Spelling suggestions: "subject:"mathematics -- data processing."" "subject:"mathematics -- mata processing.""
11 |
Contribution à l'étude du raisonnement et des stratégies dans le diagnostic de dépannage des systèmes réels et simulésLuc, Françoise January 1991 (has links)
Doctorat en sciences psychologiques / info:eu-repo/semantics/nonPublished
|
12 |
Determination of systemic blood pressure via autospectral analysis of oscillometric dataWarner, Eugene Elie 01 January 1984 (has links)
The currently accepted methods for measuring systemic blood pressure are either highly accurate but invasive in nature or clinically convenient but prone to observer-related errors. A new oscillometric method uses sensitive signal conditioning and sensing equipment with a non-invasive arm cuff to record arterial pulsations. The goal of this study is to establish more reliable criteria for the identification of systolic and diastolic pressures from oscillometric data.
|
13 |
Development of methods for parallel computation of the solution of the problem for optimal controlMbangeni, Litha January 2010 (has links)
Thesis (MTech(Electrical Engineering))--Cape Peninsula University of Technology, 2010 / Optimal control of fermentation processes is necessary for better behaviour of the
process in order to achieve maximum production of product and biomass. The problem
for optimal control is a very complex nonlinear, dynamic problem requiring long time for
calculation Application of decomposition-coordinating methods for the solution of this
type of problems simplifies the solution if it is implemented in a parallel way in a cluster of
computers. Parallel computing can reduce tremendously the time of calculation through
process of distribution and parallelization of the computation algorithm. These processes
can be achieved in different ways using the characteristics of the problem for optimal
control.
Problem for optimal control of a fed-batch, batch and continuous fermentation processes
for production of biomass and product are formulated. The problems are based on a
criterion for maximum production of biomass at the end of the fermentation process for
the fed-batch process, maximum production of metabolite at the end of the fermentation
for the batch fermentation process and minimum time for achieving steady state
fermentor behavior for the continuous process and on unstructured mass balance
biological models incorporating in the kinetic coefficients, the physiochemical variables
considered as control inputs. An augmented functional of Lagrange is applied and its
decomposition in time domain is used with a new coordinating vector. Parallel computing
in a Matlab cluster is used to solve the above optimal control problems. The calculations
and tasks allocation to the cluster workers are based on a shared memory architecture.
Real-time control implementation of calculation algorithms using a cluster of computers
allows quick and simpler solutions to the optimal control problems.
|
14 |
The use of a computer assisted learning program for teaching and reinforcing the basic mathematical skillsBoswell, Benny Edward, Boswell, Henrietta Gale 01 January 1999 (has links)
The purpose of this project is to provide an instructional computer program that will be an alternative way to teach and reinforce basic mathematics skills for any student that is having difficulty in any given area and for students that are falling behind in the regular math class.
|
15 |
REAL-TIME RECONCILIATION OF COAL COMBUSTOR DATAMontgomery, Roger Lee January 1982 (has links)
No description available.
|
16 |
Aplicação de tecnologias analíticas de processo e inteligência artificial para monitoramento e controle de processo de recobrimento de partículas em leito fluidizado / Application of process analytical technologies and artificial intelligence to monitor and control a fluidized bed coating processSilva, Carlos Alexandre Moreira da, 1984- 27 August 2018 (has links)
Orientador: Osvaldir Pereira Taranto / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-27T00:40:14Z (GMT). No. of bitstreams: 1
Silva_CarlosAlexandreMoreirada_D.pdf: 33350422 bytes, checksum: 046e0a2c090474593621166c81042136 (MD5)
Previous issue date: 2015 / Resumo: As indústrias química, alimentícia e farmacêutica têm empregado extensivamente a operação de fluidização em inúmeros processos, devido às suas características bastante atrativas, que possibilitam um contato efetivo entre a fase sólida e fluida, o que reflete na geração de altas taxas de transferência de calor e de massa. No entanto, o regime de fluidização borbulhante, o qual é condição de partida dos processos que envolvem esta operação, frequentemente é afetado pelas condições operacionais. As temperaturas elevadas, o conteúdo de umidade excessivo das partículas e a introdução de líquidos no leito fluidizado podem conduzir a instabilidades no regime fluidodinâmico e provocar o colapso parcial ou total do leito, reduzindo a eficiência do processo. A manutenção de condições estáveis do regime de fluidização durante processos de recobrimento de partículas em leitos fluidizados é de fundamental importância para garantir uma eficiência de recobrimento favorável e evitar a formação de zonas sem movimentação e aglomeração das partículas no leito, pois estes fatores indesejáveis comprometem a mistura entre as fases e conseqüentemente a qualidade do produto final. Dentro deste contexto, a utilização de um sistema de monitoramento e controle em tempo real de processos de recobrimento de partículas é extremamente desejável para permitir a operação de regimes de fluidização estáveis e garantir um filme de recobrimento uniforme e boas condições de escoabilidade dos sólidos. A presente proposta de tese de doutorado tem por objetivo aplicar a metodologia de análise espectral