγραμματισμός εκπαιδευτικών ιδρυμάτων με χρήση ακέραιου προγραμματισμού και τεχνικών δυναμικής δημιουργίας μεταβλητών

Παπουτσής, Κωνσταντίνος Χ. 15 July 2010 (has links)
- / -
80

Analyse de la microstructure des matériaux actifs d'électrode positive de batteries Lithium-ion / Analysis of the behavior of nanostructured materials composing the new generation of Li-ion batteries

Cabelguen, Pierre-Etienne 06 December 2016 (has links)
Ce travail de thèse se base sur quatre matériaux modèles, de composition LiNi1/3Mn1/3Co1/3O2, qui différent de par leur microstructure. Le lien entre leur morphologie et les performances électrochimiques est étudié par la combinaison de la caractérisation exhaustive de leur microstructure, l’étude de leur comportement en batterie et la modélisation de leur réponse électrochimique. L’étape limitant le processus électrochimique est identifiée par voltampérométrie cyclique et nous montrons que la transition attendue d’une limitation par le transfert de charge à une limitation par la diffusion en phase solide a lieu à différents régimes selon la microstructure. Ce comportement est expliqué par l’utilisation d’outils de simulations numériques. Selon leur forme et leur agglomération, les cristallites agissent collectivement ou indépendamment les unes des autres. Ces résultats rationalisent les performances en puissance obtenues sur nos matériaux. Les résultats de simulation montrent également qu’une faible fraction de la surface développée est électroactive, ce qui remet en question la large utilisation de la surface BET dans la littérature. Nous montrons également que, si les matériaux poreux sont les plus performants en puissance gravimétrique, la tendance est inversée pour la puissance volumique. Les stratégies de nanostructuration largement employées, qui se basent sur la capacité spécifique pour caractériser les matériaux, ne doivent pas oublier faire oublier le compromis nécessaire entre surface développée et volume. / Four NMC materials are synthesized by co-precipitation. They exhibit a hierarchical architecture made of reasonably spherical agglomerates. One is constituted of flake-shaped, spatially oriented, crystallites that leave large apparent void spaces in the agglomerate, while the other results from the tight agglomeration of micron-sized cuboids. Porous material exhibits the best power performances. It is impossible to identify a geometrical parameter that predict performances, even after achieving the full characterization of the microstructures. Cyclic voltammetry reveals two behaviours depending on the shape of crystallites: processes limited by solid-state diffusion (cuboids) and the ones limited by charge transfer even at high rates (flake-shaped). This observation challenges active materials design strategies that assume diffusion as the limiting process of lithium intercalation. Focusing on enhancing kinetics could be the way to increase performances. Charge-transfer is first investigated by measuring electronic conductivities over a wide range of frequencies, allowing to discriminate relaxations arising at various length scales. We show that flake-shaped crystallites facilitate the motion of electrons at all scale levels compared to cuboids. Charge-transfer limitations originate from the electrolyte/material interface in materials exhibiting high surface areas. Numerical simulations reveal that BET measurements largely overestimate the actual electroactive surface, which is understood by HRTEM images of flake-shaped crystallites. Only a small percentage, limited to the edge plane is truly electroactive.

Page generated in 0.0638 seconds