Spelling suggestions: "subject:"mechatronics."" "subject:"echatronics.""
171 |
Wind Vector Estimation by Drone / Vindvektorestimering med drönareKUGELBERG, EDVIN, ANDERSSON, OSCAR January 2020 (has links)
An original approach for measuring wind speed and direction by the use ofdrones was proposed and compared to an existing one. The original approach allowed the drone to drift with the wind and use the translatory velocity for input into a non-linear estimator, while the existing approach used a stationary hovering drone and its tilt for input to an estimator. A simulation environment was set up in Simulink and Matlab and validated using outputs from previous researchers performing similar tasks. The first test exposed the two approaches to wind tunnel-like environment with a strictly horizontal wind, while the second test used real wind data collected on-board a meteorological research vessel. Results showed that the original approachperformed better for estimating both direction and speed, but it required a largearea to drift in during operation. / En egen teknik för att mäta vindhastighet och vindrikting med en drönare föreslogs och jämfördes med en befintlig teknik. Det egna sättet tillät drönaren att driva med vinden och använde dess egna hastighet för att estimera vinden, medan den existerande tekniken höll drönarens position konstant och estimerade vinden med hjälp av farkostens lutning. En simuleringsmiljö inrättades i Simulink och Matlab som validerades medhjälp av resultat från tidigare liknande forskning. Det första testet som genomfördes exponerade de två tillvägagångsätten för vindtunnel-liknande förhållanden, medan det andra testet använde verklig vinddata som samlats in ombordett meteorologiskt forskningsfartyg. Resultaten visade att den egna teknikenproducerade noggrannare upskattningar av både vindhastighet och riktning,men krävde betydligt större fritt flygrum.
|
172 |
Robotic Hand Controlled by Glove Using Wireless Communication / Robothand Styrd av Handske Genom Trådlös KommunikationKAZI, MEHNAZ, BILL, MICHELLE January 2020 (has links)
The interest in the research and development of humanoid robots has been steadily growing in recent years. The application of such robotic systems are many and wide. In this bachelor’s thesis in mechatronics one such robotic system was built in the form of a hand. The aim was to investigate how well the robotic hand could imitate the movements of a user-worn controller glove as well as grip objects, both through wireless communication. The controller glove consisted of an Arduino Nano microcontroller, five flex sensors, an inertial measurement unit that detected the wrist rotation of the glove, a nRF24L01 transmitter as well as an external power source of 9 volts. The robotic hand consisted of three-dimensional printed parts from an open source library, an Arduino Uno microcontroller, a nRF24L01 receiver, two external power supplies of 9 volts and 5 volts and six servo motors, with one servo motor per finger and wrist. The finished robotic hand did well in imitating the motions of the controller glove with little to no observed delay and was able to grip onto objects of various sizes, shapes and weights up to 134 grams. The constructed robotic hand achieved the desired goals of the project. The results indicated that improvements can be made on the grip ability of objects with rigid surfaces as well as improving the imitation by implementing more degrees of freedom for the fingers of the robotic hand. / Intresset för forskning och utveckling av humanoida robotarhar under de senaste åren varit på ständig uppfart. Applikationerna av sådana robotsystem är många och breda. Idetta kandidatarbete inom mekatronik konstruerades ettsådant robotsystem i formen av en hand. Syftet var att undersöka hur väl robothanden kunde imitera rörelserna av enanvändarburen kontrollerhandske samt hur väl den kundegreppa tag om objekt med hjälp av trådlös kommunikation. Kontrollerhanskens komponenter bestod av en Arduino Nano mikrokontroller, fem flex sensorer, en tröghetsmätenhet som mätte rotationen av handleden, en nRF24L01sändarenhet samt en extern kraftkälla på 9 volt. Robothanden bestod av tredimensionellt utskrivna delar från ettopen source bibliotek, en Arduino Uno mikrokontroller, ennRF24L01 mottagarenhet, två externa kraftkällor på 9 voltrespektive 5 volt samt sex stycken servomotorer. Varje enskild finger samt handled var kopplad till en servomotorvar. Robothanden kunde imitera kontrollhandskens rörelser med liten försening och kunde greppa tag om objekt avolika storlekar, utformningar samt vikter upp till 134 gram.Den konstruerade robothanden åstadkom de önskade målensom sattes för projektet. Resultaten indikerade att robothandens greppförmåga om föremål med styva ytor och dessimitation kan förbättras.
