• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 15
  • 3
  • Tagged with
  • 177
  • 177
  • 116
  • 107
  • 62
  • 48
  • 44
  • 39
  • 35
  • 33
  • 32
  • 31
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Análise matemática de soluções descontínuas de leis de conservação hiperbólicas e resoluções numéricas para a captura de ondas de choque em escoamentos multifásicos em meios porosos / Mathematical analysis of discontinuous solutions of hyperbolic conservation laws and numerical resolutions for capturing of shock waves in multiphase flows in porous media

Nelson Machado Barbosa 17 April 2014 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos. / The process of secondary oil recovery is commonly accomplished by injecting water or gas into the reservoir to maintain the necessary pressure for their extraction. So that the investment is viable spending extraction must be smaller than the financial return to oil production. Aiming to study possible scenarios for the exploration process, it is customary to use simulations of extraction processes. The equations that model this process of recovery are hyperbolic and nonlinear, which can be interpreted as Conservation Laws , whose solutions are complex by their discontinuous nature . These discontinuities or jumps are known as shock waves. Due to this importance, this work will be discussed a mathematical analysis of the phenomena arising from conservation laws, to then use it in the understanding of this problem. Weak solutions that physically can be interpreted as shock waves or rarefaction, so that they might be distinguished physically admissible were studied, was considered the principle of entropy, in its various forms. The simulations were performed in the fields of two-phase and three-phase flow, in which the fluids are immiscible and gravitational and diffusive effects due to capillary pressure, were discarded. Initially a comparative study of numerical resolutions in the capture of shock waves in water-oil two-phase flow was made. This study highlights LWLF k Composite method and Nonstandard. Was also presented a new renormalization function for nonstandard scheme with satisfactory results, especially in regions where the oil viscosity is much higher than the viscosity of the water. In twodimensional flow, a new method will be presented. The same is a generalization of onedimensional nonstandard schema. Finally, the adaptation of nonstandard and LWLF-4 methods for simulating in three-phase one-dimensional flows. In general, the nonstandard scheme was considered the most efficient method in problems addressed, since its twodimensional version was satisfactory in capturing shock waves in two-phase flow in porous media.
172

[en] MODELLING AND NUMERICAL SIMULATION OF THE TWO PHASES FLUX AND TRANSPORT MULTICOMPONENT IN THE POROUS MEDIUM WITH NO ISOTERMIC-CHEMICAL INTERACTION / [pt] MODELAGEM E SIMULAÇÃO NUMÉRICA DO FLUXO BIFÁSICO E DO TRANSPORTE MULTICOMPONENTE EM MEIOS POROSOS COM INTERAÇÃO TERMO-QUÍMICA

