• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 1
  • Tagged with
  • 32
  • 22
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aprendizado semi-supervisionado para o tratamento de incerteza na rotulação de dados de química medicinal / Semi supervised learning for uncertainty on medicinal chemistry labelling

Souza, João Carlos Silva de 09 March 2017 (has links)
Nos últimos 30 anos, a área de aprendizagem de máquina desenvolveu-se de forma comparável com a Física no início do século XX. Esse avanço tornou possível a resolução de problemas do mundo real que anteriormente não poderiam ser solucionados por máquinas, devido à dificuldade de modelos puramente estatísticos ajustarem-se de forma satisfatória aos dados de treinamento. Dentre tais avanços, pode-se citar a utilização de técnicas de aprendizagem de máquina na área de Química Medicinal, envolvendo métodos de análise, representação e predição de informação molecular por meio de recursos computacionais. Os dados utilizados no contexto biológico possuem algumas características particulares que podem influenciar no resultado de sua análise. Dentre estas, pode-se citar a complexidade das informações moleculares, o desbalanceamento das classes envolvidas e a existência de dados incompletos ou rotulados de forma incerta. Tais adversidades podem prejudicar o processo de identificação de compostos candidatos a novos fármacos, se não forem tratadas de forma adequada. Neste trabalho, foi abordada uma técnica de aprendizagem de máquina semi-supervisionada capaz de reduzir o impacto causado pelo problema da incerteza na rotulação dos dados, aplicando um método para estimar rótulos mais confiáveis para os compostos químicos existentes no conjunto de treinamento. Na tentativa de evitar os efeitos causados pelo desbalanceamento dos dados, foi incorporada ao processo de estimação de rótulos uma abordagem sensível ao custo, com o objetivo de evitar o viés em benefício da classe majoritária. Após o tratamento do problema da incerteza na rotulação, classificadores baseados em Máquinas de Aprendizado Extremo foram construídos, almejando boa capacidade de aproximação em um tempo de processamento reduzido em relação a outras abordagens de classificação comumente aplicadas. Por fim, o desempenho dos classificadores construídos foi avaliado por meio de análises dos resultados obtidos, confrontando o cenário com os dados originais e outros com as novas rotulações obtidas durante o processo de estimação semi-supervisionado / In the last 30 years, the area of machine learning has developed in a way comparable to Physics in the early twentieth century. This breakthrough has made it possible to solve real-world problems that previously could not be solved by machines because of the difficulty of purely statistical models to fit satisfactorily with training data. Among these advances, one can cite the use of machine learning techniques in the area of Medicinal Chemistry, involving methods for analysing, representing and predicting molecular information through computational resources. The data used in the biological context have some particular characteristics that can influence the result of its analysis. These include the complexity of molecular information, the imbalance of the classes involved, and the existence of incomplete or uncertainly labeled data. If they are not properly treated, such adversities may affect the process of identifying candidate compounds for new drugs. In this work, a semi-supervised machine learning technique was considered to reduce the impact caused by the problem of uncertainty in the data labeling, by applying a method to estimate more reliable labels for the chemical compounds in the training set. In an attempt to reduce the effects caused by data imbalance, a cost-sensitive approach was incorporated to the label estimation process, in order to avoid bias in favor of the majority class. After addressing the uncertainty problem in labeling, classifiers based on Extreme Learning Machines were constructed, aiming for good approximation ability in a reduced processing time in relation to other commonly applied classification approaches. Finally, the performance of the classifiers constructed was evaluated by analyzing the results obtained, comparing the scenario with the original data and others with the new labeling obtained by the semi-supervised estimation process
12

Dinâmicas de propagação de informações e rumores em redes sociais / Information and rumor propagation in social networks