Gaussiana dos sinais de flutuação de pressão (Parise et al. (2008)), para o desenvolvimento de sistemas de controle baseados em inteligência artificial (Lógica Fuzzy), visando monitorar a estabilidade do regime de fluidização em processo de recobrimento de partículas. Comparações entre as condições fluidodinâmicas dos processos com e sem controle foram analisadas para operações em leito fluidizado em escala de laboratorio. Para avaliar a qualidade das partículas foi utilizada uma sonda de monitoramento in-line (Parsum IPP70), onde se pôde verificar os instantes iniciais da aglomeração indesejada. Com a aplicação desde sistema automatizado foi possível associar a estabilidade da fluidização em função do elevado grau de aglomeração. O ponto de parada do processo pôde ser definido em 420 µm (inicial em 360 µm) e a partir deste o mecanismo de recobrimento acontece simultaneamente com o de aglomeração. Os parâmetros de monitoramento do regime conseguiram não somente identificar a fase inicial da defluidização, como também foi possível a partir deles, controlar o processo por Lógica Fuzzy-PI e estabilizar a operação para altas taxas de suspensão atomizadas / Abstract:
The chemical, food and pharmaceutical industries have extensively used fluidization operation in many cases, due to its very attractive features that enable effective contact between the solid and fluid phase, which reflects the generation of high heat and mass transfer rates. However, the bubbling fluidization regime, which is the starting condition of the processes involved in this operation is often affected by operating conditions. Elevated temperatures, excessive moisture content of the particles and introduction of liquid into the fluidized bed may lead to instabilities in the fluid-dynamic regime and cause partial or total collapse of the bed, reducing the process efficiency. The maintenance of stable conditions of the fluidization regime for particle coating processes in fluidized beds is of fundamental importance to ensure a favorable coating efficiency and to avoid zones without movement and agglomeration of particles in the bed, because these undesirable factors compromise the mixing between the phases and therefore the quality of the final product. Within this context, the use of a monitoring system and real-time control of particle coating processes is highly desirable to allow operation in stable fluidization regimes and to ensure a uniform coating film and good condition of flowability of the solids. This doctoral thesis aims to apply the Gaussian spectral analysis methodology of the pressure fluctuation signals (Parise et al. (2008)) , for the development of control systems based on artificial intelligence (Fuzzy Logic), to monitor the stability of fluidization regime particle coating process. Comparisons between the fluid dynamic conditions of the processes with and without control were analyzed for operations in fluidized bed laboratory scale. To assess early stages of unwanted agglomeration, a monitoring in-line probe (Parsum IPP70) was used. With the application of this automated system, it was possible to associate the stability of fluidization with a high degree of agglomeration. The process stopping point could be set at 420 µm (initial in 360 µm) and after, the coating mechanism takes place simultaneously with the agglomeration one. The monitoring parameters of the system were able to identify the initial phase of defluidization, as well as it was possible to control the process by using Fuzzy Logic and to stabilize the operation for high rates of the coating suspension atomized onto the bed / Doutorado / Engenharia de Processos / Doutor em Engenharia Química
|
17 |
Electric utility planning methods for the design of one shot stability controlsNaghsh Nilchi, Maryam 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Reliability of the wide-area power system is becoming a greater concern as the power grid is growing. Delivering electric power from the most economical source through fewest and shortest transmission lines to customers frequently increases the stress on the system and prevents it from maintaining its stability. Events like loss of transmission equipment and phase to ground faults can force the system to cross its stability limits by causing the generators to lose their synchronism. Therefore, a helpful solution is detection of these dynamic events and prediction of instability.
Decision Trees (DTs) were used as a pattern recognition tool in this thesis. Based on training data, DT generated rules for detecting event, predicting loss of synchronism, and selecting stabilizing control. To evaluate the accuracy of these rules, they were applied to testing data sets.
To train DTs of this thesis, direct system measurements like generator rotor angles and bus voltage angles as well as calculated indices such as the rate of change of bus angles, the Integral Square Bus Angle (ISBA) and the gradient of ISBA were used.
The initial method of this thesis included a response based DT only for instability prediction. In this method, time and location of the events were unknown and the one shot control was applied when the instability was predicted. The control applied was in the form of fast power changes on four different buses. Further, an event detection DT was combined with the instability prediction such that the data samples of each case was checked with event detection DT rules. In cases that an event was detected, control was applied upon prediction of instability.
Later in the research, it was investigated that different control cases could behave differently in terms of the number of cases they stabilize. Therefore, a third DT was trained to select between two different control cases to improve the effectiveness of the methodology.