JULIO CESAR DA SILVA 18 February 2005 (has links)
[pt] Este trabalho apresenta o estágio atual do desenvolvimento de uma ferramenta numérica para simulação e análise do fluxo bifásico e do transporte multicomponente e de calor em meios porosos com interação química em duas dimensões. O programa desenvolvido foi baseado no UNSATCHEM_2D escrito em linguagem Fortran. A discretização das equações diferenciais parciais é feita em elementos finitos no espaço e em diferenças finitas no tempo. Uma interface grá- fica foi criada em linguagem Lua para a entrada dos dados e visualização dos resultados. Esta interface foi baseada no programa Mtool do TecGraf. O objetivo do trabalho foi implementar uma ferramenta que acoplasse diferentes processos em meios porosos: fluxo bifásico, transporte de solutos, processos químicos e temperatura. A ferramenta desenvolvida deverá ser útil em análises de problemas ambientais. Em particular, o enfoque deste trabalho é no acoplamento de processos químicos. Para isto, uma rotina de especiação química foi acoplada à cinética química com relevância na oxidação mineral. Para resolver o problema da especiação química, o programa Phreeqc foi utilizado. O trabalho apresenta detalhes dos processos de análise, de suas equações relevantes e da implementação numérica. No estágio atual de desenvolvimento, o programa é capaz de avaliar o transporte de metais e, em particular, a simulação da drenagem ácida em barragens de rejeito e pilhas de estéril sob condições complexas. Exemplos de validação e ilustrativos são mostrados e discutidos. São sugeridas algumas possibilidades de futuros acoplamentos à ferramenta numérica desenvolvida. / [en] This work presents the present stage of development of a numerical platform for simulation and analysis of two-phase flow and of, non isotermic, multicomponent transport in porous media with chemical interaction in two dimensions. The developed computer code is based on the UNSATCHEM_2D code written in Fortran language. The discretization of the partial differential equations is done by finite elements at the space and in finite difference at the time. A graphical interface was created in language Lua for the input of the data and result visualization. This interface was based on the program TecGraf’s Mtool. The purpose of the work was to construct a numerical tool that couples different processes in porous media: flow (two-phase), transport of solutes, chemical processes and temperature. The developed tool should be useful in the analysis of environmental problems. In particular, the work focused on the coupling of chemical processes. For this, a chemical speciation routine was coupled to chemical kinetics with relevance to mineral oxidation. In order to solve the chemical speciation problem, the program Phreeqc was used. The work presents details of the analyzed processes, their relevant equations and of the numerical implementation. At the present stage of development, the computer program is able to evaluate the transport of metals and, at particular, the simulation of the acid mine drainage at tailings discharge and waste rock piles under complex conditions. Validation and illustrative examples are shown and discussed. Possibilities of future additions to the developed tool are suggested.
173