Oliveros, Didier Augusto Vega 12 May 2017 (has links)
As redes sociais se tornaram um novo e importante meio de intercâmbio de informações, ideias e comunicação que aproximam parentes e amigos sem importar as distâncias. Dada a natureza aberta da Internet, as informações podem fluir muito fácil e rápido na população. A rede pode ser representada como um grafo, onde os indivíduos ou organizações são o conjunto de vértices e os relacionamentos ou conexões entre os vértices são o conjunto de arestas. Além disso, as redes sociais representam intrinsecamente a estrutura de um sistema mais complexo que é a sociedade. Estas estruturas estão relacionadas com as características dos indivíduos. Por exemplo, os indivíduos mais populares são aqueles com maior número de conexões. Em particular, é aceito que a estrutura da rede pode afetar a forma como a informação se propaga nas redes sociais. No entanto, ainda não está claro como a estrutura influencia na propagação, como medir seu impacto e quais as possíveis estratégias para controlar o processo de difusão. Nesta tese buscamos contribuir nas análises da interação entre as dinâmicas de propagação de informações e rumores e a estrutura da rede. Propomos um modelo de propagação mais realista considerando a heterogeneidade dos indivíduos na transmissão de ideias ou informações. Nós confirmamos a presença de propagadores mais influentes na dinâmica de rumor e observamos que é possível melhorar ou reduzir expressivamente a difusão de uma informação ao selecionar uma fração muito pequena de propagadores influentes. No caso em que se objetiva selecionar um conjunto de propagadores iniciais que maximizem a difusão de informação, a melhor opção é selecionar os indivíduos mais centrais ou importantes nas comunidades. Porém, se o padrão de conexão dos vértices está negativamente correlacionado, a melhor alternativa é escolher entre os indivíduos mais centrais de toda a rede. Por outro lado, através de abordagens topológicas e de técnicas de aprendizagem máquina, identificamos aos propagadores menos influentes e mostramos que eles atuam como um firewall no processo de difusão. Nós propomos um método adaptativo de reconexão entre os vértices menos influentes para um indivíduo central da rede, sem afetar a distribuição de grau da rede. Aplicando o nosso método em uma pequena fração de propagadores menos influentes, observamos um aumento importante na capacidade de propagação desses vértices e da rede toda. Nossos resultados vêm de uma ampla gama de simulações em conjuntos de dados artificiais e do mundo real e a comparação com modelos clássicos de propagação da literatura. A propagação da informação em redes é de grande relevância para as áreas de publicidade e marketing, educação, campanhas políticas ou de saúde, entre outras. Os resultados desta tese podem ser aplicados e estendidos em diferentes campos de pesquisa como redes biológicas e modelos de comportamento social animal, modelos de propagação de epidemias e na saúde pública, entre outros. / On-line Social networks become a new and important medium of exchange of information, ideas and communication that approximate relatives and friends no matter the distances. Given the open nature of the Internet, the information can flow very easy and fast in the population. The network can be represented as a graph, where individuals or organizations are the set of vertices and the relationship or connection among the vertices are the set of edge. Moreover, the social networks are also intrinsically representing the structure of a more complex system that is the society. These structures are related with characteristics of the subjects, like the most popular individuals have many connections, the correlation in the connectivity of vertices that is a trace of homophily phenomenon, among many others. In particular, it is well accepted that the structure of the network can affect the way the information propagates on the social networks. However, how the structure impacts in the propagation, how to measure that impact and what are the strategies for controlling the propagation of some information, it is still unclear. In this thesis, we seek to contribute in the analysis of the interplay between the dynamics of information and rumor spreading and the structure of the networks. We propose a more realistic propagation model considering the heterogeneity of the individuals in the transmission of ideas or information. We confirm the presence of influential spreaders in the rumor propagation process and found that selecting a very small fraction of influential spreaders, it is possible to expressively improve or reduce de diffusion of some information on the network. In the case we want to select a set of initial spreaders that maximize the information diffusion on the network, the simple and best alternative is to select the most central or important individuals from the networks communities. But, if the pattern of connection of the networks is negatively correlated, the best alternative is to choose from the most central individuals in the whole network. On the other hand, we identify, by topological approach and machine learning techniques, the least influential spreaders and show that they act as a firewall in the propagation process. We propose an adaptative method that rewires one edge for a given vertex to a central individual, without affecting the overall distribution of connection. Applying our proposed method in a little fraction of least influential spreaders, we observed an important increasing in the capacity of propagation of these vertices and in the overall network. Our results are from a wide range of simulations in artificial and real-world data sets and the comparison with the classical rumor propagation model. The propagation of information is of greatest relevance for publicity and marketing area, education, political or health campaigns, among others. The results of this these might be applicable and extended in different research fields like biological networks and animal social behavior models.
13

