Spelling suggestions: "subject:"demory alloys"" "subject:"amemory alloys""
201 |
Process Control and Development for Ultrasonic Additive Manufacturing with Embedded FibersHehr, Adam J. 11 August 2016 (has links)
No description available.
|
202 |
An Investigation of the Structural and Magnetic Transitions in Ni-Fe-Ga Ferromagnetic Shape Memory AlloysHeil, Todd M. 06 January 2006 (has links)
The martensite and magnetic transformations in Ni-Fe-Ga ferromagnetic shape memory alloys are very sensitive to both alloy chemistry and thermal history. A series of Ni-Fe-Ga alloys near the prototype Heusler composition (X2YZ) were fabricated and homogenized at 1423 °K, and a Ni₅₃Fe₁₉Ga₂₈ alloy was subsequently annealed at various temperatures below and above the B2/L21 ordering temperature. Calorimetry and magnetometry were employed to measure the martensite transformation temperatures and Curie temperatures. Compositional variations of only a few atomic percent result in martensite start temperatures and Curie temperatures that differ by about 230 °K degrees and 35 °K degrees, respectively. Various one-hour anneals of the Ni₅₃Fe₁₉Ga₂₈ alloy shift the martensite start temperature and the Curie temperature by almost 70 °K degrees. Transmission electron microscopy investigations were conducted on the annealed Ni₅₃Fe₁₉Ga₂₈ alloy. The considerable variations in the martensite and magnetic transformations in these alloys are discussed in terms of microstructural differences resulting from alloy chemistry and heat treatments.
The phase-field method has been successfully employed during the past ten years to simulate a wide variety of microstructural evolution in materials. Phase-field computational models describe the microstructure of a material by using a set of field variables whose evolution is governed by thermodynamic functionals and kinetic continuum equations. A two dimensional phase-field model that demonstrates the ferromagnetic shape memory effect in Ni2MnGa is presented. Free energy functionals are based on the phase-field microelasticity and micromagnetic theories; they account for energy contributions from martensite variant boundaries, elastic strain, applied stress, magnetocrystalline anisotropy, magnetic domain walls, magnetostatic potential, and applied magnetic fields. The time-dependent Ginzburg-Landau and Landau-Lifshitz kinetic continuum equations are employed to track the microstructural and magnetic responses in ferromagnetic shape memory alloys to applied stress and magnetic fields. The model results show expected microstructural responses to these applied fields and could be potentially utilized to generate quantitative predictions of the ferromagnetic shape memory effect in these alloys. / Ph. D.
|
203 |
Contribution to the Design and Implementation of Portable Tactile Displays for the Visually ImpairedVelazquez-Guerrero, Ramiro 06 1900 (has links)
This thesis explores the design, implementation and performance of a new concept for a low-cost, high-resolution, lightweight, compact and highly-portable tactile display. This tactile device is intended to be used in a novel visuo-tactile sensory substitution/supplemen-tation electronic travel aid (ETA) for the blind/visually impaired.Based on the psychophysiology of touch and using Shape Memory Alloys (SMAs) as the actuation technology, a mechatronic device was designed and prototyped to stimulate the sense of touch by creating sensations of contact on the fingertips.The prototype consists of an array of 64 elements spaced 2.6 mm apart that vertically actuates SMA based miniature actuators of 1.5 mm diameter to a height range of 1.4 mm with a pull force of 300 mN up to a 1.5 Hz bandwidth. The full display weights 200 g and its compact dimensions (a cube of 8 cm side-length) make it easy for the user to carry. The display is capable of presenting a wide range of tactile binary information on its 8 x 8 matrix. Moreover, both mechanical and electronic drive designs are easily scalable to larger devices while still being price attractive.Human psychophysics experiments demonstrate the effectiveness of the tactile information transmitted by the display to sighted people and show feasibility in principle of the system as an assistive technology for the blind/visually impaired.
