• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Evaluation of Network Protocols for Bluetooth Low Energy Mesh Networks / En utvärdering av nätverksprotokoll för Bluetooth Low Energy meshnätverk

Hinrichsen, Oscar January 2015 (has links)
Internet of Things (IoT) is a scenario that theorizes objects and people as potential nodes in an ever-growing wireless network. This idea pushes the development of low-cost wireless technologies that can run on portable power sources for months, or even years. One candidate technique that has shown promising results in this area thru the last years is BluetoothLow Energy (BLE). This thesis studies various techniques to enable and maintain large scale mesh networks over BLE communication. The initial study puts focus on an existing flooding based BLE mesh protocol. The thesis later presents an improved protocol that reduces power consumption with respect to the packet delivery ratio. Other enhancements which are added to the improved protocol are a self-adapting procedure and a packet routing algorithm. Simulations show that the improved protocol can save up to 50 % of the power consumption for a device, compared to the original protocol. / Sakernas Internet (IoT) är ett scenario som skisserar objekt och människor som potentiella noder i ett ständigt växande trådlöst nätverk. Denna vision driver utvecklingen av trådlösa lågkostnadsteknologier som kan köras på portabla strömkällor i flera månader. En kandiderande teknik som har visat goda resultat inom detta område är Bluetooth Low Energy (BLE). Detta uppsatsarbete studerar flera tekniker för att möjliggöra och upprätthålla storskaliga meshnätverk över BLE-kommunikation. Den inledande studien granskar ett existerande översvämningsbaserat meshprotokoll för BLE. Uppsatsarbetet presenterar därefter ett förbättrat protokoll som reducerar strömförbrukningen med avseende på kvoten mellan antalet mottagna paket genom antalet skickade paket. Ytterliggare upprustningar som tillkommer i det förbättrade protokollet är en procedur för självanpassning, samt en algorithm för dirigering av paket. Simuleringar visar att det förbättrade protokollet kan spara upp till 50 % av strömkonsumptionen för en enhet, jämfört med originalprotokollet.
2

Towards the design of an energy-aware path selection metric for IEEE 802.11s wireless mesh network

Mhlanga, Martin Mafan January 2012 (has links)
Submitted in accordance with the requirements for the degree of Master of Arts in Communication Science at the University of Zululand, South Africa, 2012. / It is everyone’s dream to have network connectivity all the time. This dream can only be realised provided there are feasible solutions that are put in place for the next generation of wireless works. Wireless Mesh Networking (WMN) is therefore seen as a solution to the next generation of wireless networks because of the fact that WMNs configures itself and it is also self healing. A new standard for WMNs called the IEEE 802.11s is still under development. The protocol that is used by the IEEE 802.11s for routing is called Hybrid Wireless Mesh Protocol (HWMP). The main purpose of HWMP is to perform routing at layer-2 of the OSI model also referred to as the data link layer (DLL). Layer-2 routing is also referred to as the mesh path selection and forwarding. Devices that are compliant to the IEEE 802.11s standard will be able to use this path selection protocol. Devices that are manufactured by different vendors will therefore be interoperable. Even though significant efforts have gone into improving the performance of HWMP, the protocol still faces a lot of limitations and the most limiting factor is the small or restricted energy of the batteries in a wireless network. This is because of the assumption that mesh nodes that are deployed in urban areas tend to have no energy constraints while WMN nodes deployed in rural faces serious energy challenges. The latter relies on batteries and not on electricity supply which powers the WMN nodes in urban areas. This work, therefore, explores further the current trends towards maximising the network lifetime for the energy constrained networks. Hence the goal of this study is to design a path selection algorithm that is energyaware and optimising for the IEEE 802.11s based HWMP. The main idea is that paths with enough energy for transmission must be selected when transmitting packets in the network. Therefore, a simulation using NS-2 was carried out to assess the network performance of the proposed EAPM metric with the other metrics that have been analysed in literature including ETX. ETX has been used in WMNs but was not developed specifically for mesh. In conclusion, EAPM conserves more energy than the Multimetric, airtime link metric and lastly ETX. The simulation experiments show that EAPM optimises the energy used in the network and as a result EAPM has a prolonged network lifespan when comparing it to the rest of the metrics evaluated in this study. The results also revealed that the newly proposed EAPM exhibits superior performance characteristics even with regard to issues like end-to-end delay and packet delivery ratio. / CSIR Meraka Institute
3