[en] INTEGRO-DIFFERENTIAL SOLUTIONS FOR FORMATION MECHANICAL DAMAGE CONTROL DURING OIL FLOW IN PERMEABILITY-PRESSURE-SENSITIVE RESERVOIRS / [pt] SOLUÇÕES ÍNTEGRODIFERENCIAIS PARA CONTROLE DE DANO MECÂNICO À FORMAÇÃO DURANTE ESCOAMENTO DE ÓLEO EM RESERVATÓRIOS COM PERMEABILIDADE DEPENDENTE DA PRESSÃO DE POROS

FERNANDO BASTOS FERNANDES 03 February 2022 (has links)
[pt] A Equação da Difusividade Hidráulica Não-Linear (EDHN) modela o escoamento monofásico de fluidos em meios porosos levando em conta a variação das propriedades da rocha e do fluido presente no interior de seus poros. Normalmente, a solução adimensional da linha-fonte pD(rD, tD) para escoamento de líquidos é encontrada por meio do uso da transformada de Laplace ou transformação de Boltzmann, o qual, o perfil transiente de pressões em coordenadas cartesianas é descrito pela função erro complementar erfc(xD, yD, tD) e, em coordenadas cilíndricas pela função integral exponencial Ei(rD, tD). Este trabalho propõe a solução analítica pelo método de expansão assíntotica de primeira ordem em séries, para solução de alguns problemas de escoamento de petróleo em meios porosos com permeabilidade dependente da pressão de poros e termo fonte. A solução geral será implementada no software Matlab (marca registrada) e a calibração do modelo matemático será realizada comparandose a solução obtida neste trabalho com a solução calculada por meio de um simulador de fluxo óleo em meios porosos denominado IMEX (marca registrada) , amplamente usado na indústria de petróleo e em pesquisas científicas e que usa o método de diferenças finitas. A solução geral da equação diferencial é dada pela soma da solução para escoamento de líquidos com permeabilidade constante e o termo de primeira ordem da expansão assintótica, composto pela não linearidade devido à variação de permeabilidade. O efeito da variação instantânea de permeabilidade em função da pressão de poros é claramente demonstrado nos gráficos diagnósticos e especializados apresentados. / [en] The Nonlinear Hydraulic Diffusivity Equation (NHDE) models the singlephase flow of fluids in porous media considering the variation in the properties of the rock and the fluid present inside its pores. Normally, the dimensionless linear solution for the flow of oil is performed using the Laplace and Fourier transform or Boltzmann transformation and provides the unsteady pressure profile in Cartesian coordinates given by complementary error function erfc(xD, yD, tD) and in cylindrical coordinates described by the exponential integral function Ei(rD, tD). This work develops a new analytical model based on an integro-differential solution to predict the formation mechanical damage caused by the permeability loss during the well-reservoir life-cycle for several oil flow problems. The appropriate Green s function (GF) to solve NHDE for each well-reservoir setting approached in this thesis is used. The general solution is implemented in the Matlab (trademark) and the mathematical model calibration will be carried out by comparing the solution obtained in this work to the porous media finite difference oil flow simulator named IMEX (trademark). The general solution of the NHDE is computed by the sum of the linear solution (constant permeability) and the first order term of the asymptotic series expansion, composed of the nonlinear effect of the permeability loss. The instantaneous permeability loss effect is clearly noticed in the diagnostic and specialized plots.
174

