• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 16
  • 12
  • 9
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 194
  • 35
  • 34
  • 26
  • 22
  • 21
  • 19
  • 18
  • 17
  • 17
  • 17
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Left-handed metamaterials realized by complementary split-ring resonators for RF and microwave circuit applications

Pasakawee, Sarinya January 2012 (has links)
A new equivalent circuit of left-handed (LH) microstrip transmission line loaded with Complementary split-ring resonators (CSRRs) is presented. By adding the magnetic coupling into the equivalent circuit, the new equivalent circuit presents a more accurate cutoff frequency than the old one. The group delay of CSRRs applied with microstrip transmission line (TL) is also studied and analyzed into two cases which are passive CSRRs delay line and active CSRRs delay line. In the first case, the CSRRs TL is analyzed. The group delay can be varied and controlled via signal frequency which does not happen in a normal TL. In the active CSRRs delay line, the CSRRs loaded with TL is fixed. The diodes are added to the model between the strip and CSRRs. By observing a specific frequency at 2.03GHz after bias DC voltages from -10V to -20V, the group delay can be moved from 0.6ns to 5.6ns. A novel microstrip filter is presented by embedding CSRRs on the ground plane of microstrip filter. The filter characteristic is changed from a 300MHz narrowband to a 1GHz wideband as well as suppression the occurrence of previous higher spurious frequency at 3.9GHz. Moreover, a high rejection in the lower band and a low insertion loss of <1dB are achieved.Finally, it is shown that CSRRs applied with planar antenna can reduce the antenna size. The structure is formed by etching CSRRs on the ground side of the patch antenna. The meander line part is also added on the antenna patch to tune the operation frequency from 1.8GHz downward to 1.73GHz which can reduce the antenna size to 74% of conventional patch antennas. By using the previous antenna structure without meander line, this proposed antenna can be tuned for selecting the operation frequency, by embedding a diode connected the position between patch and ground. The results provide 350MHz tuning range with 35MHz bandwidth.
32

On-chip low profile metamaterial antennas for wireless millimetre-wave communications

Peng, Ying January 2012 (has links)
The aim of this work is to design and realise millimetre-wave low profile on-chip antennas for 60 GHz short-range wireless communication systems. For this application, it is highly desirable that the antenna can be compatible with standard silicon complementary metal oxide semiconductor (Si CMOS) technology for high level integration and mass production a low cost. Firstly, millimetre-wave antennas on normal dielectric substrates and cavities were studied in detail in order to better understand how the antenna parameters could have effects on their performance at millimetre-wave spectrum. On-chip 60 GHz antennas based on Si CMOS technology were then proposed, designed, fabricated and characterised. A millimetre-wave U-shaped slot antenna with wide bandwidth was first investigated, simulated and designed. The simulation results reveal that this antenna can operate at millimetre-wave frequencies with 1 GHz bandwidth at 73.5 GHz and 76.5 GHz, respectively. A 60 GHz folded dipole antenna was also studied and designed. A metal cavity was added on the back of a folded dipole antenna to act as reflector. Simulated results show that a folded dipole antenna with a metal cavity can achieve a radiation efficiency of 97.9% at its resonant frequency. Compared to the gain obtained for the folded dipole antenna without a cavity, the antenna gain with metal cavity can be enhanced by 3.58 dB. The main challenges of making high gain and high efficiency Si CMOS on-chip antennas at millimetre-wave spectrum come from two sources; the thin silicon dioxide (SiO2) layer (maximum 10 micrometre) and silicon substrate loss (10 ohmscm). The thin SiO2 layer prevents the use of an elevated ground plane, which could significantly reduce the silicon substrate loss, due to the imaging current effect. Si CMOS substrates normally have resistivity of 10 ohmscm, which is very lossy at millimetre-wave spectrum. To tackle these challenges, metamaterial structures, named artificial magnetic conductor (AMC) structures, were studied and utilised for low profile Si CMOS on-chip antenna design and realisation. AMC forms high impedance on its surface, reflecting the incident wave without phase reversal so as to enhance the radiation efficiency. The AMC folded dipole antenna was designed with a mushroom-shaped structured metamaterial cavity. Simulation results show that the gain increased 1.5 dB in the antenna with AMC structure, while the distance to the metamaterial surface was reduced by 90% compared to that of the pure metal cavity. Additionally, two low profile Si CMOS on-chip antennas with novel planar AMC structures were designed, fabricated and characterised. They were manufactured by 0.13 μm Si CMOS technology from Chartered foundry and 0.18 μm Si CMOS technology from TSMC, respectively. The techniques proposed in these two antennas provide valuable alternatives to the existing approaches. The measurement results show that bandwidth of the on-chip antenna with a micro-patterned artificial lattice is approximately 10 GHz. The one with a dog-bone shape and uniplanar compact photonic band gap (UC-PBG) structures managed a 1.6 dB gain and 1 GHz bandwidth enhancement compared to that without AMC structures.
33

