Spelling suggestions: "subject:"amathematical physics."" "subject:"dmathematical physics.""
411 |
Modèles intégrables avec fonction twist et modèles de Gaudin affines / Integrable models with twist function and affine Gaudin modelsLacroix, Sylvain 04 July 2018 (has links)
Cette thèse a pour sujet une classe de théories des champs intégrables appelées modèles avec fonction twist. Les principaux exemples de tels modèles sont les modèles sigma non-linéaires intégrables, tel le Modèle Principal Chiral, et leurs déformations. Un premier résultat obtenu est la preuve que le modèle dit de Bi-Yang-Baxter, qui est une déformation à deux paramètres du Modèle Principal Chiral, est lui aussi un modèle avec fonction twist. Il est ensuite montré que les déformations de type Yang-Baxter modifient certaines symétries globales du modèle non déformé en symétries de Poisson-Lie. Un autre chapitre concerne la construction d'une infinité de charges locales en involution pour tous les modèles sigma intégrables et leurs déformations : ce résultat repose sur le formalisme général partagé par tous ces modèles en tant que théories des champs avec fonction twist.La seconde partie de la thèse a pour sujet les modèles de Gaudin. Ceux-ci sont des modèles intégrables associés à des algèbres de Lie. En particulier, les théories des champs avec fonction twist sont liées aux modèles de Gaudin associés à des algèbres de Lie affines. Une approche standard pour l'étude du spectre des modèles de Gaudin quantiques sur des algèbres finies est celle de Feigin-Frenkel-Reshetikhin. Dans cette thèse, des généralisations de cette approche sont conjecturées, motivées et testées. L'une d'elles concerne les modèles de Gaudin finis dits cyclotomiques. La seconde porte sur les modèles de Gaudin associés à des algèbres affines. / This thesis deals with a class of integrable field theories called models with twist function. The main examples of such models are integrable non-linear sigma models, such as the Principal Chiral Model, and their deformations. A first obtained result is the proof that the so-called Bi-Yang-Baxter model, which is a two-parameter deformation of the Principal Chiral Model, is also a model with twist function. It is then shown that Yang-Baxter type deformations modify certain global symmetries of the undeformed model into Poisson-Lie symmetries. Another chapter concerns the construction of an infinite number of local charges in involution for all integrable sigma models and their deformations: this result is based on the general formalism shared by all these models as field theories with twist function.The second part of the thesis concerns Gaudin models. These are integrable models associated with Lie algebras. In particular, field theories with twist function are related to Gaudin models associated with affine Lie algebras. A standard approach for studying the spectrum of quantum Gaudin models over finite algebras is the one of Feigin-Frenkel-Reshetikhin. In this thesis, generalisations of this approach are conjectured, motivated and tested. One of them deals with the so-called cyclotomic finite Gaudin models. The second one concerns the Gaudin models associated with affine Lie algebras.
|
412 |
Entropia e informação de sistemas quânticos amortecidos / Entropy and information of quantum damped systemsLima Júnior, Vanderley Aguiar de January 2014 (has links)
LIMA JÚNIOR, Vanderley Aguiar de. Entropia e informação de sistemas quânticos amortecidos. 2014. 65 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2014. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-04-09T19:28:55Z
No. of bitstreams: 1
2014_dis_valimajunior.pdf: 987183 bytes, checksum: 660164955bb5a5c19b5d2d3bb2013a82 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-04-10T20:50:41Z (GMT) No. of bitstreams: 1
2014_dis_valimajunior.pdf: 987183 bytes, checksum: 660164955bb5a5c19b5d2d3bb2013a82 (MD5) / Made available in DSpace on 2015-04-10T20:50:41Z (GMT). No. of bitstreams: 1
2014_dis_valimajunior.pdf: 987183 bytes, checksum: 660164955bb5a5c19b5d2d3bb2013a82 (MD5)
Previous issue date: 2014
|
413 |
Estrutura algébrica de hierarquias integráveis e problemas de valor de contornoFrança, Guilherme Starvaggi [UNESP] 09 December 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:09Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-12-09Bitstream added on 2014-06-13T19:25:51Z : No. of bitstreams: 1