Modelagem e simulação computacional de escoamentos trifásicos em reservatórios de petróleo heterogêneos / Computational modeling and simulation of three-phase flows in heterogeneous petroleum reservoirs

Eduardo Cardoso de Abreu 26 February 2007 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho é apresentado um novo método acurado com passo de tempo fracionário, baseado em uma técnica de decomposição de operadores, para a solução numérica de um sistema governante de equações diferenciais parciais que modela escoamento trifásico água-gás-óleo imiscível em reservatórios de petróleo heterogêneos no qual os efeitos de compressibilidade do gás não foram levados em conta. A técnica de decomposição de operadores em dois níveis permite o uso de passos de tempo distintos para os três problemas definidos pelo procedimento de decomposição: convecção, difusão e pressão-velocidade. Um sistema hiperbólico de leis de conservação que modela o transporte convectivo das fases fluidas é aproximado por um esquema central de diferenças finitas explícito, conservativo, não oscilatório e de segunda ordem. Este esquema é combinado com elementos finitos mistos, localmente conservativos, para a aproximação numérica dos sistemas de equações parabólico e elíptico associados aos problemas de transporte difusivo e de pressão-velocidade, respectivamente. O operador temporal associado ao sistema parabólico é resolvido fazendo-se uso de uma estratégia implícita de solução (Backward Euler). O modelo matemático para escoamento trifásico considerado neste trabalho leva em conta as forças de capilaridade e expressões gerais para as funções de permeabilidade relativa, campos variáveis de porosidade e de permeabilidade e os efeitos da gravidade. A escolha de expressões gerais para as funções de permeabilidade relativa pode levar à perda de hiperbolicidade escrita e, desta maneira, à existência de uma região elíptica ou de pontos umbílicos para o sistema não linear de leis de conservação hiperbólicas que descreve o transporte convectivo das fases fluidas. Como consequência, a perda de hiperbolicidade pode levar à existência de choques não clássicos (também chamados de choques transicionais ou choques subcompressivos) nas soluções de escoamentos trifásicos. O novo procedimento numérico foi usado para investigar a existência e a estabilidade de choques não clássicos, com respeito ao fenômeno de fingering viscoso, em problemas de escoamentos trifásicos bidimensionais em reservatórios heterogêneos, estendendo deste modo resultados disponíveis na literatura para problemas de escoamentos trifásicos unidimensionais. Experimentos numéricos, incluindo o estudo de estratégias de injeção alternada de água e gás (Water-Alternating-Gas (WAG)), indicam que o novo procedimento numérico proposto conduz com eficiência computacional a resultados numéricos com precisão. Perspectivas para trabalhos de pesquisa futuros são também discutidas, tomando como base os desenvolvimentos reportados nesta tese. / We present a new, accurate fractional time-step method based on an operator splitting technique for the numerical solution of a system of partial differential equations modeling three-phase immiscible water-gas-oil flow problems in heterogeneous petroleum reservoirs in which the compressibility effects of the gas was not take into account. A two-level operator splitting technique allows for the use of distinct time steps for the three problems defined by the splitting procedure: convection, diffusion and pressure-velocity. A system of hyperbolic conservation laws modelling the convective transport of the fluid phases is approximated by a high resolution, nonoscillatory, second-order, conservative central difference scheme in the convection step. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the parabolic and elliptic problems associated with the diffusive transport of fluid phases and the pressure-velocity problem, respectively. The time discretization of the parabolic problem is performed by means of the implicit backward Euler method. The mathematical model for the three-phase flow considered in this work takes into account capillary forces and general expressions for the relative permeability functions, variable porosity and permeability fields, and the effect of gravity. The choice of general expressions for the relative permeability functions may lead to the loss of strict hyperbolicity and, therefore, to the existence of an elliptic region of umbilic points for the systems of nonlinear hyperbolic conservation laws describing the convective transport of the fluid phases. As a consequence, the loss of hyperbolicity may lead to the existence of nonclassical shocks (also called transitional shocks or undercompressive shocks) in three-phase flow solutions. The numerical procedure was used in an investigation of the existence and stability of nonclassical shocks with respect to viscous fingering in heterogeneous two-dimensional flows, thereby extending previous results for one-dimensional three-phase flow available in the literature. Numerical experiments, including the study of Water-Alternating-Gas (WAG) injection strategies, indicate that the proposed new numerical procedure leads to computational efficiency and accurate numerical results. Directions for further research are also discussed, based on the developments reported in this thesis.
175