|
173 |
SMOOTH VARIABLE STRUCTURE FILTERING: THEORY AND APPLICATIONSGadsden, Stephen Andrew 10 1900 (has links)
<p>Filtering strategies play an important role in estimation theory, and are used to extract knowledge of the true states typically from noisy measurements or observations made of the system. The name ‘filter’ is appropriate since it removes unwanted noise from the signal. In 2007, the smooth variable structure filter (SVSF) was introduced. This filter is based on the sliding mode control and estimation techniques, and is formulated in a predictor-corrector fashion. The SVSF makes use of an existence subspace and of a smoothing boundary layer to keep the estimates bounded within a region of the true state trajectory. This creates a robust and stable estimation strategy. The research presented in this thesis focuses on advancing the development and implementation of the SVSF.</p> <p>In its original form, the SVSF does not utilize a state error covariance matrix, which is a measure of the accuracy of the state estimates. Therefore, the first major contribution of this research is the formulation of an SVSF strategy with a covariance derivation. This creates a number of research opportunities that can only be pursued and rely on the availability of the error covariance matrix. In an effort to further improve the estimation accuracy, a time-varying smoothing boundary layer is created by minimizing the covariance. This contribution significantly improves the SVSF, and provides a mechanism for combining the SVSF with other popular estimation strategies. A linear system example with the presence of uncertainties is studied which demonstrates that the proposed SVSF improves the estimation accuracy by approximately 20%. Furthermore, a new model-based fault detection strategy is created based on the interacting multiple model (IMM) method. This new method (IMM-SVSF) is applied on an experimental apparatus for the purposes of fault detection. It is able to improve upon the fault detection probability by 10-30% (depending on the fault), when compared with the most commonly used strategy. The IMM-SVSF method is also found to work extremely well for target tracking problems, demonstrating an improvement of roughly 40%. This research results in a number of novel contributions, and significantly advances the development of the SVSF.</p> / Doctor of Philosophy (PhD)
|
174 |
Development of a Robotic Vehicle Control SystemJohnson, Matthew C. 10 1900 (has links)
<p>This thesis presents the design stages in creating a robotic driving system for performing in-lab driving schedule playback using a chassis dynamometer. This equipment is intended to assist research in improving the power train system in Hybrid Electric Vehicles (HEV). The design stage layout contributes to showing how to effectively breakdown a mechatronics related project into manageable steps. The process includes background research, system requirements, system design and validation. Design stages are further broken up into three subsystems, mechanical, electrical and software.</p> <p>Two actuators control the gas and brake pedals of the test vehicle. An active control system allows the vehicle to follow a speed vs. time driving schedule. The control feedback loop uses two cascading Proportional-Integral (PI) controllers (vehicle speed and pedal position). Feedback signals come from the onboard diagnostics (OBD-II) port. The control software is implemented on a dSPACE MicroAutoBox capable of multiple inputs and outputs including a built in CAN Bus controller to receive messages from the OBD-II port. The control software is implemented in Simulink and provides a modular, maintainable architecture for future development.</p> <p>The system design steps lead to a practical system obtained through a systematic approach. Design documentation will allow for further development of this test system to meet future requirements.</p> / Master of Applied Science (MASc)
|
175 |
System Simulation of Electric Driveline and Active Suspension using Simcenter AmesimLundberg, Simon January 2022 (has links)
Computer simulation software’s are arguably some of the most convenient and utilized tools for an engineer as it lets them model real phenomena and observe different operations without having to perform the operation physically, thus saving both time and resources. Naturally these tools varies in design depending on their intended area of application and while a large number of them supports modeling of more than one physical domain, it is often cumbersome to attain a functional interaction between them. In spite of this there do exist simulation software that have been specifically developed for effectively integrating several physical domains known as system simulation software’s. One of these are Siemens Simcenter Amesim, a computer simulation software for modeling multi domain mechatronic systems. One company that has recently found an interest in potentially adapting the concept of system simulations into their workflow is BAE Systems Hägglunds, Örnsköldsvik, where a pre-study has previously been conducted in order to define a system requirement specification as well as narrow down the number of promising tools to only a few, with Simcenter