• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 11
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 48
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Propriedades extrínsecas em filmes finos de VO2 / Extrinsic properties on thin films of VO2

Callegari, Gustavo Luiz 31 August 2010 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In earlier work done at the Laboratory of Magnetism and Magnetic Materials in Santa Maria, spectroscopy measurements of electrical impedance between 100 kHz and 1 GHz were a function of temperature in VO2 thin films along the metal insulator transition undergone by this material. These results suggested [127] that the Impedance Spectroscopy can be a useful tool to separate the contributions from those intrinsic material generated by morphological characteristics. For that such possibility could be actually realized, technological improvements were introduced in the system deposited by Magnetron Sputtering at Laboratory of Magnetism and Magnetic Materials as the addition of a Residual Gas Analyzer and improvements in the heating substrate holder. Spectroscopy measurements were performed in a wider range of frequencies and relaxation times extracted from them were compared with the structural characteristics of the samples obtained by X-ray diffraction and Atomic Force Spectroscopy. / Em trabalhos anteriores realizados no Laboratório de Magnetismo e Materiais Magnéticos em Santa Maria, medidas de espectroscopia de impedância elétrica entre 100 kHz e 1 GHz foram realizadas em função da temperatura em filmes finos de VO2, ao longo da transição metal isolante sofrida por este material. Estes resultados sugeriram [127] que a Espectroscopia de Impedância pode ser uma ferramenta útil para separar as contribuições intrínsecas do material daquelas geradas por características morfológicas. Para que tal possibilidade pudesse ser realmente efetivada, foram introduzidas melhorias técnicas no sistema de deposição por Magnetron Sputtering do Laboratório de Magnetismo e Materiais Magnéticos como a adição de um Analisador de Gás Residual e aperfeiçoamentos no sistema de aquecimento do porta substrato. Foram realizadas medidas de espectroscopia numa faixa mais ampla de freqüências e os tempos de relaxação delas extraídos. Essas medidas foram comparadas com as características estruturais das amostras obtidos por difração de Raios X e Espectroscopia de Força Atômica.
32

Films minces intelligents à propriétés commandables pour des applications électriques et optiques avancées : dopage du dioxyde de vanadium / Smart thin films with controllable properties for advanced electronic and optical applications : doping of vanadium dioxide

Zaabi, Rafika 02 December 2015 (has links)
Cette thèse concerne l’étude de l’effet du dopage au chrome sur les propriétés structurales, électriques et optiques des films de dioxyde de vanadium. Ces films V(1-x)CrxO2 (x allant de 0 à 25%) de 110 nm d’épaisseur ont été déposés par dépôt par ablation laser (PLD) multicibles sur substrat saphir c. Ils ont été caractérisés grâce à des techniques d’analyse morphologique, structurale, électrique et optique. Les différentes phases présentes dans les films V(1-x)CrxO2 ont été identifiées par DRX, spectroscopie Raman et comparées au diagramme de phase du matériau massif. Les phases M1, M2 et M3, un mélange M2 + M3 et la phase R ont été identifiées. En revanche la phase M4 n’a pas été détectée pour des dopages supérieurs à 8%, montrant une réelle différence entre diagrammes de phase du matériau massif et des films. Le dopage au chrome a permis d’augmenter la température de transition isolant-métal de 68 à 102°C. En revanche, la dynamique de cette transition, déterminée par mesure de transmission optique ou par mesure de résistivité électrique, est souvent diminuée. Enfin, des dispositifs à deux terminaux à base de films V(1-x)CrxO2 ont été réalisés. Leurs caractérisations courant-tension montrent que le dopage au chrome influence fortement le seuil d’activation de la transition entre les états isolant et métallique. / This thesis presents a study of the effect of chromium doping on structural, electrical and optical properties of thin films of vanadium dioxide. These V(1-x)CrxO2 thin films (x from 0 to 25%) of 110 nm thick have been deposited on c sapphire substrate by multi target Pulsed Laser Deposition method. Their morphological, structural, electrical and optical properties have been studied. Different phases for V(1-x)CrxO2 have been identified by XRD and Raman analysis and compared to those of bulk material. M1, M2, M3, a mixture M2 + M3 and R phases are present. The M4 phase has not been detected for doping above 8%, showing a real difference between phase diagram of bulk and thin films. Chromium doping also increases the metal-insulator transition temperature from 68°C to 102°C. Moreover, the transition dynamics, determined using optical transmission and electrical resistivity measurements, decreases. Finally, two terminal switches based on V(1-x)CrxO2 thin films have been fabricated. Their current-voltage characterization showed that chromium doping affects the activation threshold voltage of the metal to insulator transition.
33