|
204 |
Shape-Memory-Alloy Hybrid Composites: Modeling, Dynamic Analysis, and Optimal DesignQianlong Zhang (19180894) 20 July 2024 (has links)
<p dir="ltr">Shape memory alloys (SMAs) belong to the category of smart materials due to their unique shape memory properties induced by a thermomechanically-triggered phase transformation. This phase changing process is also associated with a pronounced energy dissipation capacity. In recent years, the shape-recovery and energy-dissipating capabilities of SMAs have been object of extensive studies with particular focus on the opportunities they offer for the design of smart composites. The restoring stress of constrained SMAs as well as the modulus change, following thermal loading, can be leveraged to improve the static and dynamic performance, such as the pre/post-bulking behavior, the aerodynamic stability, and the impact resistance of composite materials embedded with SMA wires or fibers. The nonlinear damping resulting from the nonlinear material behavior associated with the ferro-elastic and pseudo-elastic phases was explored in a few studies focusing on vibration suppression in composites. Nonetheless, existing research mainly focused on either SMA wire or fiber reinforced composites, while the understanding of the dynamics of hybrid composites integrating SMA layers still presents several unexplored areas. In part, this technological gap might be explained by the fact that the most common SMA alloy, the so-called Nitinol, is expensive and hence not amenable to be deployed in large scale applications. With the most recent advancements in low-cost SMAs (e.g. Fe-based and Cu-based alloys), new applications that make more extensive use of SMAs are becoming viable. It follows that the understanding of the dynamic response of composites integrating SMA laminae becomes an important topic in order to support the development of innovative hybrid composite structures.</p><p dir="ltr">This dissertation explores the design and the nonlinear dynamic response of hybrid composites integrating SMA laminae, with a particular emphasis on the damping performance under different operating conditions. The dynamic properties of SMA monolithic beams and hybrid composite beams integrated with SMA laminae are investigated via one-dimensional constitutive models. Monolithic SMA beams are investigated to understand the fundamental aspects of the damping capacity of the material as well as possible bifurcation phenomena occurring under different types of harmonic excitations and different levels of pre-strain. The study then focuses on hybrid composite beams, highlighting the effects of design parameters, such the thickness, position, and pre-strain level of SMA layers on the transient and forced dynamic characteristics.</p><p dir="ltr">To further explore the potential of embedding SMA laminae to tailor the damping capacity of the hybrid composite and optimize the distribution of SMA materials, hybrid composite plates (HCPs) assembled by stacking fiber composites and SMA layers (either monolithic or patterned) are explored. The damping capacity of the HCP is assessed under different operating conditions, with emphasis on the effect of pre-strain levels in the SMA layers. The optimization study focuses on understanding the distribution of SMA materials and the synergistic role of patterning and pre-straining individual SMA layers within the HCP. The damping capacity of the HCP is also estimated as a function of the SMA total transformed volume fraction in order to identify the types of patterns and the pre-strain profiles capable of improving the overall damping capacity of the HCP.</p><p dir="ltr">The investigation on the dynamics of SMA hybrid composites continues with the optimal design of sandwich composite beams with elastic face sheets and SMA cellular cores. A deep learning-based surrogate model is proposed to efficiently predict the nonlinear mechanical response of the SMA sandwich beams subject to transverse loading, hence enabling the optimization of the SMA cellular core. The multi-objective optimization of the energy-dissipating capacity and of the overall stiffness is then performed by taking advantage of evolutionary algorithms. Once the optimal geometric parameters of the SMA cellular cores are obtained, finite element simulations are conducted to numerically validate the optimal configurations of the sandwich beams.</p><p dir="ltr">Finally, the numerical models are validated via experimental measurements conducted on monolithic SMA beams. Tests include both tensile and vibration measurements in both the ferro-elastic and pseudo-elastic regimes. The stress-strain relations obtained from tensile tests are used to calibrate the constitutive model of SMAs. Subsequently, experimental vibration tests are performed on clamped-clamped SMA beams to assess the effect of pre-strain levels on the damping capacity of SMA beams via a dedicated experimental setup to apply and maintain the pre-strain levels. The theoretical, numerical, and experimental results provided in this dissertation can serve as important guidelines to design lightweight SMA smart composites with customizable dynamic behavior.</p>
|
205 |
Elektrochemisch hergestellte Fe-Pd-Schichten und Nanodrähte - Morphologie, Struktur und magnetische EigenschaftenHähnel, Veronika 22 May 2015 (has links) (PDF)
Mit Fe-Pd-Legierungen nahe der Zusammensetzung Fe70Pd30 kann man aufgrund des thermischen oder magnetischen Formgedächtniseffekts große Dehnungen erzeugen. Daher sind sie für Mikro- und Nanoaktoren sowie Sensoren von großem wissenschaftlichen und technologischen Interesse. Im Vergleich zu Massivmaterial und dünnen Schichten erwartet man für eindimensionale Geometrien wie Nanodrähte deutlich höhere Arbeitsfrequenzen und Dehnungen. Zur Herstellung von Nanodrähten eignet sich die elektrochemische Abscheidung in selbstordnende nanoporöse Membranen als effizienteste Methode gegenüber lithographischen oder physikalischen Methoden.