Amesim being one of them. The aim of this study is then to evaluate and assess to what degree Simcenter Amesim complies with the requirements specified by the company. The primary source of information in which this analysis will be based upon is through the modeling of two different pilot cases in Simcenter Amesim, an electric driveline as well as the hydraulic component of the active suspension system affiliated with the CV90 vehicle. The electric driveline was developed as a general model featuring a few key functionalities in terms of power setup. This being that two electric motors were to be utilized, one for driving the vehicle forward and the other for steering the vehicle left and right. Powering these two was then an electric generator which by itself was to be powered by an internal combustion engine (ICE). The active suspension system was modeled based on existing schematics and information available through company resources with the ambition of realizing a certain behavior of the system as described by a couple of real tests made. Results from simulations made using the electric driveline model indicates that the model succeeds in fulfilling its fundamental functionality. Through plain throttle and steering inputs the corresponding vehicle is able to move about in a simple and predictable fashion with data also showcasing realistic behavior in terms of velocity evolution and power generation. The hydraulic model of the CV90 active suspension system furthermore appears to replicate the behavior of the actual suspension system fairly well based on the real test data available. Analogous with both models however is the fact that they are rather primitive in their current state. The electric driveline model lacks some of the finesses and functionalities that are included in modern driveline systems, mostly coupled to the component steering and feedback system which is more arbitrarily implemented in this model. As for the hydraulic suspension system it would be beneficial to continue develop the model through further evaluation using more real life test data.
|
176 |
Design, Simulation, and Experimental Validation of a Novel High-Speed Omnidirectional Underwater Propulsion MechanismNjaka, Taylor Dean 11 January 2021 (has links)
This dissertation explores a novel omnidirectional propulsion mechanism for observation-class underwater vehicles, enabling for operation in extreme, hostile, or otherwise high-speed turbulent environments where unprecedented speed and agility are necessary. With a small overall profile, the mechanism consists of two sets of counter-rotating blades operating at frequencies high enough to dampen vibrational effects on onboard sensors. Each rotor is individually powered to allow for roll control via relative motor effort and attached to a swashplate mechanism, providing quick and powerful manipulation of fluid-flow direction in the hull's coordinate frame without the need to track rotor position. The omnidirectional mechanism exploits properties emerging from its continuous counter-rotating blades to generate near-instantaneous forces and moments in six degrees of freedom (DOF) of considerable magnitude, and is designed to allow each DOF to be controlled independently by one of six decoupled control parameters. The work presented in this dissertation validates the mechanism through physical small-scale experimentation, confirming near-instantaneous reaction time, and aligning with computational fluid dynamic (CFD) results presented for the proposed theorized full-scale implementation. Specifically, it is demonstrated that the mechanism can generate sway thrust at 10-20% surge thrust capacity in both simulation and physical tests. It is also shown that the magnitude of forces and moments generated is directly proportional to motor effort and corresponding commands, in par with theory. Any apparent couplings between different control modes are deeply understood and shown to be trivially accounted for, effectively uncoupling all six control parameters. The design, principles, and bullard-pull simulation of the proposed full-scale mechanism and vehicle implementation are then thoroughly discussed. Kinematic and hydrodynamic analyses of the hull and surrounding fluid forces during different maneuvers are presented, followed by the mechanical design and kinematic analysis of each subsystem. To estimate proposed full-scale performance specifications and UUV turbulence rejection, a full six-DOF maneuvering model is constructed from first principles utilizing CFD and regression techniques. This dissertation thoroughly examines the working principles and performance of a novel omnidirectional propulsion mechanism. With the small-scale model and full scale simulation and analysis, the work presented successfully demonstrates the mechanism can generate nearly instantaneous omnidirectional forces underwater in a controlled manner, with application to high-speed agile vehicles in dynamic environments. / Doctor of Philosophy / This dissertation explores a novel omnidirectional propulsion mechanism for observation-class underwater vehicles, enabling for operation in extreme, hostile, or otherwise high-speed turbulent environments where unprecedented speed and