Spelling suggestions: "subject:"americanphilosophy."" "subject:"dialecticalphilosophy.""
21 |
A abdução em Peirce : um estudo hermenêutico /Souza, Jesaías da Silva. January 2014 (has links)
Orientadora: Rosa Monteiro Paulo / Banca: Fabiane Mondini / Banca: Henrique Lazari / Resumo: Nesta pesquisa o objetivo é expor a compreensão do que é a abdução para Peirce, a partir de uma análise hermenêutica tal qual ela é tratada por pesquisadores da UNESP/RC vinculados ao Programa de Pós-Graduação em Educação Matemática e das ideias de Hans Georg Gadamer (1999). Para tanto, a pergunta que norteou a pesquisa é: o que é abdução? O estudo hermenêutico dos textos de Peirce, especialmente no The Collected Papers of Charles Sanders Peirce composto de oito volumes, é apresentado em dois quadros que trazem Ideias Nucleares (I.N.) que, mediante análise, levam-nos as categorias: característica, procedimento e definição. A interpretação dessas categorias nos permite dizer que a abdução, em Peirce, é um raciocínio lógico, um ato inferencial que tem origem na ação de questionar sendo um tipo de raciocínio que difere da lógica clássica pelo modo como abre possibilidades de uma nova inteligibilidade do que se vê, do que se pode expressar quando é elaborada uma explicação do visto. Entendendo as características da abdução pode-se ver que ela abre possibilidades para a produção do conhecimento matemático dando forma ao conceito, que é expresso por meio de uma linguagem que expõem o sentido do produzido / Abstract: In this research the goal is to expose the understanding of what is the abduction for Peirce, from a hermeneutic analysis such as it is treated by researchers from UNESP/RC bound to Mathematic Education Post-Graduation Program and to ideas of Hans Georg Gadamer (1999). For that, the question that guided the research is: What is abduction?. The hermeneutic study of Peirce's texts, especially at The Collected Papers of Charles Sanders Peirce compound of eight volumes, is presented in two boards which bring Nuclear Ideas (I.N.) that, by analysis, take us to the categories: feature, procedure and definition. The interpretation of these features allow us to say the abduction, in Peirce, is a logic reasoning, an inferential act which origin at action of question being a type of reasoning that differs from classic logic by the way how it opens possibilities of a new intelligibility of what it's seen, from what it can express when is developed a new explanation of seen. Perceiving the features of abduction it can see how it opens possibilities for a production of the mathematic knowledge giving shape to the concept, that is expressed by a language that expose the direction of produced / Mestre
|
22 |
Finitism and the Cantorian theory of numbers.January 2008 (has links)
Lie, Nga Sze. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 103-111). / Abstracts in English and Chinese. / Abstract --- p.i / Chapter 1 --- Introduction and Preliminary Discussions --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.1.1 --- Overview of the Thesis --- p.2 / Chapter 1.1.2 --- Background --- p.3 / Chapter 1.1.3 --- About Chapter 3: Details of the Theory --- p.4 / Chapter 1.1.4 --- About Chapter 4: Defects of the Theory --- p.7 / Chapter 1.2 --- Preliminary Discussions --- p.12 / Chapter 1.2.1 --- number --- p.12 / Chapter 1.2.2 --- mathematical existence and abstract reality --- p.12 / Chapter 1.2.3 --- finite/infinite --- p.12 / Chapter 1.2.4 --- actually/potentially infinite --- p.13 / Chapter 1.2.5 --- denumerability --- p.13 / Chapter 1.3 --- Concluding Remarks --- p.14 / Chapter 2 --- Mapping Mathematical Philosophies --- p.15 / Chapter 2.1 --- Preview --- p.15 / Chapter 2.1.1 --- Nominalism --- p.16 / Chapter 2.1.2 --- Conceptualism --- p.16 / Chapter 2.1.3 --- Intuitionism --- p.17 / Chapter 2.1.4 --- Realism --- p.18 / Chapter 2.1.5 --- Empiricism --- p.19 / Chapter 2.1.6 --- Logicism --- p.19 / Chapter 2.1.7 --- Neo-logicism --- p.21 / Chapter 2.1.8 --- Formalism --- p.21 / Chapter 2.1.9 --- Practicism --- p.23 / Chapter 2.2 --- Central Problem of Philosophy of Mathematics --- p.23 / Chapter 2.3 --- Metaphysics --- p.24 / Chapter 2.3.1 --- Abstractism --- p.24 / Chapter 2.3.2 --- Abstractist Schools --- p.25 / Chapter 2.3.3 --- Non-abstractism --- p.25 / Chapter 2.3.4 --- Non-abstractist Schools --- p.26 / Chapter 2.4 --- Semantics --- p.26 / Chapter 2.4.1 --- Literalism --- p.26 / Chapter 2.4.2 --- Literalistic schools --- p.27 / Chapter 2.4.3 --- Non-literalism --- p.27 / Chapter 2.4.4 --- Non-literalistic schools --- p.27 / Chapter 2.5 --- Epistemology --- p.28 / Chapter 2.5.1 --- Scepticism --- p.28 / Chapter 2.5.2 --- Scepticist Schools --- p.28 / Chapter 2.5.3 --- Non-scepticism --- p.29 / Chapter 2.5.4 --- Non-scepticist Schools --- p.29 / Chapter 2.6 --- Foundations of Mathematics --- p.30 / Chapter 2.6.1 --- Foundationalism --- p.31 / Chapter 2.6.2 --- Foundationalist Schools --- p.32 / Chapter 2.6.3 --- N on-foundationalism --- p.33 / Chapter 2.6.4 --- Non-foundationalist schools --- p.33 / Chapter 2.7 --- Finitistic Considerations --- p.33 / Chapter 2.7.1 --- Finitism --- p.41 / Chapter 2.7.2 --- Finitist Schools --- p.42 / Chapter 2.7.3 --- Non-finitism --- p.44 / Chapter 2.7.4 --- Non-finitist Schools --- p.44 / Chapter 2.8 --- Finitistic Reconsiderations --- p.44 / Chapter 2.8.1 --- C-finitism --- p.45 / Chapter 2.8.2 --- C-finitist Schools --- p.45 / Chapter 2.8.3 --- Non-C-finitism --- p.46 / Chapter 2.8.4 --- Non-C-finitist Schools --- p.46 / Chapter 2.9 --- Concluding Remarks --- p.47 / Chapter 3 --- Principles of Transfinite Theory --- p.48 / Chapter 3.0.1 --- Historical Notes on Infinity --- p.48 / Chapter 3.0.2 --- Cantor´ةs Proof --- p.49 / Chapter 3.1 --- The Domain Principle --- p.51 / Chapter 3.1.1 --- Variables and Domain --- p.53 / Chapter 3.1.2 --- Attack and Defense --- p.54 / Chapter 3.2 --- The Enumeral Principle --- p.56 / Chapter 3.2.1 --- Cantor´ةs Ordinal Theory of Numbers --- p.58 / Chapter 3.2.2 --- A Well-ordered Set --- p.59 / Chapter 3.2.3 --- An Enumeral --- p.59 / Chapter 3.2.4 --- An Ordinal Number --- p.60 / Chapter 3.2.5 --- Attack and Defense --- p.60 / Chapter 3.3 --- The Abstraction Principle --- p.63 / Chapter 3.3.1 --- Cantor´ةs Cardinal Theory of Numbers --- p.64 / Chapter 3.3.2 --- An Abstract One --- p.65 / Chapter 3.3.3 --- One-one Correspondence --- p.65 / Chapter 3.3.4 --- A Cardinal Number --- p.65 / Chapter 3.3.5 --- Attack and Defense --- p.65 / Chapter 3.4 --- Concluding Remarks --- p.68 / Chapter 4 --- Problems in Transfinite Theory --- p.70 / Chapter 4.1 --- Structure and Procedure --- p.70 / Chapter 4.1.1 --- Free Mathematics --- p.72 / Chapter 4.1.2 --- Non-constructive Proof --- p.75 / Chapter 4.2 --- Number and Numerosity --- p.85 / Chapter 4.2.1 --- Weak Reductionism --- p.85 / Chapter 4.2.2 --- Non-Cantorian Sets --- p.87 / Chapter 4.2.3 --- Intension in an Extensional Theory --- p.89 / Chapter 4.3 --- Conceivability and Comparability --- p.95 / Chapter 4.3.1 --- Tension with Absolute Infinity --- p.95 / Chapter 4.4 --- Conclusion --- p.100 / Bibliography --- p.103
|
23 |
Platão e a matemática : uma questão de método /Barbosa, Gustavo. January 2014 (has links)
Orientador: Irineu Bicudo / Banca: José Rodrigues Seabra Filho / Banca: Renata Cristina Geromel Meneghetti / Banca: Marcos Vieira Teixeira / Banca: Inocêncio Fernandes Balieiro Filho / Resumo: O objetivo dessa tese é investigar a relação entre matemática e filosofia em três obras de Platão: o Mênon, o Fédon e A República. Busca-se com isso esclarecer, primeiramente, a influência da matemática no desenvolvimento da filosofia, e, depois, o efeito desta na evolução metodológica daquela, principalmente no que diz respeito ao método analítico, ou hipotético. A pesquisa é norteada pelos testemunhos de Proclus em seus Comentários ao Livro I dos Elementos de Euclides, onde o nome de Platão é associado ao método. Em seguida, verifica-se a descrição dos métodos da análise e síntese feita por Pappus de Alexandria em sua Coleção matemática, a partir da qual são procurados nos diálogos os elementos precursores. A interpretação dos trechos matemáticos dos textos platônicos apoiase nos testemunhos e fragmentos de Hipócrates de Quios, Filolau de Crotona e Árquitas de Tarento, elaborando assim um quadro geral do estado da arte das ciências matemáticas nos séculos V-VI a.C. O seu intuito foi o de contextualizar as principais questões da matemática que teriam atraído o interesse de Platão, levando-o a valer-se da matemática como paradigma metodológico e heurístico a ser adaptado à filosofia. Apresentando uma inovação didática envolta por problemas da imprecisão da linguagem, Platão reformula as doutrinas présocráticas combinadas