Spelling suggestions: "subject:"melanogaster"" "subject:"melanogasters""
371 |
Estudo funcional das moléculas do módulo de reconhecimento celular Irre durante o desenvolvimento do sistema nervoso embrionário de Drosophila melanogaster / Functional study of Irre Cell Recognition Module molecules in developing embryonic nervous system of Drosophila melanogasterSilva, André Cendon 28 November 2017 (has links)
O Módulo de Reconhecimento de Celular de Irre (IRM) é uma pequena família de proteínas transmembranares envolvidas nos processos de adesão e reconhecimento celular. Para Drosophila melanogaster existem 4 proteínas bem caracterizadas desta família: Rough (Rst), Hibris (Hbs), Kin de Irre (Kirre) e Stick and Stones (Sns). Em estudos anteriores para elucidar o papel dessas moléculas no desenvolvimento embrionário de Drosophila, observou-se que a construção pCa18 3.1, que apenas codifica a porção extracelular de Roughest e está sob controle do promotor de choque térmico, quando superexpressa no inicio do desenvolvimento embrionário gera defeitos na formação do sistema nervoso (NS), que são observados apenas mais tarde. Observou-se, além disso, que, quando esta superexpressão é realizada emum background onde apenas 50% da proteína Hbs está presente, o fenótipo é reforçado, sugerindo um possível papel antagonista entre Rst e Hbs no desenvolvimento de SN. Com base nestes achados e na informação que Rst, Hbs e Kirre são encontrados no SN durante o desenvolvimento embrionário, este trabalho tem como objetivo continuar estudando o papel dos IRMs no desenvolvimento da SN. Para este propósito, além do já empregado promotor de choque térmico, usaremos o sistema de expressão binária Gal4 / UAS com drivers para SN e, assim, gerando, além de superexpressão, também o knockdown por RNAi de IRMs. As construções genéticas contendo Dicer, uma enzima envolvida no processamento de RNAi, serão empregadas para melhorar o knockdown. A quantificação das transcrições será realizada por PCR em tempo real. Para estudos de co-localização e análise de fenótipos, técnicas de citocinética e imunocitoquímica serão empregadas. / The Irre Cell Recognition Module (IRM) complex is a small family of transmembrane proteins involved in cellular adhesion and recognition processes. For Drosophila melanogaster there are 4 well characterized proteins of this family: Roughest (Rst), Hibris (Hbs), Kin of Irre (Kirre) and Stick and Stones (Sns). In previous studies to elucidate the role of these molecules in Drosophila embryonic development, it was noted that the construction pCa18 3.1, which only encodes the extracellular portion of Roughest and is under control of the heat-shock promoter, when overexpressed in early development generate defects in the formation of the nervous system (NS), which are observed only later. It was observed, furthermore, that when this overexpression is carried out in a mutant with a deficiency, in which the coding sequence Hbs is not present, this phenotype is enhanced, suggesting a possible antagonist role between Rst and Hbs in the development of SN. Based on these findings and the information that Rst, Hbs and Kirre are found in the SN during embryonic development, this work aims to further study the role of IRMs in the development of SN. For this purpose, besides the already employed heat-shock promoter, we will use the binary expression system Gal4/UAS with drivers for SN and, thereby, generating, in addition to overexpression, also the knockdown by RNAi of IRMs. Genetic constructs containing Dicer, an enzyme involved in the processing of RNAi, will be employed to enhance the knockdown. The quantification of the transcripts will be carried out by Real Time PCR. For co-localization studies and analysis of phenotypes techniques of cytochemistry and immunocytochemistry will be employed.