Modelagem e simulação computacional de escoamentos trifásicos em reservatórios de petróleo heterogêneos / Computational modeling and simulation of three-phase flows in heterogeneous petroleum reservoirs

Eduardo Cardoso de Abreu 26 February 2007 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho é apresentado um novo método acurado com passo de tempo fracionário, baseado em uma técnica de decomposição de operadores, para a solução numérica de um sistema governante de equações diferenciais parciais que modela escoamento trifásico água-gás-óleo imiscível em reservatórios de petróleo heterogêneos no qual os efeitos de compressibilidade do gás não foram levados em conta. A técnica de decomposição de operadores em dois níveis permite o uso de passos de tempo distintos para os três problemas definidos pelo procedimento de decomposição: convecção, difusão e pressão-velocidade. Um sistema hiperbólico de leis de conservação que modela o transporte convectivo das fases fluidas é aproximado por um esquema central de diferenças finitas explícito, conservativo, não oscilatório e de segunda ordem. Este esquema é combinado com elementos finitos mistos, localmente conservativos, para a aproximação numérica dos sistemas de equações parabólico e elíptico associados aos problemas de transporte difusivo e de pressão-velocidade, respectivamente. O operador temporal associado ao sistema parabólico é resolvido fazendo-se uso de uma estratégia implícita de solução (Backward Euler). O modelo matemático para escoamento trifásico considerado neste trabalho leva em conta as forças de capilaridade e expressões gerais para as funções de permeabilidade relativa, campos variáveis de porosidade e de permeabilidade e os efeitos da gravidade. A escolha de expressões gerais para as funções de permeabilidade relativa pode levar à perda de hiperbolicidade escrita e, desta maneira, à existência de uma região elíptica ou de pontos umbílicos para o sistema não linear de leis de conservação hiperbólicas que descreve o transporte convectivo das fases fluidas. Como consequência, a perda de hiperbolicidade pode levar à existência de choques não clássicos (também chamados de choques transicionais ou choques subcompressivos) nas soluções de escoamentos trifásicos. O novo procedimento numérico foi usado para investigar a existência e a estabilidade de choques não clássicos, com respeito ao fenômeno de fingering viscoso, em problemas de escoamentos trifásicos bidimensionais em reservatórios heterogêneos, estendendo deste modo resultados disponíveis na literatura para problemas de escoamentos trifásicos unidimensionais. Experimentos numéricos, incluindo o estudo de estratégias de injeção alternada de água e gás (Water-Alternating-Gas (WAG)), indicam que o novo procedimento numérico proposto conduz com eficiência computacional a resultados numéricos com precisão. Perspectivas para trabalhos de pesquisa futuros são também discutidas, tomando como base os desenvolvimentos reportados nesta tese. / We present a new, accurate fractional time-step method based on an operator splitting technique for the numerical solution of a system of partial differential equations modeling three-phase immiscible water-gas-oil flow problems in heterogeneous petroleum reservoirs in which the compressibility effects of the gas was not take into account. A two-level operator splitting technique allows for the use of distinct time steps for the three problems defined by the splitting procedure: convection, diffusion and pressure-velocity. A system of hyperbolic conservation laws modelling the convective transport of the fluid phases is approximated by a high resolution, nonoscillatory, second-order, conservative central difference scheme in the convection step. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the parabolic and elliptic problems associated with the diffusive transport of fluid phases and the pressure-velocity problem, respectively. The time discretization of the parabolic problem is performed by means of the implicit backward Euler method. The mathematical model for the three-phase flow considered in this work takes into account capillary forces and general expressions for the relative permeability functions, variable porosity and permeability fields, and the effect of gravity. The choice of general expressions for the relative permeability functions may lead to the loss of strict hyperbolicity and, therefore, to the existence of an elliptic region of umbilic points for the systems of nonlinear hyperbolic conservation laws describing the convective transport of the fluid phases. As a consequence, the loss of hyperbolicity may lead to the existence of nonclassical shocks (also called transitional shocks or undercompressive shocks) in three-phase flow solutions. The numerical procedure was used in an investigation of the existence and stability of nonclassical shocks with respect to viscous fingering in heterogeneous two-dimensional flows, thereby extending previous results for one-dimensional three-phase flow available in the literature. Numerical experiments, including the study of Water-Alternating-Gas (WAG) injection strategies, indicate that the proposed new numerical procedure leads to computational efficiency and accurate numerical results. Directions for further research are also discussed, based on the developments reported in this thesis.
176