franca_gs_dr_ift.pdf: 535273 bytes, checksum: edf04248b447d90dd177d59543bbdce5 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Nesta tese abordamos dois problemas. O primeiro trata-se do problema de condição de contorno para hierarquias integráveis. Através do método de dressing, que foi utilizado com êxito para construir soluções do tipo sóliton com condição de contorno nula, propomos uma abordagem geral para resolver o problema com condição de contorno não nula, onde o vácuo possui uma configuração de campos não trivial. Aplicamos então este método, para as hierarquias mKdV e AKNS com condição de contorno constante. Introduzimos operadores de vértice que incorporam a condição de contorno do problema, generalizando os operadores de vértice utilizados anteriormente. Quando o vácuo tende a zero, recuperamos os resultados conhecidos com condição de contorno nula. Soluções interessantes como dark sólitons, table-top sólitons, kinks, breathers e wobbles são obtidas para todas as equações da hierarquia mKdV. Introduzimos também, uma deformação integrável da hierarquia mKdV que contém a equaçãoo de Gardner. Soluções com condição de contorno nula desta hierarquia estão relacionadas com soluções de vácuo não trivial da hierarquia mKdV. O segundo problema consiste numa generalização da construção Lie algébrica da equação curvatura nula. A construção usual foi motivada pela estrutura dos modelos de Toda afim e é capaz de gerar as hierarquias mKdV/sinh-Gordon e AKNS/Lund-Regge. Propomos uma generalização que contém, além destas, outras hierarquias integráveis como as hierarquias de Wadati-Konno-Ichikawa (WKI) e Kaup-Newell (KN). Estas hierarquias contém modelos interessantes e alguns deles não foram suficientemente estudados, especialmente os de fluxo negativo. Mostramos que equações... / In this thesis we approach two distinct problems. The first one deals with boundary value problems for integrable hierarchies. Through the dressing method, which was successfully employed in the construction of vanishing boundary soliton solutions, we propose an algebraic approach to solve the nonvanishing boundary value problem where the vacuum has a nontrivial field configuration. We apply the proposed method to the mKdV and AKNS hierarchies with a constant boundary value. We introduce vertex operators that takes into account the boundary condition, generalizing previous known vertex operators. When the vacuum tends to zero, we recover previous known results with vanishing boundary condition. Interesting solutions arises like dark solitons, table-top solitons, kinks, breathers and wobbles for the whole mKdV hierarchy. We also introduce an integrable deformation of the mKdV hierarchy containing the Gardner equation. Solutions of this deformed hierarchy are related with nontrivial vacuum solutions of the mKdV hierarchy. The second problem consists in a generalization of the Lie algebraic structure of the zero curvature equation. The usual construction was motivated by affine Toda field theories and can generate the mKdV/sinh-Gordon and AKNS/Lund-Regge hierarchies. We propose a new construction that contains, besides them, other integrable hierarchies like the Wadati-Konno-Ichikawa (WKI) and Kaup-Newell (KN). We show that interesting models like the short-pulse equation recently proposed by Schafer-Wayne and the bosonic Thirring model, arise naturally from this construction. Moreover, this construction embraces a larger class of models into a systematic algebraic... (Complete abstract click electronic access below)
|
414 |
A gauge theory for continuous spin particles / Teoria de gauge para partículas com spin contínuoLeonardo Werneck de Avellar 12 May 2016 (has links)
In this dissertation we explore the features of a Gauge Field Theory formulation for continuous spin particles (CSP). To make our discussion as self-contained as possible, we begin by introducing all the basics of Group Theory - and representation theory - which are necessary to understand where the CSP come from. We then apply what we learn from Group Theory to the study of the Lorentz and Poincaré groups, to the point where we are able to construct the CSP representation. Finally, after a brief review of the Higher-Spin formalism, through the Schwinger-Fronsdal actions, we enter the realm of CSP Field Theory. We study and explore all the local symmetries of the CSP action, as well as all of the nuances associated with the introduction of an enlarged spacetime, which is used to formulate the CSP action. We end our discussion by showing that the physical contents of the CSP action are precisely what we expected them to be, in comparison to our Group Theoretical approach. / Nesta dissertação exploramos as características da formulação de uma Teoria de Gauge para partículas de spin contínuo (CSP). Para tornar a nossa discussão o mais auto-contida possível, começamos por introduzir todas as informações básicas de Teoria de Grupos - assim como de Teoria de Representações - que são necessárias para enteder de onde surgem as CSPs. A partir daí aplicamos o que foi apresentado sobre Teoria de Grupos para o estudo dos grupos de Lorentz e de Poincaré, até o ponto em que conseguimos construir a representação CSP. Finalmente, após uma rápida revisão do formalismo de spin altos (Higher Spins), através do estudo das ações de Schwinger-Fronsdal, damos início ao estudo de uma Teoria de Campos para CSPs. Estudamos e exploramos todas as simetrias locais da ação que descreve uma CSP livre, assim como todas as sutilezas que surgem a partir da introdução de uma nova coordenada, que resulta em um espaço-tempo estendido no qual a ação é definida. Terminamos nossa discussão mostrando que todo o conteúdo físico decorrente da ação para uma CSP livre coincide com o que vimos em nossa discussão de Teoria de Grupos.