Aprendizado semi-supervisionado para o tratamento de incerteza na rotulação de dados de química medicinal / Semi supervised learning for uncertainty on medicinal chemistry labelling

João Carlos Silva de Souza 09 March 2017 (has links)
Nos últimos 30 anos, a área de aprendizagem de máquina desenvolveu-se de forma comparável com a Física no início do século XX. Esse avanço tornou possível a resolução de problemas do mundo real que anteriormente não poderiam ser solucionados por máquinas, devido à dificuldade de modelos puramente estatísticos ajustarem-se de forma satisfatória aos dados de treinamento. Dentre tais avanços, pode-se citar a utilização de técnicas de aprendizagem de máquina na área de Química Medicinal, envolvendo métodos de análise, representação e predição de informação molecular por meio de recursos computacionais. Os dados utilizados no contexto biológico possuem algumas características particulares que podem influenciar no resultado de sua análise. Dentre estas, pode-se citar a complexidade das informações moleculares, o desbalanceamento das classes envolvidas e a existência de dados incompletos ou rotulados de forma incerta. Tais adversidades podem prejudicar o processo de identificação de compostos candidatos a novos fármacos, se não forem tratadas de forma adequada. Neste trabalho, foi abordada uma técnica de aprendizagem de máquina semi-supervisionada capaz de reduzir o impacto causado pelo problema da incerteza na rotulação dos dados, aplicando um método para estimar rótulos mais confiáveis para os compostos químicos existentes no conjunto de treinamento. Na tentativa de evitar os efeitos causados pelo desbalanceamento dos dados, foi incorporada ao processo de estimação de rótulos uma abordagem sensível ao custo, com o objetivo de evitar o viés em benefício da classe majoritária. Após o tratamento do problema da incerteza na rotulação, classificadores baseados em Máquinas de Aprendizado Extremo foram construídos, almejando boa capacidade de aproximação em um tempo de processamento reduzido em relação a outras abordagens de classificação comumente aplicadas. Por fim, o desempenho dos classificadores construídos foi avaliado por meio de análises dos resultados obtidos, confrontando o cenário com os dados originais e outros com as novas rotulações obtidas durante o processo de estimação semi-supervisionado / In the last 30 years, the area of machine learning has developed in a way comparable to Physics in the early twentieth century. This breakthrough has made it possible to solve real-world problems that previously could not be solved by machines because of the difficulty of purely statistical models to fit satisfactorily with training data. Among these advances, one can cite the use of machine learning techniques in the area of Medicinal Chemistry, involving methods for analysing, representing and predicting molecular information through computational resources. The data used in the biological context have some particular characteristics that can influence the result of its analysis. These include the complexity of molecular information, the imbalance of the classes involved, and the existence of incomplete or uncertainly labeled data. If they are not properly treated, such adversities may affect the process of identifying candidate compounds for new drugs. In this work, a semi-supervised machine learning technique was considered to reduce the impact caused by the problem of uncertainty in the data labeling, by applying a method to estimate more reliable labels for the chemical compounds in the training set. In an attempt to reduce the effects caused by data imbalance, a cost-sensitive approach was incorporated to the label estimation process, in order to avoid bias in favor of the majority class. After addressing the uncertainty problem in labeling, classifiers based on Extreme Learning Machines were constructed, aiming for good approximation ability in a reduced processing time in relation to other commonly applied classification approaches. Finally, the performance of the classifiers constructed was evaluated by analyzing the results obtained, comparing the scenario with the original data and others with the new labeling obtained by the semi-supervised estimation process
14