|
372 |
Rôle de la protéine ribosomale RACK1 dans la régulation de la traduction / Role of the ribosomal protein RACK1 in translation regulationEinhorn, Evelyne 18 June 2019 (has links)
RACK1 (Receptor for activated protein C kinase 1) est une protéine ribosomale associée à de nombreuses voies de signalisation. RACK1 est nécessaire à la traduction sélective de virus contenant des sites d’entrée interne du ribosome (IRES). En outre, l’expression de RACK1 est nécessaire au cours du développement, suggérant que ce facteur participe à la traduction de certains ARNm cellulaires. Dans le but de mieux comprendre la fonction de RACK1 chez la drosophile, j’ai au cours de ma thèse caractérisé l’interactome de RACK1 et un IRES viral régulé par ce facteur. J’ai également essayé d’établir un lien entre signalisation cellulaire et traduction, et montré que la région du knob est importante pour la fonction de RACK1 au ribosome. Enfin, j’ai établi que RACK1 est nécessaire à la réponse à des stress abiotiques, et identifié les gènes cellulaires régulés par RACK1 dans ce contexte. J’ai en particulier découvert que RACK1 était un régulateur négatif de l’expression de plusieurs gènes de l’immunité innée. Mes résultats suggèrent que RACK1 joue un rôle pivot au sein du ribosome, régulant la traduction de façon positive ou négative selon l’ARNm et le contexte cellulaire. / RACK1 (Receptor for activated protein C kinase 1) is a ribosomal protein associated to many signaling pathways. RACK1 is required for the selective translation of viruses containing internal ribosome entry sites (IRES). In addition, expression of RACK1 is necessary during development, suggesting that it regulates the translation of cellular mRNAs. In order to better understand the function of RACK1 in Drosophila, I have participated in the characterization of the RACK1 interactome and of a RACK1-dependent viral IRES. I have also attempted to establish a connection between the function of RACK1 in signaling and in translation, and I have shown that the knob domain of RACK1 is important for IRES-dependent translation. Finally, I have established that RACK1 is required for the response to abiotic stresses, and I have identified cellular genes regulated by RACK1 in this context. In particular, I discovered that RACK1 is a negative regulator of several innate immunity genes. My results suggest that RACK1 plays a pivotal role within the ribosome, regulating translation positively or negatively in an mRNA- and possibly context-specific manner.
|
373 |
A role for the Drosophila eIF4E binding protein during stress response /Jenkins, Mark, 1979- January 2004 (has links)
No description available.
|
374 |
Perfiles de expresión de tumores de distinto origen genético de "Drosophila melanogaster"Mendizabal Oyarzabal, Leire 21 June 2012 (has links)
El término “cáncer” agrupa un amplio grupo de enfermedades que implican proliferación celular descontrolada y que afectan a casi cualquier tejido del organismo. Es la principal causa de mortalidad a nivel mundial; 7,6 millones de personas fallecieron por cáncer en 2008 y se prevé que la cifra de defunciones alcanzará los 11 millones en 2030. El denominador común de todas estas muertes es la malignidad tumoral, definida como la capacidad para invadir tejidos sanos y formar metástasis, que aparecen incluso años después del tratamiento del tumor primario. La mayor limitación en la búsqueda de soluciones terapéuticas efectivas contra el cáncer es la heterogeneidad de los tumores. Estos se componen de distintos tipos celulares que varían en su morfología, índice de proliferación, grado de diferenciación, anomalías genéticas, capacidad metastásica y resistencia a tratamientos, hasta tal punto que un tumor llega a desarrollar características específicas en cada paciente. Conocer cuáles son los mecanismos responsables de esta heterogeneidad es un objetivo clave en el estudio de la biología del cáncer, ya que permitiría abordar la génesis de la enfermedad y desarrollar terapias dirigidas a la/s célula/s que originan el tumor. Este abordaje requiere de modelos experimentales en los que se pueda inducir la formación de un tumor desde un origen conocido, seguir su evolución en comparación con el desarrollo normal del tejido control y analizar las alteraciones que desencadenan la transformación maligna. Estudios pioneros en Drosophila identificaron el primer ejemplo de ¿gen supresor de tumores¿. Sucesivos trabajos en este sistema modelo han permitido conocer un número considerable de genes implicados en oncogénesis, muchos de los cuales son reguladores esenciales de la división de las células madre. El desarrollo de protocolos para la inducción y el crecimiento de estos tumores ha permitido recapitular en Drosophila, a partir de mutaciones génicas únicas, la formación e inmortalización de tumores malignos que comparten muchas de las características esenciales del cáncer en humanos. Sin embargo, aún queda un largo camino hasta identificar qué alteraciones son responsables de la transformación maligna. En este contexto, las técnicas de transcriptómica proporcionan una herramienta clave para analizar los perfiles de expresión génica característicos de tumores en distinto estadio de desarrollo y/o de distinto origen, y su aplicación en tumores de Drosophila es el objetivo de este trabajo.