|
415 |
O modelo de Landau-Lifshitz e a integrabilidade em teoria de cordas / The Landau-Lifshitz model and the integrability in string theoryGabriel Weber Martins 17 November 2011 (has links)
Nesta tese, estudamos a integrabilidade quântica de modelos contínuos relevantes no contexto da quantização da supercorda do tipo IIB em AdS5 x S5, e, conseqüentemente, de interesse para a demonstração e uma melhor compreensão da correspondência AdS/CFT. Para os modelos de Landau-Lifshitz e de Alday-Arutyunov-Frolov, calculamos as amplitudes de espalhamento para três partículas e mostramos a fatorabilidade de suas matrizes S em primeira ordem não-trivial. Propomos também um novo método para a quantização de sistemas integráveis contínuos no exemplo do modelo de Landau-Lifshitz su(1;1). Nosso método fornece uma solução alternativa para o problema do ordenamento operatorial, bem como uma prescrição para a dedução das identidades de traço e do espectro das cargas quânticas conservadas. Ademais, mostramos que, por ser baseado em um processo de regularização e renormalização operatorial, concomitante à construção das extensões auto-adjuntas, a integrabilidade é preservada durante a quantização. / In this thesis, we study the quantum integrability of continuous models which arise from consistent truncations of type IIB superstring theory on AdS5 X S5, and, therefore are relevant for improving our current understanding of the AdS/CFT correspondence. For the Landau-Lifshitz and the Alday-Arutyunov-Frolov models, we compute the three-particle scattering amplitude and show the factorizability of the corresponding S matrices at the first non-trivial order. We also propose a new method for quantizing continuous integrable systems and apply it to the su(1;1) Landau-Lifshitz model. Our method provides an alternative solution to the longstanding operator ordering problem and gives a prescription to obtain the quantum trace identities, and the spectrum for the higher-order local charges. Moreover, since it is based on operator regularization and renormalization, as well as on the construction of the self-adjoint extensions, the integrability is preserved during the quantization process
|
416 |
Natação em espaços curvos via teoria de calibre / A gauge theory approach to the swimming in curved spaces problemNascimento, Danilo Borim do 16 August 2018 (has links)
Orientador: Ricardo Antonio Mosna / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T04:10:22Z (GMT). No. of bitstreams: 1
Nascimento_DaniloBorimdo_M.pdf: 2195612 bytes, checksum: 9db76fa3dc3fca1c9128da411fe240b5 (MD5)
Previous issue date: 2010 / Resumo: No espaço euclidiano, deformações de corpos quase-rígidos podem gerar rotações globais líquidas que obedecem, em cada instante, a lei de conservação do momento angular (o problema do gato caindo é um exemplo). Em espaços curvos, um ciclo de deformações de um corpo pode gerar não só rotações, mas também translações globais. Este fenômeno é conhecido como efeito swimming, ou natação. Avron e Kenneth apresentaram recentemente um modelo físico para descrever este fenômeno [Avron JE, Kenneth O, New J. Phys. 8, 68 (2006)]. Os autores tratam de corpos compostos por um conjunto de massas puntiformes em variedades estáticas (no contexto não-relativístico) e calculam o deslocamento obtido por um ciclo de deformações infinitesimais. Tal deslocamento é então relacionado, no caso de corpos pequenos, à curvatura do espaço ambiente. Nesta dissertação, propomos uma nova formulação para o efeito swimming utilizando formalismo de fibrados e conexões. O espaço de configurações do sistema é descrito como o espaço total de um fibrado principal, cujo espaço base é dado pelo espaço dos formatos do sistema e o grupo estrutural é (essencialmente) dado pelas isometrias da variedade ambiente. Dotando o fibrado de uma conexão que carrega consigo a informação sobre as leis físicas de conservação, expressamos o ciclo de deformações como uma curva fechada no espaço base, o movimento do corpo como o levantamento horizontal desta curva e o deslocamento resultante como a holonomia da mesma. Por meio deste formalismo, sistematizamos o cálculo do deslocamento gerado por ciclos de deformações arbitrárias, além de obter, em