ao pensamento matemático, cujos desdobramentos são essenciais à organização aristotélica e à formalização Euclidiana / Abstract: The objective of this thesis is to investigate the relationship between mathematics and philosophy in three Plato‟s work: the Meno, the Phaedo and the Republic. Searching with this to clarify, first, the influence of mathematics in the philosophy‟s development, and then, the effect of this one on the methodological development of that, especially with regard to the analytical or hypothetical method. The research is guided by the Proclus testimony in his Commentary On The First Book of Euclid's Element, where the name of Plato is associated with the method. Hereupon, is checked the description of the methods of analysis and synthesis made by Pappus of Alexandria in his Mathematical Collection, from which is searched the precursor elements on the dialogues. The interpretation of the mathematical passages of the Platonic texts are based on testimonies and fragments of Hippocrates of Chios, Philolaus of Croton, and Archytas of Tarentum, thus elaborating a general picture of the mathematical sciences state of the art in the centuries V-VI BC. Its scope was to contextualize the main issues of the mathematics that have attracted the Plato‟s interest and that led him to avail himself of that science as a methodological and heuristic paradigm to be adapted to the philosophy. Featuring a didactic innovation surrounded by the imprecision of language problems, Plato reformulates the pre-Socratic doctrines combined to the mathematical thinking, whose developments are essential to Aristotelian organization and Euclidean formalization / Doutor
|
24 |
Young children's intuitive solution strategies for multiplication and division word problems in a problem-centered approach.Penchaliah, Sylvie. January 1997 (has links)
The intention of this research was to gather and document qualitative data regarding young children's intuitive solution strategies with regard to multiplication and division word problems. In 1994, nineteen pupils from the Junior Primary Phase (i.e. Grade 1 and Grade 2), from a Durban school participated in this study, in which the instruction was generally compatible with the principles of the Problem-Centered mathematics approach proposed by Human et al (1993) and Murray et al (1992; 1993). Its basic premise is that learning is a social as well as an individual activity. The researcher's pragmatic framework has been greatly influenced by the views of Human et al (1993) and Murray et al (1992; 1993), on Socio-Constructivism and Problem-Centered mathematics. Ten problem structures, five in multiplication and five in division which were adopted from research carried out by Mulligan (1992), were presented to the pupils to solve. The children were observed while solving the problems and probing questions were asked to obtain information about their solution strategies. From an indepth analysis of the children's solution strategies conclusions on the following issues were drawn: 1. the relationship between the semantic structure of the word problems and the children's intuitive strategies, and 2. the intuitive models used by the children to solve these problems. The following major conclusions were drawn from the evidence: 1. Of the sample, 76% were able to solve the ten problem structures using a range of strategies without having received any formal instruction on these concepts and related algorithms. 2. There were few differences in the children's performance between the multiplication and division word problems, with the exception of the Factor problem type for the Grade 2 Higher Ability pupils. 3. The semantic structure of the problems had a greater impact on the children's choice of strategies than on their performance, with the exception of the Factor problems. 4. The children used a number of intuitive models. For multiplication, three models were identified, i.e. repeated addition, array, cartesian product with and without many-to-many correspondence. For division, four models were identified, i.e. sharing one-by-one, building-up (additive), building-down (subtractive), and a model for sub-dividing wholes. / Thesis (M.Ed.) - University of Durban-Westville, 1997
|
25 |
The role of intuition in mathematics /Carson, Emily January 1988 (has links)
No description available.