Um den Formgedächtniseffekt auch in Fe-Pd-Nanodrähten mit ca. 30 at.% Pd zu nutzen, werden in dieser Arbeit entsprechende Herstellungsbedingungen wie Elektrolytsystem, Abscheideparameter und Nachbehandlung herausgearbeitet. Die Zusammenhänge zwischen Abscheidebedingungen und Morphologie, lokaler Mikrostruktur, Struktur sowie magnetischen Eigenschaften werden untersucht und bewertet.
Es wird gezeigt, dass Fe-Pd-Nanodrähte trotz der Kombination aus edlem und unedlem Metall elektrochemisch hergestellt werden können. Ein komplexierter Fe-Pd-Elektrolyt in Kombination mit optimierten alternierenden Abscheidepotentialen führt reproduzierbar zu durchgehenden, nahezu defektfreien Nanodrähten nahe der Zusammensetzung Fe70Pd30. Mit einer nachträglichen Wärmebehandlung erreicht man eine vollständige Umwandlung der Fe-Pd-Legierung von der kubisch raumzentrierten zur kubisch flächenzentrierten Struktur. Die erfolgreiche Herstellung dieser Nanodrähte stellt eine Schlüsselposition auf dem Weg zu formgedächtnisbasierten Nanoaktoren dar. In dieser Arbeit konnten wichtige Ansatzpunkte zur Strukturkontrolle während der elektrochemischen Abscheidung und somit zur Aktivierung des Formgedächtniseffekts identifiziert werden. / Fe-Pd alloys at about 30 at.% Pd allow obtaining high length changes or strains in the percent range due to thermal or magnetic shape memory effect. They are especially promising candidates for smart and intelligent materials in micro- and nanoactuators as well as sensors. In comparison to bulk materials and thin films the utilization of nanowires promises higher actuation frequencies and strains, which further heighten the scientific and technological interest.
Electrodeposition within self-organized nanoporous templates is a very time efficient method to prepare even large arrays of Fe-Pd nanowires of different length and diameter compared to lithographic or physical methods. The aim of this work is to exhibit the preparation conditions such as electrolyte system, deposition parameter and post treatment for shape memory active Fe-Pd nanowires at about 30 at.% Pd. Correlations between morphology, local microstructure, structure and magnetic properties are investigated and evaluated.
Fe-Pd nanowires are successfully prepared by electrodeposition despite the combination of noble Pd and less noble Fe metals. The usage of an electrolyte with complexed Fe and Pd ions and an optimized alternating potential deposition regime leads to continuous and almost defect free nanowires close to the composition Fe70Pd30. The complete transition from the bcc to fcc structure of the Fe-Pd alloy is achieved by an additional heat treatment. However, the successful preparation of these nanowires represents a key element towards nanoactuators based on shape memory alloys. Fundamental knowledge about electrochemical preparation of Fe-Pd nanowires is gained. Important starting points towards structure control during deposition and activation of the shape memory effect are identified.