agility are necessary. The mechanism utilizes independently-powered rotors to command near-instantaneous forces and moments in all six degrees of freedom (DOF). The design allows each DOF to be independently controlled by one of six decoupled control parameters. The method for generating lateral thrust through the mechanism is originally verified through computational fluid dynamic (CFD) tests, but the complete novelty of the lateral maneuver calls for physical verification for any noteworthy validation. The work presented in this dissertation validates the mechanism through physical small-scale experimentation, confirming near-instantaneous reaction time, and aligning with CFD results presented for the proposed theorized full-scale implementation. Specifically, it is demonstrated that the mechanism can generate sway (side/side) thrust at 10-20% surge (forward/backward) thrust capacity in both simulation and physical tests. It is also shown that the magnitude of forces and moments generated is directly proportional to motor effort and corresponding commands, in par with theory. Finally, a full six-DOF model for underwater vehicle trajectory is constructed utilizing detailed maneuvering techniques to estimate full-scale performance. With the small-scale model and full-scale simulation and analysis, the work successfully demonstrates the mechanism can generate nearly instantaneous omnidirectional forces underwater in a controlled manner, with application to high-speed agile vehicles in dynamic environments.
|
177 |
A Hybrid Tracking Approach for Autonomous Docking in Self-Reconfigurable Robotic ModulesSohal, Shubhdildeep Singh 02 July 2019 (has links)
Active docking in modular robotic systems has received a lot of interest recently as it allows small versatile robotic systems to coalesce and achieve the structural benefits of larger robotic systems. This feature enables reconfigurable modular robotic systems to bridge the gap between small agile systems and larger robotic systems. The proposed self-reconfigurable mobile robot design exhibits dual mobility using a tracked drive for longitudinal locomotion and wheeled drive for lateral locomotion. The two degrees of freedom (DOF) docking interface referred to as GHEFT (Genderless, High strength, Efficient, Fail-Safe, high misalignment Tolerant) allows for an efficient docking while tolerating misalignments in 6-DOF. In addition, motion along the vertical axis is also achieved via an additional translational DOF, allowing for toggling between tracked and wheeled locomotion modes by lowering and raising the wheeled assembly. This thesis also presents a visual-based onboard Hybrid Target Tracking algorithm to detect and follow a target robot leading to autonomous docking between the modules. As a result of this proposed approach, the tracked features are then used to bring the robots in sufficient proximity for the docking procedure using Image Based Visual Servoing (IBVS) control. Experimental results to validate the robustness of the proposed tracking method, as well as the reliability of the autonomous docking procedure, are also presented in this thesis. / Master of Science / Active docking in modular robotic systems has received a lot of interest recently as it allows small versatile robotic systems to coalesce and achieve the structural benefits of larger robotic systems. This feature enables reconfigurable modular robotic systems to bridge the gap between small agile systems and larger robotic systems. Such robots can prove useful in environments that are either too dangerous or inaccessible to humans. Therefore, in this research, several specific hardware and software development aspects related to self-reconfigurable mobile robots are proposed. In terms of hardware development, a robotic module was designed that is symmetrically invertible and exhibits dual mobility using a tracked drive for longitudinal locomotion and wheeled drive for lateral locomotion. Such interchangeable mobility is important when the robot operates in a constrained workspace. The mobile robot also has integrated two degrees of freedom (DOF) docking mechanisms referred to as GHEFT (Genderless, High strength, Efficient, Fail-Safe, high misalignment Tolerant). The docking interface allows for an efficient docking while tolerating misalignments in 6-DOF. In addition, motion along the vertical axis is also performed via an additional translational DOF, allowing for lowering and raising the wheeled assembly. The robot is equipped with sensors to provide positional feedback of the joints relative to the target robot. In terms of software development, a visual-based onboard Hybrid Target Tracking algorithm for high-speed consistent tracking iv of colored targets is also presented in this work. The proposed technique is used to detect and follow a colored target attached to the target robot leading to autonomous docking between the modules using Image Based Visual Servoing (IBVS). Experimental results to validate the robustness of the proposed tracking approach, as well as the reliability of the autonomous docking procedure, are also presented in the thesis. The thesis is concluded with discussions about future research in both structured and unstructured terrains.