Administração de capital de giro

Cano, Darci Tomaz January 1993 (has links)
Made available in DSpace on 2010-04-20T20:14:54Z (GMT). No. of bitstreams: 0 Previous issue date: 1994-02-21T00:00:00Z / Trata da apresentação e discussão de modelos de gestão efetiva e eficiente do capital de giro. Aborda aspectos conceituais e teóricos desses modelos, uma vez que a administração do capital de giro pode ser vista como um processo de planejamento e controle, ao se relacionar diretamente com o nível e a composição dos ativos circulantes de uma empresa. Nesse sentido, os referidos modelos auxiliam o administrador financeiro nas suas decisões relativas à determinação do nível ótimo de cada investimento que a empresa deverá manter, num determinado momento, especificamente em Caixa e outras disponibilidades de liquidez imediata, Contas a Receber e Estoques.
15

Diagnóstico de influência em modelos com erros na variável skew-normal/independente / Influence of diagnostic in models with errors in variable skew-normal/independent

Carvalho, Rignaldo Rodrigues 17 August 2018 (has links)
Orientadores: Victor Hugo Lachos Dávila, Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T09:37:18Z (GMT). No. of bitstreams: 1 Carvalho_RignaldoRodrigues_M.pdf: 1849605 bytes, checksum: 07ea5638a2dbfa2227f9a949d4723bbf (MD5) Previous issue date: 2010 / Resumo: O modelo de medição de Barnett é frequentemente usado para comparar vários instrumentos de medição. é comum assumir que os termos aleatórios têm uma distribuição normal. Entretanto, tal suposição faz a inferência vulnerável a observações atípicas por outro lado distribuições de misturas de escala skew-normal tem sido uma interessante alternativa para produzir estimativas robustas tendo a elegância e simplicidade da teoria da máxima verossimilhança. Nós usamos resultados de Lachos et al. (2008) para obter a estimação dos parâmetros via máxima verossimilhança, baseada no algoritmo EM, o qual rende expressões de forma fechada para as equações no passo M. Em seguida desenvolvemos o método de influência local de Zhu e Lee (2001) para avaliar os aspectos de estimação dos parâmetros sob alguns esquemas de perturbação. Os resultados obtidos são aplicados a conjuntos de dados bastante estudados na literatura, ilustrando a utilidade da metodologia proposta / Abstract: The Barnett measurement model is frequently used to comparing several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations whereas scale mixtures of skew-normal distributions have been an interesting alternative to produce robust estimates keeping the elegancy and simplicity of the maximum likelihood theory. We used results in Lachos et al. (2008) for obtaining parameter estimation via maximum likelihood, based on the EM-algorithm, which yields closed form expressions for the equations in the M-step. Then we developed the local influence method to assessing the robustness aspects of these parameter estimates under some usual perturbation schemes. Results obtained for one real data set are reported, illustrating the usefulness of the proposed methodology / Mestrado / Métodos Estatísticos / Mestre em Estatística
16

Misturas finitas de misturas de escala skew-normal / Mixtures modelling using scale mixtures of skew-normal distribution