It was learned through internship at Midwest Independent Transmission Operators (MISO) that post-event steady-state analysis is necessary for better understanding the effect of the faults on the power system. Hence, this study was included in this research.
|
18 |
Solar Micro InverterHegde, Shweta January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The existing topologies of solar micro inverter use a number of stages before the DC input voltage can be converted to AC output voltage. These stages may contain one or more power converters. It may also contain a diode rectifier, transformer and filter. The number of active and passive components is very high. In this thesis, the design of a new solar micro inverter is proposed. This new micro inverter consists of a new single switch inverter which is obtained by modifying the already existing single ended primary inductor (SEPIC) DC-DC converter. This new inverter is capable of generating pure sinusoidal waveform from DC input voltage. The design and operation of the new inverter are studied in detail. This new inverter works with a controller to produce any kind of output waveform. The inverter is found to have four different modes of operation. The new inverter is modeled using state space averaging. The system is a fourth order system which is non-linear due to the inherent switching involved in the circuit. The system is linearized around an operating point to study the system as a linear system. The control to output transfer function of the inverter is found to be non-minimum phase. The transfer functions are studied using root locus. From the control perspective, the presence of right half zero makes the design of the controller structure complicated. The PV cell is modeled using the cell equations in MATLAB. A maximum power point tracking (MPPT) technique is implemented to make sure the output power of the PV cell is always maximum which allows full utilization of the power from the PV cell. The perturb and observe (P&O) algorithm is the simplest and is used here. The use of this new inverter eliminates the various stages involved in the conventional solar micro inverter. Simulation and experimental results carried out on the setup validate the proposed structure of inverter.
|
19 |
Evaluation of performance of an air handling unit using wireless monitoring system and modelingKhatib, Akram Ghassan January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Heating, ventilation, and air conditioning (HVAC) is the technology responsible to maintain temperature levels and air quality in buildings to certain standards. In a commercial setting, HVAC systems accounted for more than 50% of the total energy cost of the building in 2013 [13]. New control methods are always being worked on to improve the effectiveness and efficiency of the system. These control systems include model predictive control (MPC), evolutionary algorithm (EA), evolutionary programming (EP), and proportional-integral-derivative (PID) controllers. Such control tools are used on new HVAC system to ensure the ultimate efficiency and ensure the comfort of occupants. However, there is a need for a system that can monitor the energy performance of the HVAC system and ensure that it is operating in its optimal operation and controlled as expected. In this thesis, an air handling unit (AHU) of an HVAC system was modeled to analyze its performance using real data collected from an operating AHU using a wireless monitoring system. The purpose was to monitor the AHU's performance, analyze its key parameters to identify flaws, and evaluate the energy waste. This system will provide the maintenance personnel to key information to them to act for increasing energy efficiency. The mechanical model was experimentally validated first. Them a baseline operating condition was established. Finally, the system under extreme weather conditions was evaluated. The AHU's subsystem performance, the energy consumption and the potential wastes were monitored and quantified. The developed system was able to constantly monitor the system and report to the maintenance personnel the information they need. I can be used to identify energy savings opportunities due to controls malfunction. Implementation of this system will provide the system's key performance indicators, offer feedback for adjustment of control strategies, and identify the potential savings. To further verify the capabilities of the model, a case study was performed on an air handling unit on campus for a three month monitoring period. According to the mechanical model, a total of 63,455 kWh can be potentially saved on the unit by adjusting controls. In addition the mechanical model was able to identify other energy savings opportunities due to set point changes that may result in a total of 77,141 kWh.
|
20 |
Hybridization of particle Swarm Optimization with Bat Algorithm for optimal reactive power dispatchAgbugba, Emmanuel Emenike 06 1900 (has links)
This research presents a Hybrid Particle Swarm Optimization with Bat Algorithm (HPSOBA) based
approach to solve Optimal Reactive Power Dispatch (ORPD) problem. The primary objective of
this project is minimization of the active power transmission losses by optimally setting the control
variables within their limits and at the same time making sure that the equality and inequality
constraints are not violated. Particle Swarm Optimization (PSO) and Bat Algorithm (BA)
algorithms which are nature-inspired algorithms have become potential options to solving very
difficult optimization problems like ORPD. Although PSO requires high computational time, it
converges quickly; while BA requires less computational time and has the ability of switching
automatically from exploration to exploitation when the optimality is imminent. This research
integrated the respective advantages of PSO and BA algorithms to form a hybrid tool denoted as
HPSOBA algorithm. HPSOBA combines the fast convergence ability of PSO with the less
computation time ability of BA algorithm to get a better optimal solution by incorporating the BA’s
frequency into the PSO velocity equation in order to control the pace. The HPSOBA, PSO and BA algorithms were implemented using MATLAB programming language and tested on three (3)
benchmark test functions (Griewank, Rastrigin and Schwefel) and on IEEE 30- and 118-bus test
systems to solve for ORPD without DG unit. A modified IEEE 30-bus test system was further used
to validate the proposed hybrid algorithm to solve for optimal placement of DG unit for active
power transmission line loss minimization. By comparison, HPSOBA algorithm results proved to
be superior to those of the PSO and BA methods.
In order to check if there will be a further improvement on the performance of the HPSOBA, the
HPSOBA was further modified by embedding three new modifications to form a modified Hybrid
approach denoted as MHPSOBA. This MHPSOBA was validated using IEEE 30-bus test system to
solve ORPD problem and the results show that the HPSOBA algorithm outperforms the modified
version (MHPSOBA). / Electrical and Mining Engineering / M. Tech. (Electrical Engineering)
|
Page generated in 0.1198 seconds