Spelling suggestions: "subject:"matrizes triangular"" "subject:"atrizes triangular""
1 |
Base para as identidades polinomiais das matizes triangulares em blocos com Z2-graduação. / Base for the polynomial identities of triangular shades in blocks with Z2-graduationNASCIMENTO JÚNIOR, Rivaldo do. 23 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-23T14:23:04Z
No. of bitstreams: 1
RIVALDO DO NASCIMENTO JÚNIOR - DISSERTAÇÃO PPGMAT 2009..pdf: 371424 bytes, checksum: 6e808f19bfcee3712a8cc10f221c042b (MD5) / Made available in DSpace on 2018-07-23T14:23:04Z (GMT). No. of bitstreams: 1
RIVALDO DO NASCIMENTO JÚNIOR - DISSERTAÇÃO PPGMAT 2009..pdf: 371424 bytes, checksum: 6e808f19bfcee3712a8cc10f221c042b (MD5)
Previous issue date: 2009-04 / Neste trabalho apresentamos um modelo para a superálgebra das matrizes triangulares superiores e mostraremos como obter o produto de dois T-ideais como núcleo de um homomorfismo de álgebras. em seguida, mostraremos como obter as identidades polinomiais para a álgebra das matrizes triangulares em blocos com Z2-graduação a partir das identidades ordinárias das álgebras de sua diagonal principal. / In this work we present a general model for the superalgebra of upper triangular matrices and show how to obtain the product of two T-ideals as the kernel of a homomorphism between two algebras. Next, we show how to obtain the polynomial identities for algebra of the block-triangular matrices with Z2-grading from the ordinary identities of the algebras of its main diagonal.
|
2 |
Uma introdução às identidades funcionais sobre a álgebra de matrizes triangulares superioresSalomão, Mateus Eduardo 23 February 2016 (has links)
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-09-23T13:35:21Z
No. of bitstreams: 1
DissMES.pdf: 808214 bytes, checksum: 18d297ccca216ccbe04d9515d2005a5b (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-23T19:39:40Z (GMT) No. of bitstreams: 1
DissMES.pdf: 808214 bytes, checksum: 18d297ccca216ccbe04d9515d2005a5b (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-23T19:39:51Z (GMT) No. of bitstreams: 1
DissMES.pdf: 808214 bytes, checksum: 18d297ccca216ccbe04d9515d2005a5b (MD5) / Made available in DSpace on 2016-09-23T19:52:20Z (GMT). No. of bitstreams: 1
DissMES.pdf: 808214 bytes, checksum: 18d297ccca216ccbe04d9515d2005a5b (MD5)
Previous issue date: 2016-02-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The subject treated in this dissertation is functional identities (FI) of a especific ring. We present concepts, examples and some results involving the themes: standard solution of a FI, strong degree of a ring, strongly d-free rings and FI-degree of a ring. In particular, it is studied the solutions of a particular FI on upper triangular matrices algebra, that is: Let ... to be continued / O assunto tratado nesta dissertação diz respeito à identidades funcionais (FI) de um determinado anel. São fornecidos conceitos, exemplos e alguns resultados envolvendo os temas: solução standard de uma FI, grau forte de um anel, anéis fortemente d-livres e FI-grau de um anel. Em particular, são estudadas soluções de uma específica FI para a álgebra das matrizes triangulares superiores, isto é: Sejam ... continua no texto
|
3 |
Identidades polinomiais para álgebras e matrizes triangulares superiores em blocos. / Polynomial identities for upper algebras and triangular arrays in blocks.ARAÚJO, Laise Dias Alves. 13 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-13T14:12:26Z
No. of bitstreams: 1
LAISE DIAS ALVES ARAÚJO - DISSERTAÇÃO PPGMAT 2017..pdf: 818445 bytes, checksum: 666322e4502e880db6af0ea641df08f7 (MD5) / Made available in DSpace on 2018-08-13T14:12:26Z (GMT). No. of bitstreams: 1
LAISE DIAS ALVES ARAÚJO - DISSERTAÇÃO PPGMAT 2017..pdf: 818445 bytes, checksum: 666322e4502e880db6af0ea641df08f7 (MD5)
Previous issue date: 2017-06 / Capes / Nesta dissertação estudamos as graduações elementares (ou boas graduações) e
as identidades polinomiais graduadas correspondentes em álgebras de matrizes triangulares superiores em blocos. Uma graduação elementar por um grupo G na álgebra
A = UT(α1, α2, ..., αr) de matrizes triangulares superiores em blocos é determinada por
uma n-upla em Gn, onde n = α1+· · ·+αr. Mostraremos que as graduações elementares
em A determinadas por duas n-uplas em Gnsão isomorfas se, e somente se, as n-uplas
estão na mesma órbita da bi-ação canônica em Gn com o grupo Sα1 × · · · × Sαr agindo
à esquerda e G à direita. Em seguida utilizamos estes resultados para mostrar que, sob
certas hipóteses (por exemplo, se o grupo G tem ordem prima), duas álgebras de matrizes
triangulares superiores em blocos, graduadas pelo grupo G, satisfazem as mesmas
identidades graduadas se, e somente se, são isomorfas (como álgebras graduadas). / In this dissertation we study elementary (or good) gradings in upper block triangular
matrix algebras and the corresponding graded polynomial identities. An elementary
grading by a group G on the algebra A = UT(α1, α2, ..., αr) of upper block triangular matrices is determined by an n-tuple in Gn, where n = α1 + · · · + αr. It will
be proved that the elementary gradings on A determined by two n-tuples in Gn are
isomorphic if and only if the n-tuples are in the same orbit in the canonical bi-action
on Gn with the group Sα1 × · · · × Sαr acting on the left and the group G acting on the
right. These results will be used to prove that under suitable hypothesis (for example
if the group G has prime order) two upper block triangular matrix algebras, graded by
the group G, satisfy the same graded identities if and only if they are isomorphic (as
graded algebras).