Basso, Rodrigo Marreiro 03 December 2009 (has links)
Orientador: Victor Hugo Lachos Davila / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T07:03:11Z (GMT). No. of bitstreams: 1 Basso_RodrigoMarreiro_M.pdf: 3130269 bytes, checksum: 85e95beb812a4ec069f39f8b9c79681a (MD5) Previous issue date: 2009 / Resumo: Nesse trabalho será considerada uma classe flexível de modelos usando misturas finitas de distribuições da classe de misturas de escala skew-normal. O algoritmo EM é empregado para se obter estimativas de máxima verossimilhança de maneira iterativa, sendo discutido com maior ênfase para misturas de distribuições skew-normal, skew-t, skew-slash e skew-normal contaminada. Também será apresentado um método geral para aproximar a matrix de covariância assintótica das estimativas de máxima verossimilhança. Resultados obtidos da análise de quatro conjuntos de dados reais ilustram a aplicabilidade da metodologia proposta / Abstract: In this work we consider a flexible class of models using finite mixtures of multivariate scale mixtures of skew-normal distributions. An EM-type algorithm is employed for iteratively computing maximum likelihood estimates and this is discussed with emphasis on finite mixtures of skew-normal, skew-t, skew-slash and skew-contaminated normal distributions. A general information-based method for approximating the asymptotic covariance matrix of the maximum likelihood estimates is also presented. Results obtained from the analysis of four real data sets are reported illustrating the usefulness of the proposed methodology / Mestrado / Mestre em Estatística
17

Estimação e diagnostico em modelos Birnbaum-Saunders skew-normal / Estimation and diagnostic in Birnbaum-Saunders skew-normal models

Santana, Lucia Rolim 13 August 2018 (has links)
Orientador: Filidor Edilfonso Vilca Labra / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T12:05:21Z (GMT). No. of bitstreams: 1 Santana_LuciaRolim_M.pdf: 2777481 bytes, checksum: 1fc4e9545174b66579970259631b5d20 (MD5) Previous issue date: 2009 / Resumo: A classe de modelos Birnbaum-Saunders (BS) surgiu em problemas de fadiga dos materiais (que 'e um dano estrutural que ocorre quando um material é exposto a estresse e tensão). Nos últimos tempos, este modelo tem sido aplicado em áreas fora do contexto de fadiga dos materiais e engenharia, como por exemplo, em ciências da saúde, ambiental, florestal, demográficas, atuarial, financeira, entre outras. Tendo em vista que a distribuição BS tem a propriedade de descrever processos de degradação acumulativa. Neste trabalho, apresentamos um estudo do modelo BS baseado na distribuição skewnormal. Como subproduto consideramos o modelo de regressão linear log-Birnbaum-Saunders (log-BS). Para obter as estimativas de máxima verossimilhança usamos o algoritmo EM. Além disso, apresentamos um estudo de análise de influência global e local, através da metodologia de Zhu e Lee (2001) para dados incompletos. Ilustramos a metodologia proposta com dados encontrados na literatura. / Abstract: The class of models Birnbaum-Saunders (BS) appeared in problems of fatigue of materials (which is a structural damage that occurs when a material is exposed to stress and tension). Recently, this model has been applied in areas outside the context of fatigue of materials and engineering, for example in health sciences, environmental, forestry, demographic, actuarial, financial, among others. As the BS distribution has the property to describe cumulative degradation processes. In this work we present a study of the BS model based on Skew-normal distribution. As a byproduct consider the model of linear regression log-Birnbaum-Saunders (log-BS). To obtain estimates of maximum likelihood we use the EM algorithm. Furthermore, we present a study of the analysis of global and local influence, through the method of Zhu and Lee (2001) to incomplete data. Illustrate the proposed methodology with data found in literature. / Mestrado / Inferencia / Mestre em Estatística
18

Modelos para dados censurados sob a classe de distribuições misturas de escala skew-normal / Censored regression models under the class of scale mixture of skew-normal distributions