Performance analysis of mesh networks in indoor and outdoor wireless testbeds

Johnson, David Lloyd 23 January 2009 (has links)
Physical indoor wireless network testbeds as well as outdoor wireless testbeds have the potential to accelerate the pace of research in the field of wireless ad hoc and mesh networking. They form part of a critical chain of steps needed to develop and test ad hoc networking protocols from concept to eventual uptake by industry. Current research in this area makes use of simulations or mathematical models which oversimplify the physical and Medium Access Control layer. In Africa specifically, wireless mesh networking has the potential to make a substantial impact on the lack of telecommunications infrastructure across the continent. A combination of good theoretical analysis, indoor test facilities and rural testbeds forms a perfect suite to carry out meaningful research in the field. A 7x7 wireless grid of closely spaced computers was constructed, making use of highly attenuated 802.11 radios running in ad hoc mode. Modelling and analysis revealed that a suitably attenuated environment was created with variation in signal strength between node pairs following a Gaussian distribution. This emulates a real outdoor network with normal signal propagation issues such as multi-path fading and lack of Fresnel zone clearance. This testbed was then used to evaluate 3 popular MANET ad hoc routing protocols, namely AODV, DYMO and OLSR. OLSR was tested with the standard hysteresis routing metric as well as the ETX routing metric. OLSR showed the best performance in terms of average throughput and packet loss for a medium size (21 node) and large (49 node) mesh network, with the hysteresis routing metric performing best in large networks and ETX performing best in medium sized networks. DYMO also performed very well, considering its low routing overhead, exhibiting the least amount of delay in a large mesh network (49 nodes). The AODV protocol showed the weakest performance in the grid with close to 60% of possible link pairs achieving no route in a 49-node grid. However, it did present the least amount of routing overhead compared with other routing protocols. Finally, a medium-sized rural mesh network testbed consisting of 9 nodes was built in a mountainous area of about 15 square kilometers around an AIDS clinic using the OLSR routing protocol with ETX as the routing metric. The network provided a good service to the satellite-based Internet with throughput rates ranging between 300 kbps for 4 hops and 11000 kbps for 1 hop and an average throughput rate of 2324 kbps. To encourage fair sharing of Internet connectivity, features were installed to limit each user to 40 MB/month of free Internet traffic. A local web server offers cached pages of Wikipedia and Linux repositories to reduce the need for Internet access. VoIP services were also installed between clinic infrastructure to reduce the the need for making expensive GSM calls. It was shown that a mesh network of this size provides a very satisfactory level of broadband service for users accessing a satellite-based Internet facility as well as local VoIP services. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
4

Mesh Networking in Low Power Location Systems (Swarm)

Deo, Sonali January 2016 (has links)
Today, Internet of Things (IoT) is the driving force in making operations and processes smart. Indoor localization is such an application of IoT that has proven the potential of location awareness in countless scenarios, from mines to industries to even people. nanotron Technologies GmbH, based in Berlin, is one of the pioneers in low power location systems. nanotron's embedded location platform delivers location-awareness for safety and productivity solutions across industrial and consumer markets. The platform consists of chips, modules and software that enable precise real-time positioning and concurrent wireless communication. The ubiquitous proliferation of interoperable platforms is creating the locationaware Internet of Things. One of their product families is swarm. A swarm is a group of independent radios or nodes which facilitates the nodes to communicate with their immediate neighboring nodes to get each other’s positions. This position information is collected by one of the nodes (called gateway) and delivered to the host controller. However, the nodes need to be in range to communicate. The company wants to improve the range of communication and for that purpose; I am implementing a routing protocol with some additional changes for swarm, to allow out-of-range nodes to communicate via intermediate neighbors. This is called mesh networking which would result in so-called ‘mesh’ of nodes and would increase the range of swarm operation that could be beneficial in achieving uniform connectivity throughout large spaces without needing excessive number of gateways. This is of high importance because a node acting as gateway should be ‘awake’ all the time so that it can collect data efficiently, while the other nodes can beon power saving mode. Mesh networking will allow data collection even with fewer such gateways thereby being energy efficient while facilitating larger range of communication. This was made possible by adding the feature of allowing nodes to store messages for their neighbors in case they are asleep and wake up for the neighbors to transmit data. It is done using a schedule that is built and updated in addition to the routing protocol. The purpose of this thesis is to justify the implemented mesh routing protocol for swarm among all the other routing protocols available. It also focuses on the modifications and improvements that were devised to make the protocol tailored for how swarm works and to support Message Queuing Telemetry Transport (MQTT) on top of it, at a later stage. MQTT is a lightweight messaging protocol that provides resource-constrained network clients with a simple way to distribute information. It uses a publish/subscribe communication pattern and is used for machine-to-machine (M2M) communication and plays an important role in the Internet of Things. The implemented routing protocol also takes into consideration, the sleeping nodes, route maintenance through advertisements, hierarchical nature of mesh to make data collection more efficient, message formats keeping in mind the memory shortage, etc. The document gives a thorough overview of concepts, design implementation, improvements and tests to prove the importance of mesh networking in existing swarm.
5