In-situ Synthesis Of AxWO3(A=Na,K), SrMoO3, La1-xSrxVO3, LaNi1-x(Mn3Co)xO3 And La1-xCexNiO3 Thin Films By Pulsed Laser Deposition: Study Of Electrical Conductivity And Metal To Insulator Transition

Chaitanya Lekshmi, I 08 1900 (has links) (PDF)
No description available.
34

Solid State Chemistry Of Transition Metal Oxides With Fascinating Properties

Mahesh, R 02 1900 (has links) (PDF)
No description available.
35

INVESTIGATION OF CHEMISTRY IN MATERIALS USING FIRST-PRINCIPLES METHODS AND MACHINE LEARNING FORCE FIELDS

Pilsun Yoo (11159943) 21 July 2021 (has links)
The first-principles methods such as density functional theory (DFT) often produce quantitative predictions for physics and chemistry of materials with explicit descriptions of electron’s behavior. We were able to provide information of electronic structures with chemical doping and metal-insulator transition of rare-earth nickelates that cannot be easily accessible with experimental characterizations. Moreover, combining with mean-field microkinetic modeling, we utilized the DFT energetics to model water gas shift reactions catalyzed by Fe3O4at steady-state and determined favorable reaction mechanism. However, the high computational costs of DFT calculations make it impossible to investigate complex chemical processes with hundreds of elementary steps with more than thousands of atoms for realistic systems. The study of molecular high energy (HE) materials using the reactive force field (ReaxFF) has contributed to understand chemically induced detonation process with nanoscale defects as well as defect-free systems. However, the reduced accuracy of the force fields canalso lead to a different conclusion compared to DFT calculations and experimental results. Machine learning force field is a promising alternative to work with comparable simulation size and speed of ReaxFF while maintaining accuracy of DFT. In this respect, we developed a neural network reactive force field (NNRF) that was iteratively parameterized with DFT calculations to solve problems of ReaxFF. We built an efficient and accurate NNRF for complex decomposition reaction of HE materials such as high energy nitramine 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX)and predicted consistent results for experimental findings. This work aims to demonstrate the approaches to clarify the reaction details of materials using the first-principles methods and machine learning force fields to guide quantitative predictions of complex chemical process.
36

Exploiting Phase-change Material for Millimeter Wave Applications

Chen, Shangyi January 2021 (has links)
No description available.
37

Etude de la dynamique et de la structure de couches minces d’oxydes fonctionnels : srTiO3, VO2 et Al2O3 / Dynamical and structural study of functional oxide thin layers : srTiO3, VO2 and Al2O3

