• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 568
  • 316
  • 261
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1179
  • 1179
  • 1173
  • 1173
  • 1164
  • 1162
  • 790
  • 789
  • 789
  • 197
  • 129
  • 129
  • 123
  • 122
  • 119
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Recherche de nouveaux phénomènes dans les événements diphoton avec le détecteur ATLAS

Buat, Quentin 31 July 2013 (has links) (PDF)
Dans cette thèse, je présente mes travaux de recherche réalisés avec les données de collision proton-proton enregistrées par le détecteur ATLAS. Les événements étudiés possèdent un état final avec au moins deux photons et une grande masse invariante du système diphoton. Le lot de données enregistré pendant l'année 2011 dans des collisions avec une énergie de 7 TeV dans le centre de masse proton-proton correspond à une luminosité intégrée d'environ 5 fb-1. Ces données ont été comparées aux prédictions du Modèle Standard de la Physique des Particules. En l'absence de différences significatives, des contraintes ont été imposées sur les paramètres de modèles prévoyant l'existence de dimensions supplémentaires. A titre d'exemple, le premier graviton de Kaluza-Klein du modèle de Randall-Sundrum a été contraint d'être plus massif que 2.23 TeV, améliorant d'environ 1 TeV la contrainte du Tevatron. Les résultats obtenus ont fait l'objet d'une publication de la part de la collaboration ATLAS. En 2012, le LHC a réalisé des collisions proton-proton avec une énergie dans le centre de masse de 8 TeV. En outre, la luminosité intégrée a été environ quatre fois supérieure qu'en 2011. Les résultats préliminaires obtenus avec ce lot de données sont présentés dans ce document. La revue interne de ces résultats au sein de la collaboration ATLAS est en cours en vue d'une publication en 2013. La détection et la caractérisation des électrons et des photons reposent essentiellement sur le calorimètre à argon liquide du détecteur ATLAS. La procédure qui permet d'évaluer la qualité des mesures de ces particules a été mise en place au début de la prise de données. Ma contribution à son élaboration est décrite dans ce document.
372

Dark matter in the Next-to-Minimal Supersymmetric Standard Model

Mitropoulos, Pantelis 10 December 2013 (has links) (PDF)
This thesis deals with Dark Matter (DM) properties, mainly in the context of the Next-to-Minimal Supersymmetric Standard Model (NMSSM). First, it is examined whether a neutralino in the NMSSM could explain a monochromatic photon excess possibly present in the Fermi-LAT data. It is shown that neutralino pair annihilation with a CP-odd Higgs exchanged in s-channel can, in principle, give rise to a sufficiently large cross section. Asymmetric dark matter models, aiming at the explanation of the coincidence of present-day DM and baryon abundances, are also discussed. Upper bounds on DM self-annihilation cross section, which can potentially destroy the DM asymmetry, are derived and applied to a variety of models. Finally, a supersymmetric model is proposed, providing sneutrinos as viable asymmetric DM and explaining the smallness of neutrino masses. Bounds on this model from particle physics, cosmology and DM searches are studied.
373

Laser à blocage de modes à base de boîtes quantiques InAs/InP pour les télécommunications optiques

Klaime, Kamil 12 July 2013 (has links) (PDF)
L'objectif de la thèse concerne le développement de lasers à semi-conducteur à blocage de modes qui présentent un grand intérêt pour les systèmes de télécommunications optiques à très haut débit (WDM, OTDM, radio sur fibre...).Les nanostructures à base de boites quantiques (BQs) possèdent des propriétés remarquables grâce au confinement 0D des porteurs de charge. Leur utilisation dans les lasers à blocage de modes a donné lieu à des avancées importantes en terme de génération d'impulsions très courtes à haute fréquence et avec un très faible niveau de bruit.Durant la thèse, une optimisation de la croissance des structures lasers à BQs InAs sur substrat InP(113)B a été menée afin d'accroître le nombre de plans de BQs tout en assurant une forte densité pour maximiser le gain modal. Le travail a également porté sur l'utilisation de substrats InP(001) désorienté et l'obtention d'empilement de plans de BQs de faible anisotropie. Une optimisation de la technologie des lasers monomode de type " shallow-ridge " a été réalisée sur substrat conventionnel InP (001). Nous avons confirmé l'intérêt des BQs pour améliorer l'efficacité d'injection grâce à une réduction de la diffusion latérale des porteurs. Le blocage de modes a été obtenue sur des lasers à mono-section et double sections à base de BQs InAs élaborés sur InP (001) désorienté et InP(113))B, à des fréquences de répétitions allant de 20 jusqu'à 83 GHz. Les spectres RF présentent des pics de faibles largeurs (jusqu'à 20 kHz) qui indique un faible bruit de phase. Enfin, une étude a été menée sur le comportement en température des lasers à blocage de modes passif à double sections à base de BQs ou de BatQs InAs/InP.
374