cada instante e analiticamente, a evolução temporal do sistema em questão / Abstract: In Euclidean space, cyclic deformations of quasi-rigid bodies can lead to net global rotations even though they satisfy, at each moment, the angular momentum conservation law (the falling cat problem is an example). In curved spaces, cyclic changes in the body shape can also lead to rotations, but also to global translations. This phenomenon is known as the swimming effect. In a recent work, Avron and Kenneth developed a formalism to describe this phenomenon in the non-relativistic context [Avron JE, Kenneth O, New J. Phys. 8, 68 (2006)], which may be used to calculate the net displacement caused by an infinitesimal cycle of deformations of a given body. This displacement is then related, for small swimmers, to the curvature of the ambient space. In the present work, we propose a new formulation for the swimming effect in terms of principal bundles and connections. The configuration space of the system is described by the total space of a principal bundle, whose base space is given by the space of shapes of the body and whose structural group is (essentially) given by the isometries of the ambient manifold. A given deformation cycleof the body then corresponds to a loop in the base space. By defining a connection in this bundle which conveys the physical conservation laws of the system, the corresponding physical motion of the body is then given by the horizontal lift of this curve in the base space, while the net displacement of the body is given by the holonomy associated with this loop. As a result we obtain, in a systematical way, the displacement generated by arbitrary deformation cycles and we get, for each instant of time, the time evolution of the system analytically / Mestrado / Geometria e Topologia / Mestre em Matemática
|
417 |
Quantum Hall Ferromagnetism in Multicomponent Systems / Ferromagnétisme de Hall quantique dans les systèmes multicomposantesKnothe, Angelika Hildegard 10 October 2017 (has links)
Cette thèse traite des systèmes de Hall quantiques en deux dimensions, dans lesquels les électrons peuvent porter plusieurs degrés de liberté discrets différents. Le ferromagnétisme de Hall quantique fournit une manière de traiter ces degrés de liberté électroniques comme des spins et isospins effectifs des électrons. Les différentes phases du système correspondent alors à différents ordres de spin ou d'isospin. En exploitant cette analogie, nous explorons différents aspects des systèmes bi-dimensionnels dans le régime de Hall quantique en étudiant la structure correspondante des spins et isospins. Ce travail consiste en trois parties qui analysent différents matériaux bi-dimensionnels dans le régime de l'effet Hall quantique. Dans chaque projet, nous utilisons la théorie de Hartree-Fock pour étudier le système à plusieurs composantes de spin et d'isospin dans l'approximation de champ moyen. Toutes nos considérations sont directement stimulées par des résultats expérimentaux. Notre motivation principale est d'obtenir une compréhension plus profonde des processus physiques et des mécanismes qui déterminent les propriétés des matériaux à partir d'investigations exclusivement théoriques de modèles abstraits. Nous espérons que cela permettra par la suite de tirer des conclusions sur les expériences, de donner des explications aux phénomènes observés ainsi que de donner des perspectives pour des investigations futures. / The present thesis deals with two-dimensional quantum Hall systems in which the electrons may be endowed with multiple discrete degrees of freedom. Quantum Hall ferromagnetism provides a framework to treat these electronic degrees of freedom as effective spins and isospins of the electrons. Different orderings of the electronic spins and isospins then characterise different possible phases of the system. Using this analogy, various aspects of the two-dimensional systems in the quantum Hall regime are explored theoretically by studying the corresponding spin and isospin structure. The work consists of three parts in which different two-dimensional materials are investigated in the quantum Hall regime. In any of the three projects presented within this thesis, Hartree Fock theory is employed to study the multicomponent spin and isospin system at the mean field level. All our considerations are stimulated directly by experimental results. We draw our main motivation from the key idea that purely theoretical investigations of abstract models may us allow to obtain deeper insights into the physical processes and mechanisms that determine the properties of the materials. This, in turn, we hope to allow conclusions about the experiments by providing possible explanations of the phenomena observed, as well as prospects for future investigations.