|
26 |
What structuralism could not beFerguson, Stephen January 1998 (has links)
Frege's arithmetical-platonism is glossed as the first step in developing the thesis; however, it remains silent on the subject of structures in mathematics: the obvious examples being groups and rings, lattices and topologies. The structuralist objects to this silence, also questioning the sufficiency of Fregean platonism is answering a number of problems: e.g. Benacerraf's Twin Puzzles of Epistemic and Referential Access. The development of structuralism as a philosophical position, based on the slogan 'All mathematics is structural' collapses: there is no single coherent account which remains faithful to the tenets of structuralism and solves the puzzles of platonism. This prompts the adoption of a more modest structuralism, the aim of which is not to solve the problems facing arithmetical-platonism, but merely to give an account of the 'obviously structural areas of mathematics'. Modest strucmralism should complement an account of mathematical systems; here, Frege's platonism fulfils that role, which then constrains and shapes the development of this modest structuralism. Three alternatives are considered; a substitutional account, an account based on a modification of Dummett's theory of thin reference and a modified from of in re structuralism. This split level analysis of mathematics leads to an investigation of the robustness of the truth predicate over the two classes of mathematical statement. Focussing on the framework set out in Wright's Truth and Objectivity, a third type of statement is identified in the literature: Hilbert's formal statements. The following thesis arises: formal statements concern no special subject matter, and are merely minimally truth apt; the statements of structural mathematics form a subdiscourse - identified by the similarity of the logical grammar - displaying cognitive command. Thirdly, the statements of mathematics which concern systems form a subdiscourse which has both cognitive command and width of cosmological role. The extensions of mathematical concepts are such that best practice on the part of mathematicians either tracks or determines that extension - at least in simple cases. Examining the notions of response dependence leads to considerations of indefinite extensibility and intuitionism. The conclusion drawn is that discourse about structures and mathematical systems are response dependent but that this does not give rise to any revisionary arguments contra intuitionism.