Massuia, Monique Bettio, 1989- 03 June 2015 (has links)
Orientador: Víctor Hugo Lachos Dávila / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T19:55:07Z (GMT). No. of bitstreams: 1 Massuia_MoniqueBettio_M.pdf: 2926597 bytes, checksum: 2a1154c0a61b13f369e8390159fc4c3e (MD5) Previous issue date: 2015 / Resumo: Este trabalho tem como objetivo principal apresentar os modelos de regressão lineares com respostas censuradas sob a classe de distribuições de mistura de escala skew-normal (SMSN), visando generalizar o clássico modelo Tobit ao oferecer alternativas mais robustas à distribuição Normal. Um estudo de inferência clássico é desenvolvido para os modelos em questão sob dois casos especiais desta família de distribuições, a Normal e a t de Student, utilizando o algoritmo EM para obter as estimativas de máxima verossimilhança dos parâmetros dos modelos e desenvolvendo métodos de diagnóstico de influência global e local com base na metodologia proposta por Cook (1986) e Poom & Poon (1999). Sob o enfoque Bayesiano, o modelo de regressão para respostas censuradas é estudado sob alguns casos especiais da classe SMSN, como a Normal, a t de Student, a skew-Normal, a skew-t e a skew-Slash. Neste caso, o amostrador de Gibbs é a principal ferramenta utilizada para a inferência sobre os parâmetros do modelo. Apresentamos também alguns estudos de simulação para avaliar a metodologia desenvolvida que, por fim, é aplicada em dois conjuntos de dados reais. Os pacotes SMNCensReg, CensRegMod e BayesCR para o software R dão suporte computacional aos desenvolvimentos deste trabalho / Abstract: This work aims to present the linear regression model with censored response variable under the class of scale mixture of skew-normal distributions (SMSN), generalizing the well known Tobit model as providing a more robust alternative to the normal distribution. A study based on classic inference is developed to investigate these censored models under two special cases of this family of distributions, Normal and t-Student, using the EM algorithm for obtaining maximum likelihood estimates and developing methods of diagnostic based on global and local influence as suggested by Cook (1986) and Poom & Poon (1999). Under a Bayesian approach, the censored regression model was studied under some special cases of SMSN class, such as Normal, t-Student, skew-Normal, skew-t and skew-Slash. In these cases, the Gibbs sampler was the main tool used to make inference about the model parameters. We also present some simulation studies for evaluating the developed methodologies that, finally, are applied on two real data sets. The packages SMNCensReg, CensRegMod and BayesCR implemented for the software R give computational support to this work / Mestrado / Estatistica / Mestra em Estatística
19

Dinâmicas de propagação de informações e rumores em redes sociais / Information and rumor propagation in social networks