Phénomènes électriques et thermiques dans des nanostructures supraconductrices / Thermoelectric phenomena in superconducting nanostructures

Di Marco, Angelo 02 March 2015 (has links)
Ma thèse de doctorat traite de l'étude théorique des phénomènes thermoélectriques qui se produisent dans des nanostructures supraconductrices qui sont l'objet de plusieurs lignes de recherche de la physique de la matière condensée. Nous nous focalisons sur quatre dispositifs basés sur les supraconducteurs et de minces barrières isolantes où le transport de la charge et de la chaleur est gouverné par l'effet tunnel quantique. Nous commençons par analyser une jonction métal Normal-Isolant-Supraconducteur (N-I-S). En principe, aucun courant à une particule ne peut s'écouler dans ce circuit quand le voltage de polarisation est en dessous du gap d'énergie de S. Pourtant, un courant de fuite en dessous du gap est observé dans la courbe caractéristique courant-voltage (I-V) expérimental de ce dispositif, même à très basses températures. Nous montrons que l'absorption de photons de l'environnement électromagnétique à haute température connecté à la jonction est une origine possible du processus de tunnel à un électron en dessous du gap. Nous considérons une jonction N-I-S connectée à l'environnement soit directement soit indirectement au moyen d'une ligne de transmission résistif à basse température. Nous analysons analytiquement et numériquement le courant en dessous du gap dans ces deux circuits. Ensuite nous considérons un transistor hybride à un électron (SET) constitué d'une île de métal normal N contrôlée avec une tension de grille et connectée, au moyen de deux jonctions à effet tunnel, à deux fils supraconducteurs S polarisés en tension (S-I-N-I-S). Lorsque l'on fait varier le voltage de N correctement dans le temps, un courant contrôlable à un électron s'écoule entre les deux supraconducteurs. En principe, la réflexion d'Andreev, c'est-à-dire l'effet tunnel à deux électrons de N à S, peut être interdite. Expérimentalement, ce processus à deux particules contribue aussi au courant total à travers le SET. Nous montrons que l'échange de photons entre ce dispositif et l'environnement électromagnétique où il est disposé rend la réflexion d'Andreev énergétiquement possible. De plus, nous discutons comment cet effet limite la précision du processus de tunnel à un électron nécessaire pour les applications métrologiques. Ensuite nous nous focalisons sur les caractéristiques thermodynamiques des jonctions supraconductrices à effet tunnel. Nous discutons d'abord des capacités de refroidissement électronique des dispositifs à double jonction S1-I-N-I-S1 et S2-I-S1-I-S2, où les supraconducteurs S2 et S1 ont un gap d'énergie différent. Après nous étudions le design et le fonctionnement d'un nanoréfrigérateur électronique à cascade basé sur une combinaison de ces deux structures. Nous montrons numériquement que une île de métal normal peut être réfrigérée au dessous de 100 mK à partir d'une température de 500 mK. Nous discutons ensuite de la réalisation pratique et des limitations d'un tel dispositif. Enfin, nous considérons la dynamique d'une jonction à sauts de phase quantique (QPSJ) connectée à une source de micro-ondes. En ce qui concerne une jonction Josephson ordinaire, une QPSJ peut montrer des marches de Shapiro duals, c'est-à-dire des plateaux de courant bien définis situés à des multiples entiers de la fréquence des micro-ondes dans la courbe caractéristique I-V. Aucune observation expérimentale n'a abouti jusqu'à maintenant. Les fluctuations thermiques et quantiques peuvent nettement étaler la courbe I-V. Pour comprendre ces effets, nous déterminons la caractéristique I-V d'une QPSJ polarisée en courant, irradiée avec des micro-ondes et connectée à un environnement résistif et inductif. Nous montrons que l'effet de ces fluctuations est gouverné par la résistance de l'environnement et par le rapport entre l'énergie de phase-slip et l'énergie inductive. Nos résultats sont importants pour les expériences qui visent à l'observation