|
27 |
Um estudo fenomenológico sobre conhecimento geométricoSantos, Marli Regina dos [UNESP] 08 March 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:43Z (GMT). No. of bitstreams: 0
Previous issue date: 2013-03-08Bitstream added on 2014-06-13T20:02:48Z : No. of bitstreams: 1
santos_mr_dr_rcla.pdf: 1516791 bytes, checksum: cc593bbb5139fa5e8f71e20190c6b0d2 (MD5) / Esta pesquisa interroga como se dá o ensino e a aprendizagem da geometria assumida nos aspectos de compreensões pré-predicativas e nos encaminhamentos que direcionam para uma produção geométrica. Atenta-se para as perspectivas pelas quais o fenômeno do ensino e aprendizagem da Geometria se dá nas vivências dos sujeitos deste estudo abrindo-se para os sentidos e os significados produzidos na temporalidade dessas vivências. Este estudo assume a fenomenologia hursseliana no que diz da visão de conhecimento e de mundo. Foi realizado um estudo de obras e autores que abordam temas relacionados a conhecimento, geometria, fenomenologia, dentre outros que se mostraram importantes no decorrer da pesquisa. Foi realizado um estudo de campo, efetivado como um curso, que abordou aspectos referentes à disposição de entes geométricos no espaço e às relações espaciais advindas, por meio da utilização de diferentes recursos materiais. O foco das análises incidiu sobre os aspectos significativos na constituição das ideias geométricas abordadas, enfatizando as compreensões e interpretações expostas pelos alunos. Realizando a redução fenomenológica, destacaram-se cinco ideias nucleares que dizem da possibilidade da produção em geometria: manifestação de compreensões prévias e possibilidades de desdobramentos para as ideias e conceitos geométricos; movimentação do corpo-próprio expressando compreensão; modos de proceder e horizonte de aberturas; comunalização; e apoio no material manipulável: possibilidades e limites. Indagando pela estrutura da rede tecida a partir das ideias nucleares, avançamos por compreensões mais abrangentes quanto à produção geométrica em seus aspectos humanos, ou seja, enquanto vivências que se dão na temporalidade e espacialidade das relações intersubjetivas, no mundo vida historicamente constituído em sua objetividade dinâmica / This research interrogates the meaning of teaching and learning of geometry when assumed in its pre-predicative comprehension aspects and in a process towards a production in geometry. For that, we turned to the perspectives in which the phenomenon of teaching and learning geometry shows itself in the lived experiences of the subjects that took part of this study, by means of opening their comprehension of the produced meanings in the temporality of those experiences. This study assumes the husserlian phenomenology in terms of vision of knowledge and of world. In that way, we accomplished a study of authors and matters that approached issues related to knowledge, geometry, phenomenology, and other subjects that became important during the process of researching. We also accomplished a field study, carried out as a course, which approached aspects regarding to the disposal of geometric entities in space and spatial relationships that could arise, through the use of different material resources. The focus of the analysis got on the significant aspects of the constitution of the geometric ideas discussed in the course, emphasizing the understandings and interpretations exposed by students. We performed the phenomenological reductions, that pointed out five nuclear ideas that talk about the possibility of production in geometry, named as: expression of previous understandings and possibilities of unfolding geometric ideas and concepts; movement of one's own body expressing understanding; ways of proceeding and horizon of openings; communalization; and support of manipulative sources, its possibilities and limits. We inquired the structure of the net woven by those nuclear ideas, carrying out a movement that advances in direction of broader comprehensions regarding the geometrical production in its human aspects, understood as experiences that occur in the temporality and spatiality of interpersonal relati
|
28 |
Um estudo fenomenológico sobre conhecimento geométrico /Santos, Marli Regina dos. January 2013 (has links)
Orientador: Maria Aparecida Viggiani Bicudo / Banca: Adlai Ralph Detoni / Banca: Constança Terezinha Marcondes Cesar / Banca: Rosa Monteiro Paulo / Banca: Sérgio Roberto Nobre / Resumo: Esta pesquisa interroga como se dá o ensino e a aprendizagem da geometria assumida nos aspectos de compreensões pré-predicativas e nos encaminhamentos que direcionam para uma produção geométrica. Atenta-se para as perspectivas pelas quais o fenômeno do ensino e aprendizagem da Geometria se dá nas vivências dos sujeitos deste estudo abrindo-se para os sentidos e os significados produzidos na temporalidade dessas vivências. Este estudo assume a fenomenologia hursseliana no que diz da visão de conhecimento e de mundo. Foi realizado um estudo de obras e autores que abordam temas relacionados a conhecimento, geometria, fenomenologia, dentre outros que se mostraram importantes no decorrer da pesquisa. Foi realizado um estudo de campo, efetivado como um curso, que abordou aspectos referentes à disposição de entes geométricos no espaço e às relações espaciais advindas, por meio da utilização de diferentes recursos materiais. O foco das análises incidiu sobre os aspectos significativos na constituição das ideias geométricas abordadas, enfatizando as compreensões e interpretações expostas pelos