|
418 |
ON THE GAUDIN AND XXX MODELS ASSOCIATED TO LIE SUPERALGEBRASChenliang Huang (9115211) 28 July 2020 (has links)
We describe a reproduction procedure which, given a solution of the gl(m|n) Gaudin Bethe ansatz equation associated to a tensor product of polynomial modules, produces a family P of other solutions called the population. <br>To a population we associate a rational pseudodifferential operator R and a superspace W of rational functions. <br><br>We show that if at least one module is typical then the population P is canonically identified with the set of minimal factorizations of R and with the space of full superflags in W. We conjecture that the singular eigenvectors (up to rescaling) of all gl(m|n) Gaudin Hamiltonians are in a bijective correspondence with certain superspaces of rational functions.<br><br>We establish a duality of the non-periodic Gaudin model associated with superalgebra gl(m|n) and the non-periodic Gaudin model associated with algebra gl(k).<br><br>The Hamiltonians of the Gaudin models are given by expansions of a Berezinian of an (m+n) by (m+n) matrix in the case of gl(m|n) <br>and of a column determinant of a k by k matrix in the case of gl(k). We obtain our results by proving Capelli type identities for both cases and comparing the results.<br><br>We study solutions of the Bethe ansatz equations of the non-homogeneous periodic XXX model associated to super Yangian Y(gl(m|n)).<br>To a solution we associate a rational difference operator D and a superspace of rational functions W. We show that the set of complete factorizations of D is in canonical bijection with the variety of superflags in W and that each generic superflag defines a solution of the Bethe ansatz equation. We also give the analogous statements for the quasi-periodic supersymmetric spin chains.<br>
|
419 |
Zeta Function Regularization and its Relationship to Number TheoryWang, Stephen 01 May 2021 (has links)
While the "path integral" formulation of quantum mechanics is both highly intuitive and far reaching, the path integrals themselves often fail to converge in the usual sense. Richard Feynman developed regularization as a solution, such that regularized path integrals could be calculated and analyzed within a strictly physics context. Over the past 50 years, mathematicians and physicists have retroactively introduced schemes for achieving mathematical rigor in the study and application of regularized path integrals. One such scheme was introduced in 2007 by the mathematicians Klaus Kirsten and Paul Loya. In this thesis, we reproduce the Kirsten and Loya approach to zeta function regularization and explore more fully the relationship between operators in physics and classical zeta functions of mathematics. In so doing, we highlight intriguing connections to number theory that arise.
|
420 |
Hypernuclear bound states with two /\-ParticlesGrobler, Jonathan 11 1900 (has links)
The double hypernuclear systems are studied within the context of the
hyperspherical approach. Possible bound states of these systems are sought
as zeros of the corresponding three-body Jost function in the complex energy
plane. Hypercentral potentials for the system are constructed from known
potentials in order to determine bound states of the system. Calculated
binding energies for double- hypernuclei having A = 4 − 20, are presented. / Physics / M.Sc. (Physics)
|
Page generated in 0.1415 seconds