Didier Augusto Vega Oliveros 12 May 2017 (has links)
As redes sociais se tornaram um novo e importante meio de intercâmbio de informações, ideias e comunicação que aproximam parentes e amigos sem importar as distâncias. Dada a natureza aberta da Internet, as informações podem fluir muito fácil e rápido na população. A rede pode ser representada como um grafo, onde os indivíduos ou organizações são o conjunto de vértices e os relacionamentos ou conexões entre os vértices são o conjunto de arestas. Além disso, as redes sociais representam intrinsecamente a estrutura de um sistema mais complexo que é a sociedade. Estas estruturas estão relacionadas com as características dos indivíduos. Por exemplo, os indivíduos mais populares são aqueles com maior número de conexões. Em particular, é aceito que a estrutura da rede pode afetar a forma como a informação se propaga nas redes sociais. No entanto, ainda não está claro como a estrutura influencia na propagação, como medir seu impacto e quais as possíveis estratégias para controlar o processo de difusão. Nesta tese buscamos contribuir nas análises da interação entre as dinâmicas de propagação de informações e rumores e a estrutura da rede. Propomos um modelo de propagação mais realista considerando a heterogeneidade dos indivíduos na transmissão de ideias ou informações. Nós confirmamos a presença de propagadores mais influentes na dinâmica de rumor e observamos que é possível melhorar ou reduzir expressivamente a difusão de uma informação ao selecionar uma fração muito pequena de propagadores influentes. No caso em que se objetiva selecionar um conjunto de propagadores iniciais que maximizem a difusão de informação, a melhor opção é selecionar os indivíduos mais centrais ou importantes nas comunidades. Porém, se o padrão de conexão dos vértices está negativamente correlacionado, a melhor alternativa é escolher entre os indivíduos mais centrais de toda a rede. Por outro lado, através de abordagens topológicas e de técnicas de aprendizagem máquina, identificamos aos propagadores menos influentes e mostramos que eles atuam como um firewall no processo de difusão. Nós propomos um método adaptativo de reconexão entre os vértices menos influentes para um indivíduo central da rede, sem afetar a distribuição de grau da rede. Aplicando o nosso método em uma pequena fração de propagadores menos influentes, observamos um aumento importante na capacidade de propagação desses vértices e da rede toda. Nossos resultados vêm de uma ampla gama de simulações em conjuntos de dados artificiais e do mundo real e a comparação com modelos clássicos de propagação da literatura. A propagação da informação em redes é de grande relevância para as áreas de publicidade e marketing, educação, campanhas políticas ou de saúde, entre outras. Os resultados desta tese podem ser aplicados e estendidos em diferentes campos de pesquisa como redes biológicas e modelos de comportamento social animal, modelos de propagação de epidemias e na saúde pública, entre outros. / On-line Social networks become a new and important medium of exchange of information, ideas and communication that approximate relatives and friends no matter the distances. Given the open nature of the Internet, the information can flow very easy and fast in the population. The network can be represented as a graph, where individuals or organizations are the set of vertices and the relationship or connection among the vertices are the set of edge. Moreover, the social networks are also intrinsically representing the structure of a more complex system that is the society. These structures are related with characteristics of the subjects, like the most popular individuals have many connections, the correlation in the connectivity of vertices that is a trace of homophily phenomenon, among many others. In particular, it is well accepted that the structure of the network can affect the way the information propagates on the social networks. However, how the structure impacts in the propagation, how to measure that impact and what are the strategies for controlling the propagation of some information, it is still unclear. In this thesis, we seek to contribute in the analysis of the interplay between the dynamics of information and rumor spreading and the structure of the networks. We propose a more realistic propagation model considering the heterogeneity of the individuals in the transmission of ideas or information. We confirm the presence of influential spreaders in the rumor propagation process and found that selecting a very small fraction of influential spreaders, it is possible to expressively improve or reduce de diffusion of some information on the network. In the case we want to select a set of initial spreaders that maximize the information diffusion on the network, the simple and best alternative is to select the most central or important individuals from the networks communities. But, if the pattern of connection of the networks is negatively correlated, the best alternative is to choose from the most central individuals in the whole network. On the other hand, we identify, by topological approach and machine learning techniques, the least influential spreaders and show that they act as a firewall in the propagation process. We propose an adaptative method that rewires one edge for a given vertex to a central individual, without affecting the overall distribution of connection. Applying our proposed method in a little fraction of least influential spreaders, we observed an important increasing in the capacity of propagation of these vertices and in the overall network. Our results are from a wide range of simulations in artificial and real-world data sets and the comparison with the classical rumor propagation model. The propagation of information is of greatest relevance for publicity and marketing area, education, political or health campaigns, among others. The results of this these might be applicable and extended in different research fields like biological networks and animal social behavior models.
20

Concepção de uma solução escalável para maximização de influência ciente de tópicos em redes sociais. / Design of a scalable solution to maximize influence aware of topics in social networks.