des marches de Shapiro duals dans les QPSJ pour la définition du courant quantique standard. / The aim of my Ph.D. thesis is to study theoretically the thermoelectric phenomena occurring in some superconducting nanostructures which are the object of various research lines in condensed matter physics. Specifically, we focus on four different devices based on superconductors and insulating tunnel barriers where both charge and heat transport are governed by the quantum tunneling effect. We start by considering a voltage-biased Normal metal-Insulator-Superconductor (N-I-S) tunnel junction. No single-particle current is expected to flow in this circuit when the applied voltage is below the superconducting energy gap of S. However, in real experiments, a subgap leakage current is observed in the current-voltage (I-V) characteristic of this device, even at very low temperatures. We show that the absorption of photons from the high-temperature electromagnetic environment connected to the junction is a possible origin of the single-particle tunneling below the gap. We first consider a N-I-S junction directly coupled to the environment. Then we focus on a circuit where a low-temperature lossy transmission line is inserted between them. For both these circuits, we analyze analytically and numerically the subgap leakage current. We find, in particular, that it is exponentially suppressed as the length and the resistance per unit length of the line are increased. Then, we go beyond the single N-I-S junction considering a hybrid single-electron transistor (SET) constituted by a gate-controlled normal-metal island (N) connected to two voltage-biased superconducting leads (S) by means of two tunnel junctions (S-I-N-I-S). A controlled single-electron current flows between the two superconductors by properly changing in time the gate potential of N. In principle, the Andreev reflection, i.e., the tunneling of two electrons from N to S can be ideally suppressed when the charging energy of N is larger than the energy gap of S. Actually, in real experiments, this two-particle tunneling process also contributes to the total current through the SET. We show that the exchange of photons between the S-I-N-I-S device and the high-temperature electromagnetic environment where it is embedded makes the Andreev reflection energetically possible. We discuss how this effect limits the single-electron tunneling accuracy needed for metrological applications. Next, we focus on the thermodynamical features of the superconductor-based tunnel junctions. We first consider the well-known electronic cooling capabilities of the S1-I-N-I-S1 and S2-I-S1-I-S2 double-junction devices, where S2 and S1 are superconductors with different energy gaps. Then, we study the design and operation of an electronic nanorefrigerator based on a combination of these two structures, i.e., a cascade cooler. We show numerically that a normal-metal island can be cooled down to about 100 mK starting from a bath temperature of 500 mK. We discuss the practical implementation, potential performance and limitations of such a device. Finally, we consider the dynamics of a quantum phase-slip junction (QPSJ) connected to a microwave source. With respect to an ordinary Josephson junction, a QPSJ can sustain dual Shapiro steps, consisting of well-defined current plateaus at multiple integers of the microwave frequency in the I-V characteristic. Their experimental observation has been elusive up to now. We argue that thermal and quantum fluctuations can smear the I-V curve considerably. To understand these effects, we determine the I-V characteristic of a current-biased QPSJ under microwave irradiation and connected to an inductive and resistive environment. We find that the effect of these fluctuations is governed by the resistance of the environment and by the ratio of the phase-slip energy and the inductive energy. Our results are of interest for experiments aimed at the observation of dual Shapiro steps in QPSJ devices for the definition of the quantum current standard.
375