|
206 |
Elaboration par mécanosynthèse et caractérisations d'alliages à mémoire de forme NiTi : application microsystèmes / Elaboration by mechanical alloying and characterization of shape memory alloys NiTi : microsystem applicationsTria, Saoussen 17 February 2011 (has links)
Les travaux de recherches développés dans cette thèse concernent la réalisation de couchesminces, à partir de l’alliage à mémoire de forme (AMF) NiTi mécanoélaboré et de structurenanocristalline, en vue de leur intégration dans des microsystèmes. Le but est d’améliorer lespropriétés AMF de leurs homologues de structure microcristalline, dits conventionnels.Les techniques de caractérisation physico-chimiques (DRX, MET, MEB) nous ont permisd’une part, de suivre le mécanisme de formation de l’intermétallique B2-NiTi en fonction dutemps de broyage et d’autre part, de déterminer les paramètres microstructuraux à savoir, lataille des cristallites, le taux de microdéformations et la densité de dislocations des élémentspurs ainsi que ceux de la phase B2-NiTi. Ces paramètres révèlent le caractère nanocristallin etdésordonné des poudres broyées.Par ailleurs, nous avons fabriqué pour la première fois une cible B2-NiTi de structurenanocristalline, par l’intermédiaire d’une méthode alternative (mécanosynthèse et procédé deprojection à froid).Nous avons montré également qu’il est possible de déposer sous forme de couche mincel’intermétallique NiTi nanostructuré. Ce film mince d’épaisseur 447 nm a été déposé parpulvérisation cathodique à magnétron à partir de la cible élaborée par projection à froid (coldspray). / The research work developed in this thesis is related to preparing a thin film of NiTi shapememory alloy used to integrate into microsystems. The goal is to improve the properties oftheir counterparts of microcrystalline structure (conventional target).Physical and chemical techniques of characterization (XRD, TEM and SEM) have allowed onthe one hand, to follow the mechanism of intermetallic NiTi formation as a function ofmilling time and on the other hand, to determine the microstructural parameters : crystallitesize, the microstrain and dislocation density of the pure elements and the B2-NiTi phase.These parameters reveal the character of the disordered nanocrystalline of the milled powders.Furthermore, we fabricated a target of B2-NiTi nanocrystalline structure by an alternativemethod (mechanical alloying and cold spray).We also showed that it is possible to deposit the nanocrystalline NiTi intermetallic thin film.This film with a thickness of about 447 nm was deposited by magnetron sputtering techniquefrom the NiTi target.
|
207 |
Size Effects in Ferromagnetic Shape Memory AlloysOzdemir, Nevin 2012 May 1900 (has links)
The utilization of ferromagnetic shape memory alloys (FSMAs) in small scale devices has attracted considerable attention within the last decade. However, the lack of sufficient studies on their reversible shape change mechanisms, i.e, superelasticity, magnetic field-induced martensite variant reorientation and martensitic phase transformation, at the micron and submicron length scales prevent the further development and the use of FSMAs in small scale devices. Therefore, investigating the size effects in these mechanisms has both scientific and technological relevance.
Superelastic behavior of Ni54Fe19Ga27 shape memory alloy single crystalline pillars was studied under compression as a function of pillar diameter. Multiple pillars with diameters ranging between 200 nm and 10 µm were cut on a single crystalline bulk sample oriented along the [110] direction in the compression axis and with fully reversible two-stage martensitic transformation. The results revealed size dependent two-stage martensitic transformation which was suppressed for pillar sizes of 1 µm and below. We also demonstrated that the reduction in pillar diameter decreases the transformation temperature due to the difficulty of martensite nucleation in small scales.
Size effects in the magnetic field-induced martensite variant reorientation were investigated in the Ni50Mn28.3Ga21.7 single crystals oriented along the [100] direction of the austenite phase. Single crystalline compression pillars were fabricated on the martensite twins between the sizes of 630 nm and 20 µm. It was found that the stress-induced and magnetic field-induced martensite variant reorientation are size dependent and became more difficult with the reduction in sample size. Surprisingly, it was still possible to magnetically activate the shape change in the micropillars which indicates the fact that magnetocrystalline anisotropy energy increases with the reduction in sample dimensions.
Ni45Mn36.6Co5In13.4 pillars between the 600 nm and 10 µm diameters were investigated along the [100] direction of the austenite to study the size effects in the magnetic field-induced phase transformation (MFIPT). MFIPT was obtained down to 5 µm size in these pillars with reasonable magnetic field levels similar to their bulk counterparts.
|
208 |
Modeling of Shape Memory Alloys Considering Rate-independent and Rate-dependent Irrecoverable StrainsHartl, Darren J. 2009 December 1900 (has links)
This dissertation addresses new developments in the constitutive modeling and
structural analysis pertaining to rate-independent and rate-dependent irrecoverable
inelasticity in Shape Memory Alloys (SMAs). A new model for fully recoverable SMA
response is derived that accounts for material behaviors not previously addressed.