SANTOS, Daniel Bruno Alves dos. 07 November 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-11-07T16:54:43Z No. of bitstreams: 1 DANIEL BRUNO ALVES DOS SANTOS - TESE PPGEE 2015..pdf: 10968924 bytes, checksum: 74bc4c0d565359ae930b79a1277c7506 (MD5) / Made available in DSpace on 2018-11-07T16:54:43Z (GMT). No. of bitstreams: 1 DANIEL BRUNO ALVES DOS SANTOS - TESE PPGEE 2015..pdf: 10968924 bytes, checksum: 74bc4c0d565359ae930b79a1277c7506 (MD5) Previous issue date: 2015-11-11 / CNPq / O uso das redes sociais tem demonstrado enorme potencial para a criação, divulgação de informações e formação de opinião. Um dos problemas centrais que tem atraído a atenção de pesquisadores consiste em encontrar um conjunto inicial de usuários que, ao receberem algum incentivo, podem influenciar uma porção substancial da rede social para comprar um produto, adotar uma inovação ou propagar notícias. Este problema é denominado de Maximização de Influência. Embora avanços expressivos tenham sido alcançados desde a definição deste problema, a maior parte dos esforços tem sido concentrada em solucionar limitações de escalabilidade e de como aprender os parâmetros da solução. Como resultado, outros aspectos importantes foram pouco explorados, como, por exemplo, a relação de dependência entre a influência social e os tópicos de interesse dos usuários. Recentemente, essa questão tem sido abordada em um problema denominado de Maximização de Influência baseada em Tópicos, que consiste em encontrar um conjunto inicial de usuários com a habilidade de influenciar uma porção substancial de uma rede social em relação a um tópico específico. Todavia, as soluções propostas não são adequadas para redes sociais de larga escala e precisam incorporar mecanismos para determinar a influência social exercida entre os usuários em relação a cada tópico de interesse. Consequentemente, para estas abordagens, torna-se difícil ou mesmo inviável lidar de forma rápida e eficiente com as mudanças constantes na estrutura das redes sociais. Tal problema é particularmente relevante quando são considerados os tópicos de interesse dos usuários e a influência social que os mesmos exercem uns sobre os outros em cada tópico. Neste trabalho é proposta uma solução escalável baseada em mineração de dados sobre um registro de propagações de informações, com o objetivo de selecionar diretamente o conjunto inicial de usuários influentes em um determinado tópico, sem a necessidade de incorporar uma etapa anterior de aprendizagem de influência social relacionada a esse tópico. Como benefício adicional, o conjunto inicial de usuários obtido possui uma garantia de aproximação em relação à solução ótima. Por fim, é apresentada uma avaliação experimental sobre um conjunto de dados contendo propagações de informações de uma rede social real, onde são obtidas evidências de que a solução proposta mantém um custo-benefício entre escalabilidade e acurácia. / The use of social networks has shown great potential for information diffusion and formation of public opinion. One key problem that has attracted researchers' interest is how to find an initial set of users such that, when given an incentive, they might influence a substantial portion of the network to buy a product, adopt an innovation, or spread news. This problem is known as Influence Maximization. Although major improvements have been made since the íirst solution for this problem was developed, most of these efforts have been concerned on how to solve scalability issues and how to learn the solution parameters. As a result, other key aspects have gained minor interest, such as depending on relationship between social influence and users' topics of interest. Recently, this issue has been addressed as a problem known as Topic-based Influence Maximization, referring to finding a small set of users on a social network that have the ability to influence a substantial portion of users on a given topic. The proposed solutions, however, are not suitable for large-scale social networks and must incorporate mechanisms for determining social influence among users for each topic of interest. Consequently, for these approaches, it becomes difficult or even unfeasible to deal quickly and efficiently with constant changes in the structure of social networks. This problem is particularly relevant when the topics of interest of users and the social influence they exert on each other for every topic are considered together. In this work we propose a scalable solution that makes use of data mining based on an information propagation log, in order to directly select the initial set of influential users on a particular topic without needing to incorporate a previous learning stage of social influence with regard to that topic. As an additional benefit, the targeted seed set also offers an approximation guarantee of the optimal solution. Finally, an experimental evaluation is presented based on datasets containing information propagation data from real social networks where evidence has been found that the proposed solution maintains a trade-off between scalability and accuracy.

Page generated in 0.0317 seconds