Mesh Networking for Inter-UAV Communications

Walton, Michael Tanner 05 1900 (has links)
Unmanned aerial systems (UASs) have a great potential to enhanced situational awareness in public safety operations. Many UASs operating in the same airspace can cause mid-air collisions. NASA and the FAA are developing a UAS traffic management (UTM) system, which could be used in public safety operations to manage the UAS airspace. UTM relies on an existing communication backhaul, however natural disasters may disrupt existing communications infrastructure or occur in areas where no backhaul exists. This thesis outlines a robust communications alternative that interfaces a fleet of UASs with a UTM service supplier (USS) over a mesh network. Additionally, this thesis outlines an algorithm for vehicle-to-vehicle discovery and communication over the mesh network.
6

Mesh networking in underground mine environments : Exploring security requirements in relation to the performance of mesh networks

Berg, Erik, Boudet, Oliver January 2023 (has links)
This study investigates the possibilities of using mesh networking in underground mines. It is of utmost importance to investigate the safety and ethical aspects of implementing new systems in mines, namely mesh networking. Simulations and calculations have been made to analyze and arrive at findings of update intervals for a potential mesh network. Semi-structured interviews have been conducted with responsible staff at underground mine sites, and this study has followed a qualitative approach. Theoretical concepts such as Locatilization infrastructures in underground mines and Personal security and work environment laws in underground mines have been analyzed and discussed in relation to empirical results using thematic analysis. Due to the importance of safety aspects of emergency notifications and real time location tracking, our findings show that mesh networks may not be a viable replacement for a fully connected network in a mine network infrastructure. However, mesh networks or hybrid networks may be a more viable way to improve safety for certain mines that do not have an existing network infrastructure, or as a temporary extension to a fully connected network infrastructure.
7

Analysis of hardware requirements for airborne tactical mesh networking nodes / An analysis of tactical mesh networking hardware requirements for airborne mobile nodes

Milicic, Gregory J. 03 1900 (has links)
Approved for public release, distribution is unlimited / Wireless mesh mobile ad hoc networks (MANETs) provide the military with the opportunity to spread information superiority to the tactical battlespace in support of network-centric warfare (NCW). These mesh networks provide the tactical networking framework for providing improved situational awareness through ubiquitous sharing of information including remote sensor and targeting data. The Naval Postgraduate School's Tactical Network Topology (TNT) project sponsored by US Special Operations Command seeks to adapt commercial off the shelf (COTS) information technology for use in military operational environments. These TNT experiments rely on a variety of airborne nodes including tethered balloon and UAVs such as the Tern to provide reachback from nodes on the ground to the Tactical Operations Center (TOC) as well as to simulate the information and traffic streams expected from UAVs conducting surveillance missions and fixed persistent sensor nodes. Airborne mesh nodes have unique requirements that can be implemented with COTS technology including single board computers and compact flash. / Lieutenant, United States Navy
8

An analysis of the feasibility of implementing ultra wideband and mesh network technology in support of military operations

Herzig, Joseph F., Jr. 03 1900 (has links)
Approved for public release, distribution is unlimited / This thesis analyzes the feasibility, functionality, and usability of Ultra Wideband technology as an alternative to 802.11 in wireless mesh networks for multiple DoD contexts. Ultra wideband and wireless mesh network technologies and applications are researched and analyzed through multiple field and lab experiments for usability in current, real-world situations. Hardware and software investigations are conducted to determine any implementation issues between ultra wideband and wireless mesh networks. A detailed assessment is conducted of the various elements and operational constraints for developing an ultra wideband mesh network that can be utilized to improve situational awareness in network-centric operations. Through joint research with Lawrence Livermore National Laboratories, various hardware and software components are developed to create a test bed for tactical level ultra wideband and mesh networking experimentation in a highly mobile environment. This thesis also lays the groundwork into future ultra wideband and mesh networking applications. / Lieutenant, United States Navy
9

