• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 16
  • 6
  • 1
  • Tagged with
  • 44
  • 44
  • 29
  • 16
  • 14
  • 13
  • 11
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Lärares matemtikundervisning och hur den kan stödja elevers utveckling av resonemangsförmågan i årskurs 2-3 : En intervjustudie i lärares uppfattningar av matematiska resonemang och hur de organiserar undervisningen för att främja förmågan att föra och följa matematiska resonemang / Teachers’ mathematical education and how it can support students’ development of reasoning ability in grades 2-3 : An interview study about teachers’ perceptions of mathematical reasoning and how they organize lessons to foster the ability to make and follow mathematical reasoning

Andersson Rosenkvist, Emma, Coughlin, Nathalie January 2023 (has links)
Syftet med denna studie är att undersöka hur lärare ser på förmågan att föra och följa matematiska resonemang och hur lärares matematikundervisning kan organiseras för att möjliggöra för elever att främja denna förmåga. Vi har använt oss av ett ramverk beskrivet av Herbert m.fl. (2015) om lågstatielärares uppfattning om matematiska resonemang. Vi har även utformat ett eget ramverk baserat på vad forskning visar främjar elevers matematiska resoenamngsförmåga och utifrån det genomfört en deduktiv innehållsanalys. Genom semisturkturerade intervjuer har 12 lärare i årskurs 2-3 gett sin syn på matematiska resonemang och hur de organiserar undervisningen för att främja elevers matematiska resonemangsförmåga. Resultatet visar att lärare ser resoneamng som svårdefinerat men att de ändå bedriver en undervisning som möjliggör för eleverna att främja denna förmåga. Vidare visade resultatet att undervisningen lärarna bedrev visade på djupare uppfattning av matematiska resonemang än vad de själva uttryckte. Däremot ser de flesta lärare att matematikboken inte ger eleverna möjlighter till matematiska resonemang. Några lärare lyfter materialet Sluta räkna-serien av Ulla Öberg som särskilt gynnsamt för att utveckla elevers matematiska resonemangsförmåga. Det som dominerar lärarnas undervisning i arbetet med matematiska resonemang är problemlösning, öppna uppgifter, arbete i par eller grupp samt arbete med konkret material. / The aim of this study is to examine how teachers view the ability to make and follow mathematical reasoning and how teachers' mathematical lessons can be organized to enable students to develop this ability. We have used the framework described by Herbert et al. (2015) for primary teachers' perceptions of mathematical reasoning. We have also created our own framework based on what research shows fosters students' matehematical reasoning ability and based on this made a deductive content analysis. Through semi-structured interviews 12 teachers in grades 2-3 gave their views on mathematical reasoning and how they organize their lessons to foster students' mathematical reasoning ability. The results show that teachers view reasoning as hard to define but that they still conduct lessons that make it possible for students to foster this ability. Furtthermore, the results show that the lessons the teachers conduct show a higher perception of mathematical reasoning than what they themselves express. Most of the teachers express that the mathematical textbook does not give students the possibility for mathematical reasoning. Some teachers mention the material Sluta räkna-serien by Ulla Öberg as especially effective to foster students' mathematical reasoning ability. What dominates the teachers' lessons when working with mathematical reasoning are problem solving, open tasks, working in pairs or groups and working with concrete material.
42

Grade 11 mathematics learner's concept images and mathematical reasoning on transformations of functions

Mukono, Shadrick 02 1900 (has links)
The study constituted an investigation for concept images and mathematical reasoning of Grade 11 learners on the concepts of reflection, translation and stretch of functions. The aim was to gain awareness of any conceptions that learners have about these transformations. The researcher’s experience in high school and university mathematics teaching had laid a basis to establish the research problem. The subjects of the study were 96 Grade 11 mathematics learners from three conveniently sampled South African high schools. The non-return of consent forms by some learners and absenteeism during the days of writing by other learners, resulted in the subsequent reduction of the amount of respondents below the anticipated 100. The preliminary investigation, which had 30 learners, was successful in validating instruments and projecting how the main results would be like. A mixed method exploratory design was employed for the study, for it was to give in-depth results after combining two data collection methods; a written diagnostic test and recorded follow-up interviews. All the 96 participants wrote the test and 14 of them were interviewed. It was found that learners’ reasoning was more based on their concept images than on formal definitions. The most interesting were verbal concept images, some of which were very accurate, others incomplete and yet others exhibited misconceptions. There were a lot of inconsistencies in the students’ constructed definitions and incompetency in using graphical and symbolical representations of reflection, translation and stretch of functions. For example, some learners were misled by negative sign on a horizontal translation to the right to think that it was a horizontal translation to the left. Others mistook stretch for enlargement both verbally and contextually. The research recommends that teachers should use more than one method when teaching transformations of functions, e.g., practically-oriented and process-oriented instructions, with practical examples, to improve the images of the concepts that learners develop. Within their methodologies, teachers should make concerted effort to be aware of the diversity of ways in which their learners think of the actions and processes of reflecting, translating and stretching, the terms they use to describe them, and how they compare the original objects to images after transformations. They should build upon incomplete definitions, misconceptions and other inconsistencies to facilitate development of accurate conceptions more schematically connected to the empirical world. There is also a need for accurate assessments of successes and shortcomings that learners display in the quest to define and master mathematical concepts but taking cognisance of their limitations of language proficiency in English, which is not their first language. Teachers need to draw a clear line between the properties of stretch and enlargement, and emphasize the need to include the invariant line in the definition of stretch. To remove confusion around the effect of “–” sign, more practice and spiral testing of this knowledge could be done to constantly remind learners of that property. Lastly, teachers should find out how to use smartphones, i-phones, i-pods, tablets and other technological devices for teaching and learning, and utilize them fully to their own and the learners’ advantage in learning these and other concepts and skills / Mathematics Education / D.Phil. (Mathematics, Science and Technology Education)
43