Peng, Weiwei 04 April 2011 (has links)
Afin de développer de nouvelles applications aux couches minces d’oxydes fonctionnels, il est nécessaire de comprendre les corrélations entre leurs modes de croissance, leur microstructure, leur structure à l’interface avec le substrat, et leurs contraintes et propriétés physiques. Pour cela, une étude par spectroscopie infrarouge et THz des systèmes modèles films/substrats a été exécutée, et confrontée à des calculs théoriques, en particulier sur des couches épitaxiales de SrTiO3/Si(001), VO2/Gd2O3/Si(111) et des couches d’alumine sur alliage d’aluminium. Les caractéristiques vibrationnelles des couches minces sont ici étudiées dans l’infrarouge moyen et lointain sur la ligne AILES du Synchrotron SOLEIL, et simulées à l’aide de la Théorie de la Fonctionnelle de la Densité (DFT), permettant ainsi la première détermination de la structure cristalline de ces couches. Ainsi, une comparaison entre la structure bidimensionnelle et tridimensionnelle des matériaux est effectuée. L’effet des contraintes dans les couches est évalué grâce aux variations des énergies de vibration par rapport au matériau massif. L’influence des conditions expérimentales de l’épitaxie dans la structure locale interatomique de couches minces de SrTiO3/Si(001) est évaluée. D’autre part, la nature de l’interface STO-Si peut être caractérisée par les modes de vibration du réseau cristallin. Enfin, la transition métal-isolant (MIT) des couches minces de VO2 sur des substrats de Gd2O3/Si(111) est étudié par spectroscopie IR ; les variations de propriétés optiques et diélectriques pendant la transition, ainsi que les changements d’intensité des modes de vibration, indiquent que la transition est entraînée par une corrélation électronique et une basse température. La phase monoclinique M1 de VO2 est un isolant de Mott. Ce résultat peut aider à un meilleur contrôle des MIT de couches minces de VO2 pour de futures applications. / In order to understand the relations between growth, microstructure, interface structure, strain, and physical properties in functional oxide thin films for further applications, a study of infrared and THz spectroscopy combined with theoretical calculation has been performed on the films/substrates model systems, in particular epitaxial SrTiO3/Si(001), VO2/Gd2O3/Si(111) films and alumina/alloy films. The vibrational characteristics of the crystal structure of films have been investigated in the mid and far infrared ranges on the AILES beamline at Synchrotron SOLEIL. This experimental vibrational study has been combined with Density Functional Theory (DFT) simulation to allow for the first measure of the crystalline structure of these thin films. The 2-dimensional lattice modification compared with the bulk materials has been discussed. The strain effect in the films can be evaluated on the phonon shifts compared with the crystal spectrum. The influences of epitaxial conditions on the local interatomic structure of SrTiO3/Si(001) thin films have been estimated. The nature of STO-Si interface can be characterized by the phonon modes. The metal–insulator transition (MIT) of VO2 thin films on Gd2O3/Si(111) substrate have been studied by IR spectroscopy. The variations of optical and dielectric properties during the MIT, as well as the phonon intensities, indicate that the MIT is driven by electron correlation and the low temperature M1 monoclinic phase of VO2 is a Mott insulator. This result may help to better understand and control the MITs of VO2 thin films in the device applications.
38

Investigation Of Electronic Structure Of Transition Metal Oxides Exhibiting Metal-insulator Transitions And Related Phenomena