|
178 |
A Review of Anthropomorphic Robotic Hand Technology and Data Glove Based ControlPowell, Stephen Arthur 27 September 2016 (has links)
For over 30 years, the development and control of anthropomorphic robotic hands has been a highly popular sub-discipline in robotics research. Because the human hand is an extremely sophisticated system, both in its mechanical and sensory abilities, engineers have been fascinated with replicating these abilities in artificial systems. The applications of robotic hands typically fall under the categories of standalone testbed platforms, mostly to conduct research on manipulation, prosthetics, and robotic end effectors for larger systems. The teleoperation of robotic hands is another application with significant potential, where users can control a manipulator in real time to accomplish diverse tasks. In controlling a device that seeks to emulate the function of the human hand, it is intuitive to choose a human-machine interface (HMI) that will allow for the most intuitive control. Data gloves are the ideal HMI for this need, allowing a robotic hand to accurately mimic the human operator's natural movements. In this paper we present a combined review on the critical design aspects of data gloves and robotic hands. In literature, many of the proposed designs covering both these topical areas, robotic hand and data gloves, are cost prohibitive which limits their implementation for intended tasks. After reviewing the literature, new designs of robotic hand and data glove technology are also presented, introducing low cost solutions that can serve as accessible platforms for researchers, students, and engineers to further the development of teleoperative applications. / Master of Science / For over 30 years, the development and control of anthropomorphic robotic hands has been a highly popular sub-discipline in robotics research. Because the human hand is an extremely sophisticated system, both in its mechanical and sensory abilities, engineers have been fascinated with replicating these abilities in artificial systems. The applications of robotic hands typically fall under the categories of standalone testbed platforms, mostly to conduct research on manipulation, prosthetics, and robotic end effectors for larger systems. The teleoperation of robotic hands is another application with significant potential, where users can control a manipulator in real time to accomplish diverse tasks. In controlling a device that seeks to emulate the function of the human hand, it is intuitive to choose a human-machine interface (HMI) that will allow for the most intuitive control. Data gloves are the ideal HMI for this need, allowing a robotic hand to accurately mimic the human operator’s natural movements. In this paper we present a combined review on the critical design aspects of data gloves and robotic hands. In literature, many of the proposed designs covering both these topical areas, robotic hand and data gloves, are cost prohibitive which limits their implementation for intended tasks. After reviewing the literature, new designs of robotic hand and data glove technology are also presented, introducing low cost solutions that can serve as accessible platforms for researchers, students, and engineers to further the development of teleoperative applications.