Grade 11 mathematics learner's concept images and mathematical reasoning on transformations of functions

Mukono, Shadrick 02 1900 (has links)
The study constituted an investigation for concept images and mathematical reasoning of Grade 11 learners on the concepts of reflection, translation and stretch of functions. The aim was to gain awareness of any conceptions that learners have about these transformations. The researcher’s experience in high school and university mathematics teaching had laid a basis to establish the research problem. The subjects of the study were 96 Grade 11 mathematics learners from three conveniently sampled South African high schools. The non-return of consent forms by some learners and absenteeism during the days of writing by other learners, resulted in the subsequent reduction of the amount of respondents below the anticipated 100. The preliminary investigation, which had 30 learners, was successful in validating instruments and projecting how the main results would be like. A mixed method exploratory design was employed for the study, for it was to give in-depth results after combining two data collection methods; a written diagnostic test and recorded follow-up interviews. All the 96 participants wrote the test and 14 of them were interviewed. It was found that learners’ reasoning was more based on their concept images than on formal definitions. The most interesting were verbal concept images, some of which were very accurate, others incomplete and yet others exhibited misconceptions. There were a lot of inconsistencies in the students’ constructed definitions and incompetency in using graphical and symbolical representations of reflection, translation and stretch of functions. For example, some learners were misled by negative sign on a horizontal translation to the right to think that it was a horizontal translation to the left. Others mistook stretch for enlargement both verbally and contextually. The research recommends that teachers should use more than one method when teaching transformations of functions, e.g., practically-oriented and process-oriented instructions, with practical examples, to improve the images of the concepts that learners develop. Within their methodologies, teachers should make concerted effort to be aware of the diversity of ways in which their learners think of the actions and processes of reflecting, translating and stretching, the terms they use to describe them, and how they compare the original objects to images after transformations. They should build upon incomplete definitions, misconceptions and other inconsistencies to facilitate development of accurate conceptions more schematically connected to the empirical world. There is also a need for accurate assessments of successes and shortcomings that learners display in the quest to define and master mathematical concepts but taking cognisance of their limitations of language proficiency in English, which is not their first language. Teachers need to draw a clear line between the properties of stretch and enlargement, and emphasize the need to include the invariant line in the definition of stretch. To remove confusion around the effect of “–” sign, more practice and spiral testing of this knowledge could be done to constantly remind learners of that property. Lastly, teachers should find out how to use smartphones, i-phones, i-pods, tablets and other technological devices for teaching and learning, and utilize them fully to their own and the learners’ advantage in learning these and other concepts and skills / Mathematics Education / D.Phil. (Mathematics, Science and Technology Education)
44

Implementing inquiry-based learning to enhance Grade 11 students' problem-solving skills in Euclidean Geometry

Masilo, Motshidisi Marleen 02 1900 (has links)
Researchers conceptually recommend inquiry-based learning as a necessary means to alleviate the problems of learning but this study has embarked on practical implementation of inquiry-based facilitation and learning in Euclidean Geometry. Inquiry-based learning is student-centred. Therefore, the teaching or monitoring of inquiry-based learning in this study is referred to as inquiry-based facilitation. The null hypothesis discarded in this study explains that there is no difference between inquiry-based facilitation and traditional axiomatic approach in teaching Euclidean Geometry, that is, H0: μinquiry-based facilitation = μtraditional axiomatic approach. This study emphasises a pragmatist view that constructivism is fundamental to realism, that is, inductive inquiry supplements deductive inquiry in teaching and learning. Participants in this study comprise schools in Tshwane North district that served as experimental group and Tshwane West district schools classified as comparison group. The two districts are in the Gauteng Province of South Africa. The total number of students who participated is 166, that is, 97 students in the experimental group and 69 students in the comparison group. Convenient sampling applied and three experimental and three comparison group schools were sampled. Embedded mixed-method methodology was employed. Quantitative and qualitative methodologies are integrated in collecting data; analysis and interpretation of data. Inquiry-based-facilitation occurred in experimental group when the facilitator probed asking students to research, weigh evidence, explore, share discoveries, allow students to display authentic knowledge and skills and guiding students to apply knowledge and skills to solve problems for the classroom and for the world out of the classroom. In response to inquiry-based facilitation, students engaged in cooperative learning, exploration, self-centred and self-regulated learning in order to acquire knowledge and skills. In the comparison group, teaching progressed as usual. Quantitative data revealed that on average, participant that received intervention through inquiry-based facilitation acquired inquiry-based learning skills and improved (M= -7.773, SE= 0.7146) than those who did not receive intervention (M= -0.221, SE = 0.4429). This difference (-7.547), 95% CI (-8.08, 5.69), was significant at t (10.88), p = 0.0001, p<0.05 and represented a large effect size of 0.55. The large effect size emphasises that inquiry-based facilitation contributed significantly towards improvement in inquiry-based learning and that the framework contributed by this study can be considered as a framework of inquiry-based facilitation in Euclidean Geometry. This study has shown that the traditional axiomatic approach promotes rote learning; passive, deductive and algorithmic learning that obstructs application of knowledge in problem-solving. Therefore, this study asserts that the application of Inquiry-based facilitation to implement inquiry-based learning promotes deeper, authentic, non-algorithmic, self-regulated learning that enhances problem-solving skills in Euclidean Geometry. / Mathematics Education / Ph. D. (Mathematics, Science and Technology Education)

Page generated in 0.1052 seconds