|
375 |
Dorsal ventral patterning of the central nervous system : lessons from flies and fish /Cheesman, Sarah Emily, January 2003 (has links)
Thesis (Ph. D.)--University of Oregon, 2003. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 95-102). Also available for download via the World Wide Web; free to University of Oregon users.
|
376 |
Bullwinkle encodes a SOX transcription factor and interacts with Bicaudal-C and shark to regulate multiple processes in Drosophila melanogaster oogenesis /Tran, David Huu, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 147-158).
|
377 |
Determining roles of the SUN domain proteins klaroid and Dspag4 in Drosophila developmentKracklauer, Martin, 1971- 18 September 2012 (has links)
In eukaryotes, the process of nuclear migration is critical in fusion of haploid pronuclei after fertilization, in separation of daughter nuclei during mitosis, and in nuclear positioning in interphase cells. Experiments in several organisms have identified the basic protein requirements for nuclear migration and positioning: molecular motors that provide motive force; the cytoskeleton along which motors move nuclei, or to which the nuclei are anchored; and proteins of the outer and inner nuclear envelopes. These nuclear membrane proteins interact with the motors, the nuclear lamina and each other to effect nuclear migration and positioning. Proteins containing a SUN domain, which were first characterized in S. pombe Sad1 and C. elegans UNC-84, are inner nuclear envelope linkers of the nucleus to the cytoskeleton. In fungi, C. elegans, D. discoideum and vertebrates, these proteins are required not only for nuclear positioning, but also for maintaining the connection of the nucleus to the MTOC, for centrosomal duplication, for homologous pairing of chromosomes in meiosis, for distribution of nuclear pore complexes and for connecting the centrosome to chromatin to ensure genomic stability. The D. melanogaster genome has two genes, CG18584 and CG6589, which encode SUN domain proteins. The specific aims of my dissertation research were to generate null mutants in these genes, to characterize their null phenotypes, and to analyze where the genes are expressed. CG18584 = klaroid mutants are grossly normal, but adult eyes are mildly rough due to a defect in nuclear positioning that occurs during larval eye development. Klaroid protein is perinuclear in every cell of the eye, and functions by localizing the MTOC connector Klarsicht to the outer nuclear envelope. CG6589 = dspag4 null mutants are male sterile. In mature sperm, Dspag4 protein localizes rostrally to the sperm centriole. In the absence of Dspag4, most steps of gametogenesis occur normally, however, prior to the final steps of sperm maturation, the sperm nucleus dissociates from its centriole. Klaroid and Dspag4 thus have cellular roles typical for SUN domain proteins, and Dspag4 is unique in that its function is to attach nuclei to centrioles exclusively in maturing spermatids in the male germline. / text
|
378 |
Systematic characterization of Rab GTPase cell type expression and subcellular localization in Drosophila melanogasterDunst, Sebastian 08 June 2015 (has links) (PDF)
The Rab family of small GTPases orchestrates intracellular endomembrane transport through the recruitment of diverse effector proteins. Since its first discovery in 1987, almost 70 Rab proteins have been identified in humans to date and their perturbed function is implicated in several hereditary and acquired diseases.
In this Ph.D. thesis, I systematically characterize cell type expression and subcellular localization of all Rab proteins present in Drosophila melanogaster utilizing a genetic resource that represents a major advance for studying membrane trafficking in vivo: the ’Drosophila YRab library’. This collection comprises 27 different D. melanogaster knock-in lines that harbor YFPMyc fusions to each Rab protein, referred to as YRab.
For each YRab, I present a comprehensive data set of quantitative and qualitative expression profiles across six larval and adult tissues that include 23 annotated cell types. The whole image data set, along with its annotations, is publicly accessible through the FLYtRAB database that links to CATMAID for online browsing of tissues.