|
179 |
E.G.O : Electronic Grip Overloader / E.G.Ö : Elektronisk Grepp ÖverbelastareChith, Mohammed, Mirza, Rahel January 2023 (has links)
Humans use their hands on a daily basis, and they are a fundamental part of our lives both in terms of our work and our everyday activities. One of the key things that our hands allow us to do is grab onto objects. Unfortunately however, sometimes this ability to grab onto things becomes weakened, for example due to old age or diseases such as arthritis. This project was aimed to see if mechatronic engineering could be implemented to remedy this problem, while maintaining good accessibility and design. The resulting solution was a glove with pressure sensors and an integrated pulley system, which would provide a pulling force on the fingers and allow the user to get a reinforced grip on objects. A key factor in this design was to provide adequate function, without compromising form, i.e making the glove easy to wear and not clunky. The resulting glove provided substantial support to the test subjects grip strength, and presented a valid way to counteract their weekend state. However, the form was still considered too clunky and not efficient enough to warrant daily use. For future work, alternative pulley systems might be a valid option to slim down the glove and make it more accessible. Collaborating with people from the mechatronics industry, specifically those geared towards human augmentation, may also be beneficial to those with lacking experience or connections in the subject area. Conducting research specifically about what is considered “easy to use” may also be necessary to further solidify any changes in design. / Människor använder sina händer vardagligen, och de är en fundamental del av våra liv vad gäller både vardagssysslor och arbete. En av de viktigaste funktionerna våra händer utgör är att de tillåter oss att greppa tag i saker. Tyvärr händer det dock att denna förmåga försvagas exempelvis på grund av ålder eller sjukdomar såsom artros. Detta projekt var ämnat att se om en mekatronisk lösning kunde användas för att åtgärda detta problem, utan att göra uppoffringar vad gäller enkel design och tydlig form. Resultatet var en handske med trycksensorer och en integrerad motor som erbjöd en dragande kraft i fingrarna och ett förstärkt grepp. Den resulterande handsken erbjöd tillfredsställande support till testpersonerna greppstyrka och visade sig vara en rimlig lösning på de problem som individens artros ställt till med. Dessvärre ansågs formen fortfarande lite för otymplig och svårhanterad för att tillfredsställa önskemålen i den aspekten. För fortsatt arbete kan en annorlunda integration av motorn vara ett rimligt alternativ för att slimma ner handsken. Samarbete med företag inom robotik och mänskliga proteser kan också vara gynnsamt, speciellt för de med liten erfarenhet eller med fåtal kontakter inom testområdet. Tydligare efterforskning på vad som är “enkelt att använda” kan också leda designen i en bättre riktning.
|
180 |
On design methods for mechatronics : servo motor and gearheadRoos, Fredrik January 2005 (has links)
<p>The number of electric powered sub-systems in road-vehicles is increasing fast. This development is primarily driven by the new and improved functionality that can be implemented with electro-mechanical sub-systems, but it is also necessary for the transition to electric and hybrid-electric drive trains.</p><p>An electromechanical sub-system can be implemented as a physically integrated mechatronic module: controller, power electronics, electric motor, transmission and sensors, all integrated into one component. A mechatronic module, spans, as all mechatronic systems, over several closely coupled engineering disciplines: mechanics, electronics, electro-mechanics, control theory and computer science. In order to design and optimize a mechatronic system it is therefore desirable to design the system within all domains concurrently. Optimizing each domain or component separately will not result in the optimal system design. Furthermore, the very large production volumes of automotive sub-systems increase the freedom in the mechatronics design process. Instead of being limited to the selection from off-the shelf components, application specific components may be designed.</p><p>The research presented in this thesis aims at development of an integrated design and optimization methodology for mechatronic modules. The target of the methodology is the conceptual design phase, where the number of design parameters is relatively small. So far, the focus has been on design methods for the electric motor and gearhead, two of the most important components in an actuation module. The thesis presents two methods for design and optimization of motor and gearhead in mechatronic applications. One discrete method, intended for the selection of off-the-shelf components, and one method mainly intended for high volume applications where new application specific components may be designed. Both methods can handle any type of load combination, which is important in mechatronic systems, where the load seldom can be classified as pure inertial or constant speed.</p><p>Furthermore, design models relating spur gear weight, size and inertia to output torque and gear ratio are presented. It is shown that a gearhead has significantly lower inertia and weight than a motor. The results indicate that it almost always is favorable from a weight and size perspective to use a gearhead. A direct drive configuration may only be lighter for very high speed applications. The main contribution of this thesis is however the motor/gear ratio sizing methods that can be applied to any electromechanical actuation system that requires rotational motion.</p>
|
Page generated in 0.0723 seconds