An analysis of network and sensor performance within IEEE 802.x wireless MESH networks in the Tactical Network Topology (TNT)

Davis, Joseph A., Sr. 03 1900 (has links)
Approved for public release, distribution is unlimited / The objective of this research is to analyze the network performance and sensor functionality, efficacy and usability of IEEE 802.x wireless MESH networks within a DoD Tactical network environment. Multiple sensor configurations operating with wireless MESH network technologies will be researched and analyzed for performance in expeditionary environment situations. Specifically, this thesis will attempt establish the foundation for the development of wireless MESH "network health" models by examining the performance of sensors operating within a MESH network and define which network performance metrics equate to good quality of service. This research will experiment with different application, sensor, and network configurations of currently available COTS components, such as, voice, video and data hardware. This thesis will lay the groundwork for wireless network MESH predictability, which will enable the optimal use of sensors within a tactical network environment. / Lieutenant Commander, United States Navy
10

Fiabilité et problèmes de déploiement du codage réseau dans les réseaux sans fil / Reliability and deployment issues of network coding in wireless networks

Ageneau, Paul-Louis 28 February 2017 (has links)
Même si les réseaux de données ont beaucoup évolué au cours des dernières décennies, les paquets sont presque toujours transmis d’un nœud à l’autre comme des blocs de données inaltérables. Cependant, ce paradigme fondamental est aujourd’hui remis en question par des techniques novatrices comme le codage réseau, qui promet des améliorations de performance et de fiabilité si les nœuds sont autorisés à mixer des paquets entre eux. Les réseaux sans fil manquent de fiabilité en raison des obstacles ou interférences que subissent les liens sans fil, et ces problèmes peuvent empirer dans des topologies maillées avec de multiples relais potentiels. Dans ce travail, nous nous concentrons sur l’application du codage réseau intra-flux aux flux unicast dans les réseaux sans fil, avec pour objectif d’améliorer la fiabilité des transferts de données et de discuter des opportunités de déploiement et des performances. Tout d’abord, nous proposons une borne inférieure pour la redondance, puis un algorithme opportuniste distribué, pour adapter le codage aux conditions du réseau et permettre la livraison fiable des données dans un réseau sans fil maillé, tout en prenant en compte les besoins de l’application. En outre, puisque les opérations requises pour le codage réseau sont coûteuses en termes de calcul et de mémoire, nous étendons cet algorithme pour s’adapter aux contraintes physiques de chaque nœud. Ensuite, nous étudions les interactions du codage intra-flux avec TCP et son extension MPTCP. Le codage réseau peut en effet améliorer les performances de TCP, qui ont tendance à être plus faibles sur les liens sans fil, moins fiables. Nous observons l’impact des problèmes d’équité qui se posent quand des flux codés fonctionnent en parallèle avec des flux traditionnels non codés. Pour finir, nous explorons deux manières différentes d’améliorer les performances de MPTCP dans les environnements sans fil : le faire fonctionner sur du codage réseau, et implémenter directement le codage directement dans le protocole MPTCP tout en préservant sa compatibilité avec TCP / Even if packet networks have significantly evolved in the last decades, packets are still transmitted from one hop to the next as unalterable pieces of data. Yet this fundamental paradigm has recently been challenged by new techniques like network coding, which promises network performance and reliability enhancements provided nodes can mix packets together. Wireless networks rely on various network technologies such as WiFi and LTE. They can however be unreliable due to obstacles, interferences, and these issues are worsened in wireless mesh network topologies with potential network relays. In this work, we focus on the application of intra-flow network coding to unicast flows in wireless networks. The main objective is to enhance reliability of data transfers over wireless links, and discuss deployment opportunities and performance. First, we propose a redundancy lower bound and a distributed opportunistic algorithm, to adapt coding to network conditions and allow reliable data delivery in a wireless mesh. We believe that application requirements have also to be taken into account. Since network coding operations introduce a non negligible cost in terms of processing and memory resources, we extend the algorithm to consider the physical constraints of each node. Then, we study the interactions of intra-flow coding with TCP and its extension MPTCP. Network coding can indeed enhance the performances of TCP, which tends to perform poorly over lossy wireless links. We investigate the pratical impact of fairness issues created when running coded TCP flows besides legacy non-coded TCP flows. Finally, we explore two different ways to enhance the performance of MPCTP in wireless environments : running it over network coding, and implementing the coding process directly in MPTCP while keeping it fully TCP-compatible.

Page generated in 0.0969 seconds