|
4 |
A-identidades polinomiais em algebras associativas / A-polynomial identities in associative algebrasGonçalves, Dimas José 12 August 2018 (has links)
Orientador: Plamen Emilov Koshlukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T22:59:30Z (GMT). No. of bitstreams: 1
Goncalves_DimasJose_D.pdf: 561175 bytes, checksum: 463bf9f78a417a27d1bcf83549bc65a9 (MD5)
Previous issue date: 2009 / Resumo: Nesta tese estudamos identidades polinomiais em álgebras associativas. Mais precisamente, estudamos as A-identidades satisfeitas por algumas classes importantes de álgebras. O primeiro resultado principal da tese consiste em uma descrição completa das A-identidades satisfeitas pela álgebra de Grassmann sobre um corpo algebricamente fechado e de característica o. Desta maneira respondemos em afirmativo a uma conjetura devida a Henke e Regev. Em seguida estudamos as A-identidades satisfeitas pela álgebra das matrizes triangulares superiores. Obtemos uma cota inferior para o grau mínimo de uma A-identidade satisfeita por tais álgebras. Como consequência obtemos uma resposta negativa a uma outra conjetura de Henke e Regev. Além disso, descrevemos as A-identidades de grau 5, da álgebra das matrizes triangulares superiores de ordem 2, e obtemos os graus mínimos de A-identidades satisfeitas por tais álgebras de ordem 3 e 4. / Abstract: In this PhD thesis we study polynomial identities in associative algebras. More precisely we study the A-ideIltities for several important classes of algebras. The first main result of the thesis gives a complete description of the A-identities for the Grassmann algebra over an algebraically closed field of characteristic O. In this way we give a positive answer to a conjecture due to Henke and Regev. Afterwards we study A-identities for the upper triangular matrix algebras. We give a lower bound for the minimal degree of an A-identity satisfied by such algebras. As a corollary we give a negative answer to another conjecture due to Henke and Regev. Furthermore we describe the A-identities of degree 5 for the upper triangular matrices of order 2 and compute the minimal degree of an A-identity for such algebras of order 3 and 4. / Doutorado / Algebra / Doutor em Matemática
|
5 |
Identidades polinomiais graduadas de matrizes triangulares. / Graded polynomial identities of triangular matrices.BORGES, Alex Ramos. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T14:53:31Z
No. of bitstreams: 1
ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5) / Made available in DSpace on 2018-08-06T14:53:31Z (GMT). No. of bitstreams: 1
ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5)
Previous issue date: 2012-12 / Neste trabalho serão estudadas as graduações e identidades polinomiais graduadas
da álgebra Un(K) das matrizes triangulares superiores n×n sobre um corpo K, o qual
será sempre in nito. Primeiramente, será estudado o caso n = 2, para o qual será
mostrado que existe apenas uma graduação não trivial e serão descritos as identidades,
as codimensões e os cocaracteres graduados. Para o caso n qualquer, serão estudadas
as identidades e codimensões graduadas, considerando-se a Zn-graduação natural de
Un(K). Finalmente, será apresentada uma classi cação das graduações de Un(K) por
um grupo qualquer. / In this work we study the gradings and the graded polynomial identities of the
upper n × n triangular matrices algebra Un(K) over a eld K, which is always in nity.
The case n = 2 will be rstly studied, for which will be shown that there is only
one nontrivial grading and we shall describe the graded identities, codimensions and
cocharacters. For the general n case, we shall study graded identities and codimensions,
considering the natural Zn-grading of Un(K). Finally, we will present a classi cation
of the gradings of Un(K) by any group.
|
Page generated in 0.0565 seconds