• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Matriz de covariâncias do estimador de máxima verossimilhança corrigido pelo viés em modelos lineares generalizados com parâmetro de dispersão desconhecido. / Matrix of covariates of the bias-corrected maximum likelihood estimator in generalized linear models with unknown dispersion parameter.

BARROS, Fabiana Uchôa. 27 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-27T16:10:22Z No. of bitstreams: 1 FABIANA UCHÔA BARROS - DISSERTAÇÃO PPGMAT 2011..pdf: 444205 bytes, checksum: dd1ada684703bcb400e631c5f044668b (MD5) / Made available in DSpace on 2018-07-27T16:10:22Z (GMT). No. of bitstreams: 1 FABIANA UCHÔA BARROS - DISSERTAÇÃO PPGMAT 2011..pdf: 444205 bytes, checksum: dd1ada684703bcb400e631c5f044668b (MD5) Previous issue date: 2011-12 / Capes / Com base na expressão de Pace e Salvan (1997 pág. 30), obtivemos a matriz de covariâncias de segunda ordem dos estimadores de máxima verossimilhança corrigidos pelo viés de ordem n−1 em modelos lineares generalizados, considerando o parâmetro de dispersão desconhecido, porém o mesmo para todas as observações. A partir dessa matriz, realizamos modi cações no teste de Wald. Os resultados obtidos foram avaliados através de estudos de simulação de Monte Carlo. / Based on the expression of Pace and Salvan (1997 pág. 30), we obtained the second order covariance matrix of the of the maximum likelihood estimators corrected for bias of order n−1in generalized linear models, considering that the dispersion parameter is the same although unknown for all observations. From this matrix, we made modi cations to the Wald test. The results were evaluated through simulation studies of Monte Carlo.
2

Refinamentos assintóticos em modelos lineares generalizados heteroscedáticos / Asymptotic refinements in heteroskedastic generalized linear models

Barros, Fabiana Uchôa 07 March 2017 (has links)
Nesta tese, desenvolvemos refinamentos assintóticos em modelos lineares generalizados heteroscedásticos (Smyth, 1989). Inicialmente, obtemos a matriz de covariâncias de segunda ordem dos estimadores de máxima verossimilhança corrigidos pelos viés de primeira ordem. Com base na matriz obtida, sugerimos modificações na estatística de Wald. Posteriormente, derivamos os coeficientes do fator de correção tipo-Bartlett para a estatística do teste gradiente. Em seguida, obtemos o coeficiente de assimetria assintótico da distribuição dos estimadores de máxima verossimilhança dos parâmetros do modelo. Finalmente, exibimos o coeficiente de curtose assintótico da distribuição dos estimadores de máxima verossimilhança dos parâmetros do modelo. Analisamos os resultados obtidos através de estudos de simulação de Monte Carlo. / In this thesis, we have developed asymptotic refinements in heteroskedastic generalized linear models (Smyth, 1989). Initially, we obtain the second-order covariance matrix for the maximum likelihood estimators corrected by the bias of first-order. Based on the obtained matrix, we suggest changes in Wald statistics. In addition, we derive the coeficients of the Bartlett-type correction factor for the statistical gradient test. After, we get asymptotic skewness of the distribution of the maximum likelihood estimators of the model parameters. Finally, we show the asymptotic kurtosis coeficient of the distribution of the maximum likelihood estimators of the model parameters. Monte Carlo simulation studies are developed to evaluate the results obtained.
3

Refinamentos assintóticos em modelos lineares generalizados heteroscedáticos / Asymptotic refinements in heteroskedastic generalized linear models

Fabiana Uchôa Barros 07 March 2017 (has links)
Nesta tese, desenvolvemos refinamentos assintóticos em modelos lineares generalizados heteroscedásticos (Smyth, 1989). Inicialmente, obtemos a matriz de covariâncias de segunda ordem dos estimadores de máxima verossimilhança corrigidos pelos viés de primeira ordem. Com base na matriz obtida, sugerimos modificações na estatística de Wald. Posteriormente, derivamos os coeficientes do fator de correção tipo-Bartlett para a estatística do teste gradiente. Em seguida, obtemos o coeficiente de assimetria assintótico da distribuição dos estimadores de máxima verossimilhança dos parâmetros do modelo. Finalmente, exibimos o coeficiente de curtose assintótico da distribuição dos estimadores de máxima verossimilhança dos parâmetros do modelo. Analisamos os resultados obtidos através de estudos de simulação de Monte Carlo. / In this thesis, we have developed asymptotic refinements in heteroskedastic generalized linear models (Smyth, 1989). Initially, we obtain the second-order covariance matrix for the maximum likelihood estimators corrected by the bias of first-order. Based on the obtained matrix, we suggest changes in Wald statistics. In addition, we derive the coeficients of the Bartlett-type correction factor for the statistical gradient test. After, we get asymptotic skewness of the distribution of the maximum likelihood estimators of the model parameters. Finally, we show the asymptotic kurtosis coeficient of the distribution of the maximum likelihood estimators of the model parameters. Monte Carlo simulation studies are developed to evaluate the results obtained.
4

Inferência em modelos de regressão com erros de medição sob enfoque estrutural para observações replicadas

Tomaya, Lorena Yanet Cáceres 10 March 2014 (has links)
Made available in DSpace on 2016-06-02T20:06:10Z (GMT). No. of bitstreams: 1 6069.pdf: 3171774 bytes, checksum: a737da63d3ddeb0d44dfc38839337d42 (MD5) Previous issue date: 2014-03-10 / Financiadora de Estudos e Projetos / The usual regression model fits data under the assumption that the explanatory variable is measured without error. However, in many situations the explanatory variable is observed with measurement errors. In these cases, measurement error models are recommended. We study a structural measurement error model for replicated observations. Estimation of parameters of the proposed models was obtained by the maximum likelihood and maximum pseudolikelihood methods. The behavior of the estimators was assessed in a simulation study with different numbers of replicates. Moreover, we proposed the likelihood ratio test, Wald test, score test, gradient test, Neyman's C test and pseudolikelihood ratio test in order to test hypotheses of interest related to the parameters. The proposed test statistics are assessed through a simulation study. Finally, the model was fitted to a real data set comprising measurements of concentrations of chemical elements in samples of Egyptian pottery. The computational implementation was developed in R language. / Um dos procedimentos usuais para estudar uma relação entre variáveis é análise de regressão. O modelo de regressão usual ajusta os dados sob a suposição de que as variáveis explicativas são medidas sem erros. Porém, em diversas situações as variáveis explicativas apresentam erros de medição. Nestes casos são utilizados os modelos com erros de medição. Neste trabalho estudamos um modelo estrutural com erros de medição para observações replicadas. A estimação dos parâmetros dos modelos propostos foi efetuada pelos métodos de máxima verossimilhança e de máxima pseudoverossimilhança. O comportamento dos estimadores de alguns parâmetros foi analisado por meio de simulações para diferentes números de réplicas. Além disso, são propostos o teste da razão de verossimilhanças, o teste de Wald, o teste escore, o teste gradiente, o teste C de Neyman e o teste da razão de pseudoverossimilhanças com o objetivo de testar algumas hipóteses de interesse relacionadas aos parâmetros. As estatísticas propostas são avaliadas por meio de simulações. Finalmente, o modelo foi ajustado a um conjunto de dados reais referentes a medições de concentrações de elementos químicos em amostras de cerâmicas egípcias. A implementação computacional foi desenvolvida em linguagem R.

Page generated in 0.0643 seconds