Manju, U 02 1900 (has links)
Transition metal oxides have proven to be a fertile research area for condensed matter physicists due to the fascinating array of superconducting, magnetic and electronic properties they exhibit. A particular resurgence of intense activity in investigating the properties of these systems followed the discovery of high temperature superconductivity in the cuprates, colossal magnetoresistance in the manganites, ferroelectricity in the cobaltites and simultaneous ferroelectric and ferromagnetic ordering in the manganites. These diverse properties of transition metal compounds arise due to the presence of strong electron-electron interactions within the transition element 3d states. Indeed, it is the competition between the localizing effects of such interactions and the comparable hopping strengths driving the system towards delocalization, that is responsible for these wide spectrum of interesting properties. In terms of theoretical and fundamental issues, electronic structure of transition metal oxides play a most important role, providing a testing ground for new many-body theoretical approaches treating the correlation problem at various levels of approximations. In addition to this rich spectrum of properties, metal-insulator transitions often occur and can even be coincident with structural or magnetic changes due to the strong coupling between charge, magnetic and lattice degrees of freedom. However, in spite of the immense activities in this area, the underlying phenomena is not yet completely understood. A careful investigation of the electronic structure of these systems will help in the microscopic understanding of these and photoelectron spectroscopy has been established as the most powerful tool for investigating the electronic structures of these systems. In this thesis we investigate the electronic structures of some of these transition metal oxides and the metal-insulator transition as a function of electron correlation strength and doping of charge carriers by means of photoelectron spectroscopy; we analyze the experimental results using various theoretical approaches, in order to obtain detailed and quantitative understandings. This thesis is organized into seven chapters. Chapter 1 is a general introduction to the various concepts discussed in this thesis. Here we briefly describe the various mechanisms and theoretical formalisms used for understanding the metal-insulator transitions in strongly correlated systems and the evolution of the electronic structure across the transition. The experimental and the calculational techniques used in this thesis is described in Chapter 2. This includes different sample synthesis techniques and the characterization tools used in the present study. Photoelectron spectroscopic techniques used for probing the electronic structure of various systems are also discussed in this chapter. In Chapter 3, we discuss the coexistence of ferromagnetism and superconductivity in ruthenocuprates by looking at the electronic structures of RuSr2Eu1.5Ce0.5Cu2O10 which is a ferromagnetic superconductor having the ferromagnetic TC ~ 100 K and a superconducting transition of ~ 30 K compared with RuSr2EuCeCu2O10 which is a ferromagnetic (TC ~ 150 K) insulator in conjunction with two reference systems, RuSr2GdO6and Sr2RuO4. The coexistence of ferromagnetic order with superconductivity below the superconducting temperature is an interesting issue since the pair-breaking due to magnetic interactions is not significant in these cases. Extensive photoelectron spectroscopic measurements were performed on these systems and our results show that Eu and Ce in both the ruthenocuprates exists in 3+ and 4+ states, respectively. Also the analysis of the Ru 3d and 3p core levels suggests that Ru remains in the pentavalent state in both the cases. The constancy of Ru valency with doping of charge carriers that bring about an insulator to metal transition and the superconducting state suggests that the electronic structure and transport properties of these compounds are not governed by the Ru-O plane, but by the Cu-O plane, much as in the case of other high TC cuprates. Analysis of the Cu 2p core level spectra in terms of a cluster model, including configuration interaction and multiplet interactions between Cu 3d and 2p as well as that within the Cu 3d states, establish a close similarity of the basic electronic structure of these ruthenocuprates to those of other high TC cuprates. Here the charge transfer energy, Δ << Udd,Cu 3d multiplet-averaged Coulomb repulsion energy, establishing the compounds to be deep in the charge transfer regime. Continuing with the ruthenocuprate systems in Chapter 4, we look at the electronic structure of hole doped La2CuRuO6systems using various photoemission techniques. It was expected that since the substitution of La3+by Sr2+changes the d electron count, the system will undergo a metal to insulator transition, but the transport properties show that all of them remain semiconducting through out the lowest temperature of measurement. A careful analysis of the Ru 3d and 3p core level spectra shows that Ru exists in Ru 4+state in La2CuRuO6and goes towards Ru 5+state with hole doping. This suggests that the doped holes affects the electronic structure of the Ru levels in these systems. A spectral decomposition of the Ru 3d core level suggests the existence of a spin orbit split doublet having two peaks, a main core level peak and a satellite peak at the higher binding energy side of the main peak and the intensity ratio of the satellite peak to the main peak increases with the insulating nature of the compounds as reported for other Ru 4d strongly correlated systems. This observation is also consistent with the transport properties. Cu 2p core level spectra also shows variations in the satellite-to-main peak Cu 2p intensities suggesting that the electronic structure of the Cu levels are also getting affected with Sr doping. Valence band spectral features near the Fermi level shows that the spectral weight is highest for La2CuRuO6and depletes slowly with Sr doping consistent with the expected d electron count as suggested by the Ru valencies. In Chapter 5 and Chapter 6 we discuss the electronic structure investigations of two early transition metal oxide series, namely Ca1−xSrxVO3and Ce1−xSrxTiO3. Surface sensitivity dependence of photoemission experiments has been explored to show that the surface and the bulk electronic structures of Ca1−xSrxVO3system is different. Photoemission spectra of this system using synchrotron radiation reveal a hither to unnoticed polarization dependence of the photoemission matrix elements for the surface component leading to substantial underestimation. Extracted bulk spectra from experimentally determined electron escape depth and underestimation of surface contributions resolve the puzzling issues that arose due to the recent diverse interpretations of the electronic structure in Ca1−xSrxVO3. Keeping in mind the above-mentioned caveat, the present results still clearly establish that the linear polarization of synchrotron radiation plays a key role in determining the spectral lineshape in these systems. The experimentally-determined bulk spectra provide an understanding of the electronic structure in Ca1−xSrxVO3, consistent with experimental γ values, calculated change in the d-bandwidth and the geometrical/structural trends across the series, thereby resolving the puzzle concerning the structure-property relationship in this interesting class of compounds. In Chapter 6 we discuss the issues of metal-insulator transition close to the d0limit as well as the evolution of the electronic structure of a strongly correlated system as a function of electron occupancy, by investigating the family of Ce1−xSrxTiO3compounds by recording core level as well as valence band photoemission spectra using lab source as well as synchrotron radiations. Core level Ce 3d spectra from Ce1−xSrxTiO3samples establish a trivalent state of Ce in these compounds for all values of x confirming that charge doping in the present system does not alter the electronic structure of Ce. Hence the change in valency due to Sr substitution and thus, the carrier number, takes place only in the Ti 3d-O 2p manifold. We also carried out extensive VUV photoemission experiments on these samples with the photon energy varying between 26-122 eV. From the difference spectrum obtained by subtracting the off-resonance spectrum from the on-resonance one, we obtain the Ce 4f spectral signature; thus obtained Ce 4f spectrum which has a peak at about 3 eV binding energy and shows no intensity at EF even for the metallic samples, consistent with a Ce3+state. In order to study the states near EF responsible for the metal-insulator transition in these compounds, we recorded the valence band spectra at the Ce 4f off-resonance condition so that the coherent and the incoherent spectral features arising from the Ti 3d states could be clearly resolved, allowing us to investigate the metal insulator transition in the Ce1−xSrxTiO3system as a function of Sr or hole doping. The experimental spectra of the metallic compounds exhibit an intensity of the incoherent feature considerably larger than that predicted by theory. This discrepancy is possibly due to a difference in the surface and the bulk electronic structures of these compounds. Chapter 7 is divided into two parts. In the first part we discuss the extended x-ray absorption fine structure (EXAFS) studies performed on two transition metal oxide series, La1−xSrxCoO3and La1−xSrxFeO3to look at the local structure distortions happening around the transition metal ions and its role in bringing out metal to insulator transitions in transition metal oxide systems. Here we chose to investigate these two systems since La1−xSrxCoO3undergoes an insulator to metal transition for x ∼ 0.15 and La1−xSrxFeO3remains insulating for the entire range of doping. The static mean square relative displacement, which we believe to be a representation of the disorder present in the system, extracted by fitting the experimental data by a correlated Einstein model, as a function of composition in La1−xSrxCoO3saturates beyond the critical composition where as the disorder parameter continues to increase through out the entire doping range in the case of La1−xSrxFeO3where metal-insulator transition is absent. In the second part of Chapter 7 we discuss the x-ray absorption near edge structure (XANES) studies performed on the above mentioned series of systems. Co K-edge XANES spectra of La1−xSrxCoO3show that there is a systematic shift of the main absorption peak with hole doping suggesting that the Co valency changes systematically with Sr doping. Also, the pre-edge feature of LaCoO3shows the transitions to t2g level clearly showing that Co3+in LaCoO3is not in a pure low spin (t6 2g) state. The Fe K-edge XANES spectra of La1−xSrxFeO3also exhibit a systematic shift to the higher energy side with increase in Sr content, indicating an increase in the Fe valence. Also from the La L3edge analysis, it can be concluded that the oxygen environment around La and the electronic configuration of La are systematically changing with Sr doping.
39