Modelagem computacional de escoamentos com duas e três fases em reservatórios petrolíferos heterogêneos / Computational modeling of two and three-phase flow in heterogeneous petroleum reservoirs

Grazione de Souza 21 February 2008 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Considera-se neste trabalho um modelo matemático para escoamentos com duas e três fases em reservatórios petrolíferos e a modelagem computacional do sistema de equações governantes para a sua solução numérica. Os fluidos são imiscíveis e incompressíveis e as heterogeneidades da rocha reservatório são modeladas estocasticamente. Além disso, é modelado o fenômeno de histerese para a fase óleo via funções de permeabilidades relativas. No caso de escoamentos trifásicos água-óleo-gás a escolha de expressões gerais para as funções de permeabilidades relativas pode levar à perda de hiperbolicidade estrita e, desta maneira, à existência de uma região elíptica ou de pontos umbílicos para o sistema não linear de leis de conservação hiperbólicas que descreve o transporte convectivo das fases fluidas. Como conseqüência, a perda de hiperbolicidade estrita pode levar à existência de choques não clássicos (também chamados de choques transicionais ou choques subcompressivos) nas soluções de escoamentos trifásicos, de difícil simulação numérica. Indica-se um método numérico com passo de tempo fracionário, baseado em uma técnica de decomposição de operadores, para a solução numérica do sistema governante de equações diferenciais parciais que modela o escoamento bifásico água-óleo imiscível em reservatórios de petróleo heterogêneos. Um simulador numérico bifásico água-óleo eficiente desenvolvido pelo grupo de pesquisa no qual o autor está inserido foi modificado com sucesso para incorporar a histerese sob as hipóteses consideradas. Os resultados numéricos obtidos para este caso indicam fortes evidências que o método proposto pode ser estendido para o caso trifásico água-óleo-gás. A técnica de decomposição de operadores em dois níveis permite o uso de passos de tempo distintos para os quatro problemas definidos pelo procedimento de decomposição: convecção, difusão, pressão-velocidade e relaxação para histerese. O problema de transporte convectivo (hiperbólico) das fases fluidas é aproximado por um esquema central de diferenças finitas explícito, conservativo, não oscilatório e de segunda ordem. Este esquema é combinado com elementos finitos mistos, localmente conservativos, para a aproximação dos problemas de transporte difusivo (parabólico) e de pressão-velocidade (elíptico). O operador temporal associado ao problema parabólico de difusão é resolvido fazendo-se uso de uma estratégia implícita de solução (Backward Euler). Uma equação diferencial ordinária é resolvida (analiticamente) para a relaxação relacionada à histerese. Resultados numéricos para o problema bifásico água-óleo em uma dimensão espacial em concordância com resultados semi-analíticos disponíveis na literatura foram reproduzidos e novos resultados em meios heterogêneos, em duas dimensões espaciais, são apresentados e a extensão desta técnica para o caso de problemas trifásicos água-óleo-gás é proposta. / We consider in this work a mathematical model for two- and three-phase flow problems in petroleum reservoirs and the computational modeling of the governing equations for its numerical solution. We consider two- (water-oil) and three-phase (water-gas-oil) incompressible, immiscible flow problems and the reservoir rock is considered to be heterogeneous. In our model, we also take into account the hysteresis effects in the oil relative permeability functions. In the case of three-phase flow, the choice of general expressions for the relative permeability functions may lead to the loss of strict hyperbolicity and, therefore, to the existence of an elliptic region or umbilic points for the system of nonlinear hyperbolic conservation laws describing the convective transport of the fluid phases. As a consequence, the loss of hyperbolicity may lead to the existence of nonclassical shocks (also called transitional shocks or undercompressive shocks) in three-phase flow solutions. We present a new, accurate fractional time-step method based on an operator splitting technique for the numerical solution of a system of partial differential equations modeling two-phase, immiscible water-oil flow problems in heterogeneous petroleum reservoirs. An efficient two-phase water-oil numerical simulator developed by our research group was sucessfuly extended to take into account hysteresis effects under the hypotesis previously annouced. The numerical results obtained by the procedure proposed indicate numerical evidence the method at hand can be extended for the case of related three-phase water-gas-oil flow problems. A two-level operator splitting technique allows for the use of distinct time steps for the four problems defined by the splitting procedure: convection, diffusion, pressure-velocity and relaxation for hysteresis. The convective transport (hyperbolic) of the fluid phases is approximated by a high resolution, nonoscillatory, second-order, conservative central difference scheme in the convection step. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the diffusive transport (parabolic) and the pressure-velocity (elliptic) problems. The time discretization of the parabolic problem is performed by means of the implicit Backward Euler method. An ordinary diferential equation is solved (analytically) for the relaxation related to hysteresis. Two-phase water-oil numerical results in one space dimensional, in which are in a very good agreement with semi-analitycal results available in the literature, were computationaly reproduced and new numerical results in two dimensional heterogeneous media are also presented and the extension of this technique to the case of three-phase water-oil-gas flows problems is proposed.
177

Modelagem computacional de escoamentos com duas e três fases em reservatórios petrolíferos heterogêneos / Computational modeling of two and three-phase flow in heterogeneous petroleum reservoirs