É́tude sur la cinétique des défauts structuraux dans le silicium amorphe

Joly, Jean-François 04 1900 (has links)
No description available.
376

Étude de la phase isolant topologique chez le composé demi-Heusler GdBiPt

Lapointe, Luc 01 1900 (has links)
No description available.
377

Brisure de la symétrie icosaédrique du C60 vers des fullerènes plus grands et les nanotubes apparentés

Bourret, Emmanuel 03 1900 (has links)
No description available.
378

Relaxation et cristallisation du verre mou de chalcogénure Ge2Sb2Te5 après impact d’ions lourds à basse énergie

Nozard, Hantz 07 1900 (has links)
No description available.
379

Propriétés électroniques des quasicristaux / Electronic properties of quasicrystals

Macé, Nicolas 28 September 2017 (has links)
Nous considérons le problème d’un électron sur des pavages quasipériodiques en une et deux dimensions. Nous introduisons tout d’abord les pavages quasipériodiques d’un point de vue géométrique, et défendons en particulier l’idée que ces pavages sont les pavages apériodiques les plus proches de la périodicité. Nous concentrant plus particulièrement sur l’un des pavages quasipériodiques les plus simples, la chaîne de Fibonacci, nous montrons à l’aide d’un groupe de renormalisation que la multifractalité des états électroniques découle directement de l’invariance d’échelle de la chaîne. Élargissant ensuite notre champ d’étude à un ensemble de chaînes quasipériodiques, nous nous intéressons au théorème de label des gaps, qui décrit comment la géométrie d’une chaîne donnée contraint les valeurs que peut prendre la densité d’états intégrée dans les gaps du spectre électronique. Plus précisément, nous nous intéressons à la façon dont l’énoncé de ce théorème est modifié lorsque l’on considère une séquence d’approximants périodiques approchant une chaîne quasipériodique. Enfin, nous montrons comment des champs de hauteurs géométriques peuvent être utilisés pour construire des états électroniques exacts sur des pavages en une et deux dimensions. Ces états sont robustes aux perturbations du hamiltonien, sous réserve que ces dernières respectent les symétries du pavage sous-jacent. Nous relions les dimensions fractales de ces états à la distribution de probabilités des hauteurs, que nous calculons de façon exacte. Dans le cas des chaînes quasipériodiques, nous montrons que la conductivité suit une loi d’échelle de la taille de l’échantillon, dont l’exposant est relié à cette même distribution de probabilités. / We consider the problem of a single electron on one and two-dimensional quasiperiodic tilings. We first introduce quasiperiodic tilings from a geometrical point of view, and point out that among aperiodic tilings, they are the closest to being periodic. Focusing on one of the simplest one-dimensional quasiperiodic tilings, the Fibonacci chain, we show, with the help of a renormalization group analysis, that the multifractality of the electronic states is a direct consequence of the scale invariance of the chain. Considering now a broader class of quasiperiodic chains, we study the gap labeling theorem, which relates the geometry of a given chain to the set of values the integrated density of states can take in the gaps of the electronic spectrum. More precisely, we study how this theorem is modified when considering a sequence of approximant chains approaching a quasiperiodic one. Finally, we show how geometrical height fields can be used to construct exact eigenstates on one and two-dimensional quasiperiodic tilings. These states are robust to perturbations of the Hamiltonian, provided that they respect the symmetries of the underlying tiling. These states are critical, and we relate their fractal dimensions to the probability distribution of the height field, which we compute exactly. In the case of quasiperiodic chains, we show that the conductivity follows a scaling law, with an exponent given by the same probability distribution.
380

Collective plasmonic excitations in two- dimensional metamaterials based on near-field coupled metallic nanoparticles / Plasmons collectifs dans des métamatériaux bi-dimensionnels basés sur des nanoparticules métalliques couplées en champ proche

Fernique, François 18 July 2019 (has links)
L’étude des propriétés plasmoniques est un champ de recherche actuellement très actif. En particulier, la possibilité de manipuler la lumière à des échelles sub-longueur d’ondes rend ce domaine très attractif. Récemment, plusieurs études ont montré que les plasmons collectifs dans des méta-matériaux bi-dimensionnels constitués de nanoparticules métalliques se comportaient de manière similaire aux électrons dans les cristaux et partageaient certaines de leurs propriétés. Dans ce manuscrit, nous présentons une théorie unifiée permettant de décrire les propriétés de tels modes plasmoniques dans des réseaux ordonnés de géométrie arbitraires constitués de nanoparticules métalliques couplées en champ proche. En particulier, nous évaluons les taux de décroissance de ces modes ainsi que leurs décalages en fréquence afin de prédire leur observabilité expérimentale. / The study of plasmonic properties is one of the fields of research currently very active. In particular, the ability to manipulate light at subwavelength scales makes this subject very appealing. Recently, several studies have shown that collective plasmons in two-dimensional meta-materials based on metallic nanoparticles behave similarly to electrons in crystals and share some of their properties. In this manuscript, we present a unified theory for describing the properties of such modes in regular arrays of arbitrary geometries constituted by near-field coupled spherical nanoparticles. In particular, we have evaluated the linewidths of these modes as well as their frequency shifts in order to discussed their experimental observabilities.

Page generated in 0.2773 seconds