Spatially Resolved Studies Of Electronic Phase Separation And Microstructure Effects In Hole Dopped Manganites

Kar, Sohini 03 1900 (has links)
The main focus of this thesis is in understanding the role of phase separation and microstructure in determining the physical properties of manganites. We also aim to be able to tune certain material properties using appropriate control mechanisms. For this, an understanding of the local electronic properties of manganites is essential. We thus set out to study the local electronic states in manganites using a highly sensitive probe: the scanning tunneling microscope (STM). The chapter 1 of the thesis gives an introduction to manganites, and of how manganites are susceptible to various perturbations due to closely lying ground states and an intricate interplay of their charge, spin and lattice degrees of freedom. Chapter 2 of this thesis gives a detailed account of various experimental methods used in the current investigation. In particular, we describe the design and fabrication of a variable temperature ultra-high vacuum scanning tunneling microscope (UHV-STM) which was used to carry out spatially resolved measurements on various manganite systems. This chapter also describes sample fabrication techniques by which strain and microstructure of thin films can be controlled. Other characterization techiniques, such as tranport and magnetotransport measurements, are also described in detail. Chapter 3 presents our investigation of the role of microstructure and phase separation on the DOS and local electronic properties of manganite thin films. We describe various spatially resolved STM/STS measurements carried out on La0.67Sr0.33MnO3 and La0.67Ca0.33MnO3 films having different micrsotructure and varying degrees of phase separation. We also present a theoretical model used in interpreting STS data to account for finite temperature effects and explain the existing data in this context. We use this model to gain insight into the behaviour of the DOS at EF near the MIT where thermal smearing can often give rise to misleading inferences. Chapter 4 presents our investigation on the density of states in a typical charge ordered manganite system, Pr1-xCaxMnO3. We describe STS measurements carried out on this system to study the occurrence and evolution of the charge ordering (CO) gap as a function if temperature as well as tunneling current. We report the observation of destabilization of the CO gap using tunnel current injection by an STM tip. Chapter 5 presents our investigation into the controlled and localized “nanoscale” phase separation in Pr1-xCaxMnO3 (PCMO) using an STM tip. The investigations were carried out on PCMO single crystal and PCMO epitaxial films. Our results raise the possibility of nano-fabrication of metallic nanoislands in a CO matrix using an STM tip. We demonstrate some examples of this and also raise the relevance of intrinsic phase separation in this context. We show that the “melting” of CO using tunnel current injection by an STM tip is analogous to the magnetic field-induced melting of CO on a microscopic scale. Chapter 6 summarizes the important results of this thesis work and suggests the scope for future experiments.
40