I exploit this data set to address basic cell biological questions. i) How do differentiating cells reorganize their transport machinery to perform cell type-specific functions? My data indicates that qualitative and quantitative changes in YRab protein expression facilitate the functional specialization of differentiated cells. I show that about half of the YRab complement is ubiquitously expressed across D. melanogaster tissues, while others are missing from some cell types or reflect strongly restricted cell type expression, e.g. in the nervous system. I also depict that relative YRab expression levels change as cells differentiate. ii) Are specific Rab proteins dedicated to apical or basolateral protein transport in all epithelia? My data suggests that the endomembrane architecture reflects specific tasks performed by particular epithelial tissues, rather than a generalized apicobasal organization. I demonstrate that there is no single YRab that is similarly polarized in all epithelia. Rather, different epithelial tissues dynamically polarize the subcellular localization of many YRab compartments, producing membrane trafficking architectures that are tissue- and stage-specific.
I further discuss YRab cell type expression and subcellular localization in the context of Rab family evolution. I report that the conservation of YRab protein expression across D. melanogaster cell types reflects their evolutionary conservation in eukaryotes. In addition, my data supports the assumption that the flexible deployment of an expanded Rab family triggered cell differentiation in metazoans.
The FLYtRAB database and the ’Drosophila Rab Library’ are complementary resources that facilitate functional predictions based on YRab cell type expression and subcellular localization, and to subsequently test them by genetic loss-of-function experiments. I demonstrate the power of this approach by revealing new and redundant functions for Rab23 and Rab35 in wing vein patterning.
My data collectively highlight that in vivo studies of endomembrane transport pathways in different D. melanogaster cell types is a valuable approach to elucidate functions of Rab family proteins and their potential implications for human disease.
|
379 |
A role for the Drosophila eIF4E binding protein during stress response /Jenkins, Mark, 1979- January 2004 (has links)
The Drosophila melanogaster eIF4E binding protein (d4E-BP) inhibits translation initiation and is implicated in cell growth as a downstream effector of the Drosophila insulin signaling pathway. Since d4E-BP null flies show similar growth and development to control flies, the possibility of a conditional phenotype was explored through stress treatments. Adult d4E-BP null flies show sensitivity to oxidative stress, and d4E-BP null larvae die faster than controls under starvation and protein starvation. Expressing a mutant d4E-BP that doesn't bind to eIF4E in the d4E-BP null background does not rescue this stress sensitivity, which suggests that wild-type stress resistance requires binding of d4E-BP to eIF4E. / The Drosophila forkhead transcription factor dFOXO is a transcriptional activator of d4E-BP. There is a strong reduction of d4E-BP peptide in a dFOXO null background. dFOXO null flies are also sensitive to oxidative stress, and rescue of this sensitivity through ectopic expression of UAS-d4E-BP(wt) in a dFOXO null background suggests d4E-BP is a downstream mediator of dFOXO oxidative stress resistance.
|
380 |
Regulation of CAK activity of Cdk7 in Drosophila melanogasterChen, Jian, 1969- January 2003 (has links)
Cdk7 (Cyclin-dependent kinase 7) is conserved from yeast to human and involved in multiple functions. Cdk7 acts as a CAK (Cdk activating kinase) in a trimeric complex with Cyclin H and Mat1. The CAK activity is required for the full activation of the Cdks that directly regulate the cell cycle transitions. In addition, Cdk7 is the kinase subunit of TFIIH, the general transcription/DNA repair factor IIH. TFIIH is required for the general transcription of messenger RNAs by RNA polymerase II and for the transcription-coupled nucleotide excision repair functions. As in other systems, Drosophila Cdk7 has multiple functions. In order to understand how different functions of Cdk7 are regulated, I performed genetic screens to identify the regulators or downstream factors of multiple functions of Cdk7. Several candidate dominant suppressors and enhancers were identified in these screens. One strong suppressor of cdk7, xpd, encodes another subunit of TFIIH. The genetic suppression by xpd attracted me to further characterize the biological significance of this interaction. I showed that Xpd does have a novel function in regulating CAK activity of cdk7 , it down-regulates mitotic CAK activity. Furthermore, I found that Xpd protein levels are cell cycle dependent, being down-regulated at the beginning of the mitosis. Based on these data, I propose a model that mitotic down-regulation of Xpd results in increased CAK activity, positively regulating mitotic progression. Simultaneously, this down-regulation can be expected to contribute to the mechanisms of mitotic silencing of basal transcription.
|
Page generated in 0.0743 seconds