Extraction of Electromagnetic Properties of Metamaterials with Branch Compensation from Phase Tracking

Lewis, Jacob Christian January 2020 (has links)
In the field of electromagnetism, there are materials known as metamaterials which exhibit unique properties that can be exploited. Permittivity, defined as capacitance per meter, of a metamaterial can vary over frequency , time, or even be negative. This can be useful for tuning antennas, changing their operating frequency or direction of propagation, or even designing cloaking systems. However, the theory behind metamaterials needs to be studied further. One of the biggest issues to address is in determining the constitutive parameters of metamaterials which may be varying. Previous research has shown the issue of branches, or mathematical discontinuities, occurring in the derivation of permittivity from the scattering parameters of a metamaterial. This thesis provides further understanding to the theory behind these branches and presents a new method to compensate for them. This new method, called the phase tracking method, may be considered a modern adaptation of the Nicolson-Ross-Weir method.
34

Deep learning based diatom-inspired metamaterial design

Shih, Ting-An 16 January 2023 (has links)
Diatom algae, abundantly found in the ocean, has hierarchical micro- and nanopores which inspired lots of metamaterial designs including dielectric metasurfaces. The conventional approach taken in the metamaterial design process is to generate the corresponding optical spectrum by utilizing physics-based simulation software. Although this approach provides high accuracy, the downside is that it is time-consuming and there are also constraints. By setting design parameters and the structure of the material, the optical response could be easily achieved. However, this approach is not able to deal with the inverse problem as simple as in the forward problem. In this study, a deep learning model that is capable of solving both the forward and the inverse problem of a diatom-inspired metamaterial design was developed and it was further verified experimentally. This method serves as an alternative way for the traditional metamaterial design process which greatly saves time and also presents functionality that simulation does not provide. To investigate the feasibility of this method, different input training datasets were examined, and several strategies were taken to improve the model performance. Though with the success in some cases, effort is still needed to employ the technique in a broader aspect. / 2024-01-15T00:00:00Z
35

Active metamaterial devices at terahertz frequencies

Zhao, Xiaoguang 06 November 2016 (has links)
Electromagnetic metamaterials have emerged as a powerful tool to tailor the electromagnetic material properties and control wave propagation using artificial sub-wavelength structures. During the past fifteen years, metamaterials have been intensively studied over the electromagnetic spectrum (from microwave to visible), giving rise to extraordinary phenomena including negative refractive index, invisibility cloaking, sub-diffraction-limit focusing, perfect absorption, and numerous novel electromagnetic devices and optical components. The terahertz regime, between 0.3 THz and 10 THz, is of particular interest due to its appealing applications in imaging, chemical and biological sensing and security screening. Metamaterials foster the development of terahertz sources and detectors and expand the potential applications of the terahertz technology through the realization of dynamic and tunable devices. The objective of this thesis is to present different mechanisms to implement active terahertz metamaterial devices by incorporating advanced microelectromechanical system technology. First, an optical mechanism is employed to create tunable metamaterials and perfect absorbers on flexible substrates. A semiconductor transfer technique is developed to transfer split ring resonators on GaAs patches to ultrathin polyimide substrate. Utilizing photo-excited free carriers in the semiconductor patches, a dynamic modulation of the metamaterial is demonstrated. Additionally, this thesis investigates how sufficiently large terahertz electric fields drive free carriers resulting in nonlinear metamaterial perfect absorbers. Second, a mechanically tunable metamaterial based on dual-layer broadside coupled split ring resonators is studied with the help of comb drive actuators. One of the layers is fixed while the other is laterally moved by an electrostatic voltage to control the interlayer coupling factors. As demonstrated, the amplitude and phase of the transmission response can be dynamically modulated. Third, a microcantilever array is used to create a reconfigurable metamaterial, which is fabricated using surface micromachining techniques. The separation distance between suspended beams and underlying capacitive pads can be altered with an electrostatic force, thereby tuning the transmission spectrum. The tuning mechanisms demonstrated in this thesis can be employed to construct devices to facilitate the development and commercialization of new compact and mechanically robust metamaterial-based terahertz technologies. / 2017-11-05T00:00:00Z
36

[pt] ABSORVEDOR COM BANDA ULTRA LARGA BASEADO EM ESTRUTURAS METAMATERIAIS E O MÉTODO DE EXTRAÇÃO DE PARÂMETROS / [en] AN ULTRAWIDEBAND METAMATERIAL ABSORBER AND A PARAMETER RETRIEVAL METHOD