Etude mathématique des propriétés de transport des opérateurs de Schrödigner aléatoires avec structure quasi-cristalline / A mathematical study of transport properties of Schrödinger operators with a quasicrystalline structure.

Rojas Molina, Constanza 25 June 2012 (has links)
Cette thèse est consacrée à l'étude du transport électronique dans des modèles désordonnés non ergodiques, dans le cadre de la théorie des opérateurs de Schrödinger aléatoires.Pour commencer, nous reformulons l'outil principal pour notre étude, l'analyse multi-échelles, dans le cadre non ergodique. Nous établissons les conditions d'homogénéité que l'opérateur doit vérifier pour appliquer cette méthode. Ensuite, nous étudions les propriétés spectrales des opérateurs de Delone-Anderson non ergodiques. Ces systèmes modélisent l'énergie d'une particule en interaction avec un milieu dont la structure atomique est quasi-cristalline et la nature des impuretés est désordonnée. Dans le cas où les mesures de probabilité associées au potentiel de simple site sont régulières, en dimension 2 et sous l'effet d'un champ magnétique, nous établissons une transition métal-isolant et l'existence d'une énergie de mobilité qui sépare les régions de localisation et de délocalisation dynamiques. Pour des mesures de simple site régulières et celle de Bernoulli, nous démontrons la localisation dynamique en bas du spectre. De plus, nous obtenons une description quantitative de la région de localisation dynamique en termes de paramètres géométriques de l'ensemble de Delone de base.Nous concluons ce travail avec l'étude de la densité d'états intégrée pour des modèles de Delone-Anderson, en combinaison avec des outils de la théorie des systèmes dynamiques associés aux quasi-cristaux. Sous certaines conditions sur la géométrie de l'ensemble de Delone sous-jacent, nous montrons l'existence de la densité d'états intégrée. De plus, dans le cas d'une perturbation de Delone-Anderson du Laplacien libre, nous démontrons qu'elle a un comportement asymptotique de Lifshitz en bas du spectre. / His thesis is devoted to the study of electronic transport in non ergodic disordered models, in the framework of random Schrödinger operators.We start by reformulating the main tool in our study, the multiscale analysis, in the non ergodic setting. We establish suitable homogeneity conditions on the operator, in order to apply this method.Next, we study the spectral properties of non ergodic Delone-Anderson operators. These models represent a particle interacting with a medium whose atomic structure is quasi-crystalline and the nature of its impurities is disordered. In the case where the probability measures associated to the single-site potential are regular, in dimension 2 and under the effect of a magnetic field, we establish a metal-insulator transition and the existence of a mobility edge that separates the localization and delocalization regions. In arbitrary dimension, for regular and for Bernoulli single-site measures, we show dynamical localization at the bottom of the spectrum. Moreover, we obtain a quantitative lower bound on the size of the localization region in terms of the geometric parameters of the underlying Delone structure.We conclude this essay by studying the integrated density of states for Delone-Anderson models, using tools from the theory of dynamical systems associated to quasicrystals. Under certain conditions on the geometry of the underlying Delone set, we show the existence of the integrated density of states. Furthermore, in the case of a Delone-Anderson perturbation of the free Laplacian, we show it exhibits Lifshitz tails at the bottom of the spectrum.

Page generated in 0.1049 seconds