Grazione de Souza 21 February 2008 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Considera-se neste trabalho um modelo matemático para escoamentos com duas e três fases em reservatórios petrolíferos e a modelagem computacional do sistema de equações governantes para a sua solução numérica. Os fluidos são imiscíveis e incompressíveis e as heterogeneidades da rocha reservatório são modeladas estocasticamente. Além disso, é modelado o fenômeno de histerese para a fase óleo via funções de permeabilidades relativas. No caso de escoamentos trifásicos água-óleo-gás a escolha de expressões gerais para as funções de permeabilidades relativas pode levar à perda de hiperbolicidade estrita e, desta maneira, à existência de uma região elíptica ou de pontos umbílicos para o sistema não linear de leis de conservação hiperbólicas que descreve o transporte convectivo das fases fluidas. Como conseqüência, a perda de hiperbolicidade estrita pode levar à existência de choques não clássicos (também chamados de choques transicionais ou choques subcompressivos) nas soluções de escoamentos trifásicos, de difícil simulação numérica. Indica-se um método numérico com passo de tempo fracionário, baseado em uma técnica de decomposição de operadores, para a solução numérica do sistema governante de equações diferenciais parciais que modela o escoamento bifásico água-óleo imiscível em reservatórios de petróleo heterogêneos. Um simulador numérico bifásico água-óleo eficiente desenvolvido pelo grupo de pesquisa no qual o autor está inserido foi modificado com sucesso para incorporar a histerese sob as hipóteses consideradas. Os resultados numéricos obtidos para este caso indicam fortes evidências que o método proposto pode ser estendido para o caso trifásico água-óleo-gás. A técnica de decomposição de operadores em dois níveis permite o uso de passos de tempo distintos para os quatro problemas definidos pelo procedimento de decomposição: convecção, difusão, pressão-velocidade e relaxação para histerese. O problema de transporte convectivo (hiperbólico) das fases fluidas é aproximado por um esquema central de diferenças finitas explícito, conservativo, não oscilatório e de segunda ordem. Este esquema é combinado com elementos finitos mistos, localmente conservativos, para a aproximação dos problemas de transporte difusivo (parabólico) e de pressão-velocidade (elíptico). O operador temporal associado ao problema parabólico de difusão é resolvido fazendo-se uso de uma estratégia implícita de solução (Backward Euler). Uma equação diferencial ordinária é resolvida (analiticamente) para a relaxação relacionada à histerese. Resultados numéricos para o problema bifásico água-óleo em uma dimensão espacial em concordância com resultados semi-analíticos disponíveis na literatura foram reproduzidos e novos resultados em meios heterogêneos, em duas dimensões espaciais, são apresentados e a extensão desta técnica para o caso de problemas trifásicos água-óleo-gás é proposta. / We consider in this work a mathematical model for two- and three-phase flow problems in petroleum reservoirs and the computational modeling of the governing equations for its numerical solution. We consider two- (water-oil) and three-phase (water-gas-oil) incompressible, immiscible flow problems and the reservoir rock is considered to be heterogeneous. In our model, we also take into account the hysteresis effects in the oil relative permeability functions. In the case of three-phase flow, the choice of general expressions for the relative permeability functions may lead to the loss of strict hyperbolicity and, therefore, to the existence of an elliptic region or umbilic points for the system of nonlinear hyperbolic conservation laws describing the convective transport of the fluid phases. As a consequence, the loss of hyperbolicity may lead to the existence of nonclassical shocks (also called transitional shocks or undercompressive shocks) in three-phase flow solutions. We present a new, accurate fractional time-step method based on an operator splitting technique for the numerical solution of a system of partial differential equations modeling two-phase, immiscible water-oil flow problems in heterogeneous petroleum reservoirs. An efficient two-phase water-oil numerical simulator developed by our research group was sucessfuly extended to take into account hysteresis effects under the hypotesis previously annouced. The numerical results obtained by the procedure proposed indicate numerical evidence the method at hand can be extended for the case of related three-phase water-gas-oil flow problems. A two-level operator splitting technique allows for the use of distinct time steps for the four problems defined by the splitting procedure: convection, diffusion, pressure-velocity and relaxation for hysteresis. The convective transport (hyperbolic) of the fluid phases is approximated by a high resolution, nonoscillatory, second-order, conservative central difference scheme in the convection step. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the diffusive transport (parabolic) and the pressure-velocity (elliptic) problems. The time discretization of the parabolic problem is performed by means of the implicit Backward Euler method. An ordinary diferential equation is solved (analytically) for the relaxation related to hysteresis. Two-phase water-oil numerical results in one space dimensional, in which are in a very good agreement with semi-analitycal results available in the literature, were computationaly reproduced and new numerical results in two dimensional heterogeneous media are also presented and the extension of this technique to the case of three-phase water-oil-gas flows problems is proposed.

Page generated in 0.0369 seconds