Rate-independent and rate-dependent irrecoverable deformations (plasticity and viscoplasticity)
are then considered. The three phenomenological models are based on
continuum thermodynamics where the free energy potentials, evolution equations, and
hardening functions are properly chosen. The simultaneous transformation-plastic
model considers rate-independent irrecoverable strain generation and uses isotropic
and kinematic plastic hardening to capture the interactions between irrecoverable
plastic strain and recoverable transformation strain. The combination of theory and
implementation is unique in its ability to capture the simultaneous evolution of recoverable
transformation strains and irrecoverable plastic strains. The simultaneous
transformation-viscoplastic model considers rate-dependent irrecoverable strain generation
where the theoretical framework is modfii ed such that the evolution of the
viscoplastic strain components are given explicitly. The numerical integration of the
constitutive equations is formulated such that objectivity is maintained for SMA
structures undergoing moderate strains and large displacements. Experimentally validated
analysis results are provided for the fully recoverable model, the simultaneous
transformation-plastic yield model, and the transformation-viscoplastic creep model.
|
209 |
Cyclic testing and assessment of shape memory alloy recentering systemsSpeicher, Matthew S. 15 December 2009 (has links)
In an effort to mitigate damage caused by earthquakes to the built environment, civil engineers have been commissioned to research, design, and build increasingly robust and resilient structural systems. Innovative means to accomplish this task have emerged, such as integrating Shape Memory Alloys (SMAs) into structural systems. SMAs are a unique class of materials that have the ability to spontaneously recover strain of up to 8%. With proper placement in a structural system, SMAs can act as superelastic "structural fuses", absorbing large deformations, dissipating energy, and recentering the structure after a loading event. Though few applications have made it into practice, the potential for widespread use has never been better due to improvements in material behavior and reductions in cost. In this research, three different SMA-based structural applications are developed and tested. The first is a tension/compression damper that utilizes nickel-titanium (NiTi) Belleville washers. The second is a partially restrained beam-column connection utilizing NiTi bars. The third is an articulated quadrilateral bracing system utilizing NiTi wire bundles in parallel with c-shape dampers. Each system was uniquely designed to allow a structure to undergo large drift demands and dissipate energy while retaining strength and recentering ability. This exploratory work highlights the potential for SMA-based structural applications to enhance seismic structural performance and community resilience.
|
210 |
SHAPE MEMORY BEHAVIOR OF SINGLE CRYSTAL AND POLYCRYSTALLINE Ni-RICH NiTiHf HIGH TEMPERATURE SHAPE MEMORY ALLOYSSaghaian, Sayed M. 01 January 2015 (has links)
NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing.
Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics.
The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (~20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20–30 J cm– 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %.
Shape memory properties of polycrystalline Ni50.3Ti29.7Hf20 alloys were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. Recoverable strain of ~5% was observed for the as-extruded samples while it was decreased to ~4% after aging due to the formation of precipitates. The aged alloys demonstrated near perfect shape memory effect under high tensile stress level of 700 MPa and perfect superelasticity at high temperatures up to 230 °C. Finally, the tensioncompression asymmetry observed in NiTiHf where recoverable tensile strain was higher than compressive strain.
The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 single crystals were investigated along the [001], [011], and [111] orientations in compression. [001]-oriented single crystals showed high dimensional stability under stress levels as high as 1500 MPa in both the solutionized and aged conditions, but with transformation strains of less than 2%. Perfect superelasticity with recoverable strain of more than 4% was observed for solutionized and 550 °C-3h aged single crystals along the [011] and [111] orientations, and general superelastic behavior was observed over a wide temperature range. The calculated transformation strains were higher than the experimentally observed strains since the calculated strains could not capture the formation of martensite plates with (001) compound twins.
|
Page generated in 0.0599 seconds