alunos. Realizando a redução fenomenológica, destacaram-se cinco ideias nucleares que dizem da possibilidade da produção em geometria: manifestação de compreensões prévias e possibilidades de desdobramentos para as ideias e conceitos geométricos; movimentação do corpo-próprio expressando compreensão; modos de proceder e horizonte de aberturas; comunalização; e apoio no material manipulável: possibilidades e limites. Indagando pela estrutura da rede tecida a partir das ideias nucleares, avançamos por compreensões mais abrangentes quanto à produção geométrica em seus aspectos humanos, ou seja, enquanto vivências que se dão na temporalidade e espacialidade das relações intersubjetivas, no mundo vida historicamente constituído em sua objetividade dinâmica / Abstract: This research interrogates the meaning of teaching and learning of geometry when assumed in its pre-predicative comprehension aspects and in a process towards a production in geometry. For that, we turned to the perspectives in which the phenomenon of teaching and learning geometry shows itself in the lived experiences of the subjects that took part of this study, by means of opening their comprehension of the produced meanings in the temporality of those experiences. This study assumes the husserlian phenomenology in terms of vision of knowledge and of world. In that way, we accomplished a study of authors and matters that approached issues related to knowledge, geometry, phenomenology, and other subjects that became important during the process of researching. We also accomplished a field study, carried out as a course, which approached aspects regarding to the disposal of geometric entities in space and spatial relationships that could arise, through the use of different material resources. The focus of the analysis got on the significant aspects of the constitution of the geometric ideas discussed in the course, emphasizing the understandings and interpretations exposed by students. We performed the phenomenological reductions, that pointed out five nuclear ideas that talk about the possibility of production in geometry, named as: expression of previous understandings and possibilities of unfolding geometric ideas and concepts; movement of one's own body expressing understanding; ways of proceeding and horizon of openings; communalization; and support of manipulative sources, its possibilities and limits. We inquired the structure of the net woven by those nuclear ideas, carrying out a movement that advances in direction of broader comprehensions regarding the geometrical production in its human aspects, understood as experiences that occur in the temporality and spatiality of interpersonal relati / Doutor
|
29 |
A aplicabilidade da matemática à física / The applicability of mathematics to physicsGrande, Ricardo Mendes, 1978- 19 August 2018 (has links)
Orientador: Jairo José da Silva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciências Humanas / Made available in DSpace on 2018-08-19T11:23:42Z (GMT). No. of bitstreams: 1
Grande_RicardoMendes_D.pdf: 2389053 bytes, checksum: 519561587ae902b0a9bdb5b7d30d69f3 (MD5)
Previous issue date: 2011 / Resumo: O propósito deste trabalho é mostrar o porquê de conceitos matemáticos serem úteis à descrição de fenômenos da nossa realidade empírica sem termos de nos comprometer com a existência de objetos abstratos. Por meio da análise do desenvolvimento da mecânica quântica não-relativística de Werner Heisenberg, procuramos mostrar como se dá relação entre os conceitos da matemática pura e os conceitos da mecânica quântica. Após a análise da tese de Mark Steiner a respeito da aplicabilidade da matemática à física, expomos nosso ponto de vista com base em algumas das idéias estruturalistas elaboradas por Jairo José da Silva / Abstract: The purpose of this work is to show why mathematical concepts are useful to describe phenomena of our empirical reality without having to commit ourselves to the existence of abstract objects. By analyzing the development of Heisenberg's non-relativistic quantum mechanics, we show how mathematical and quantum mechanical concepts are related to each other. After the analysis of Mark Steiner's thesis on the applicability of mathematics, we expose our own point of view, which was based on some ideas on structuralism due to Jairo José da Silva / Doutorado / Filosofia / Doutor em Filosofia
|
30 |
Logic in Accounts of the Potential and Actual InfiniteFinley, James Robert January 2019 (has links)
This work provides a detailed account of the historical role of the distinction between the potential and actual infinite in a variety of debates within natural philosophy and mathematics. It then connects these historical positions to modern debates over the possibility of pluralism within philosophy of logic and mathematics. In particular, it defends a view under which theories of the infinite and logic are justified abductively, and it argues that this abductive methodology provides space for an interesting pluralism about both the infinite and logical consequence. This argument relies on a detailed and thorough historical investigation into ancient, medieval, early modern, and modern views of the infinite, revealing a range of background metaphysical and epistemological commitments that motivate different abductive criteria for sophisticated philosophical positions on the infinite. It then suggests that charitable interpretations of the historical positions on the infinite should lead one to endorse a logical pluralism.
|
Page generated in 0.0555 seconds