JOSE BRUNO OLIVEIRA DE ARAUJO 13 December 2019 (has links)
[pt] Este trabalho apresenta a idealização, caracterização e medições de um absorvedor metamaterial ultrafino com uma banda ultra larga, baseado em espiras quadradas arranjadas periodicamente. O circuito equivalente dessa estrutura é proposto para fornecer uma maior compreensão teórica. Os parâmetros desse circuito são extraídos utilizando um algoritmo baseado no método dos mínimos quadrados, usando uma abordagem direta, que pode ser aplicada aos absorvedores com banda larga em geral. O mecanismo de absorção da estrutura proposta é discutido e detalhado. Um dos resultados da simulação mostrou uma absortividade acima de 90 porcento de 11.4 até 20 GHz, cobrindo a banda Ku inteiramente tanto para a polarização TM quanto para a TE, e essa banda larga é confirmada pelas medições experimentais. Além disso, a espessura do absorvedor metamaterial proposto é lambda/16.4, considerando o maior comprimento de onda da banda de operação, e apresenta estabilidade angular até 50 graus Celsius. Ademais, o uso do absorvedor proposto para redução da seção transversal de radar em antenas de microfita é investigado e reduções até 12.8 dB são obtidas, e uma parede absorvedora é apresentada para diminuição do acoplamento mútuo em conjuntos de antenas. / [en] This work presents the design, characterization, and measurement of an ultrathin and ultrawideband metamaterial absorber based on periodicallyarranged metallic square spiral and its equivalent circuit is proposed to provide a theoretical insight. The parameters of the equivalent circuit are extracted using an algorithm based on the least-square method and using a straightforward approach, which can be applied to broadband absorbers in general. The mechanism of absorption of the proposed structure is discussed and detailed. One of the simulated results showed an absorptivity of more than 90 percent from 11.4 to 20.0 GHz, covering the Ku band for TM as well as TE polarization, and this broadband feature is confirmed by the experimental measurement. Furthermore, the proposed metamaterial absorber is lambda/16.4 thick at the lowest frequency of absorption and presents angle stability up to 50 Celsius degrees. In addition, the usage of the proposed absorber to the radar crosssection reduction in microstrip antennas is investigated and reductions up to 12.8 dB are achieved, and an absorber wall is presented to decrease the mutual coupling in antenna arrays.
37

Study of two - dimensional Kirigami in different materials / Studie av tvådimensionell Kirigami i olika material

Noble, Joseph January 2018 (has links)
The mechanical properties of a 2D material can be altered with Kirigami, a Japanese paper cutting art. Such altered materials are called metamaterials – where a certain geometry is imposed on a material to change its material properties.This thesis documents the effects of a specific Kirigami pattern cut into a range of different 2D materials, such as plastic films or paper – the results of which will be used to evaluate the suitability of each material candidate to a product, the ‘IV strip’, designed and produced by Ortrud Medical AB.The strip contains a patterned ‘spring’ area, which has reduced stiffness due to the patterned defects imposed on it, and a force indication zone. The force indication zone will not be considered.The material selection study used a Pugh’s Evaluation matrix method to choose the best candidate. A few materials were chosen due their suitability in criteria such as robustness of results, tearing force and patient comfort. One material was selected for further experimentation due to its interesting stress/strain characteristics.A further study was then carried out to assess the possibility of tuning the pattern dimensions to alter the tensile properties of the metamaterial. This study includes both computational and experimental methods to verify the feasibility of a simulation model. The study found that it is possible to draw relationships between cut length and stiffness of the pattern. Whilst the computational and experimental results were similar for very small deformations, the FEM simulation struggles at higher deformations because of the lack of available material properties for the program input. / De mekaniska egenskaperna hos ett tvådimensionellt material kan ändras med hjälp av Kirigami, som är en japansk klippkonst i papper. Material där man med geometriförändringar ändrar materialegenskaperna kallas metamaterial. I det här examensarbetet dokumenteras inverkan av ett Kirigami-mönster i olika material, bland annat plast och papper. Resultaten kommer att användas för att utvärdera om något passar att användas till ett stasband framtaget av Ortrud Medical AB. Remsan har en mönstrad ”fjäderyta”, som påverkar styvheten, och en kraftzoon. I det här arbetet studeras enbart det mönstrade området. För att utvärdera materialen och välja det mest lämpade, användes Pughs utvärderingsmatris. Materialen utvärderas bland annat med avseende på robusthet, dragmotstånd och patientkomfort. Ett av materialen valdes ut för ytterligare provning på grund av dess intressanta deformationsbeteende.I det här arbetet tillämpas både experimentella och analytiska metoder. Resultaten användes sedan för att verifiera en FE-modell av systemet. Modellen och experimenten gav liknade resultat vid små deformationer, dock begränsades verifieringen av materialdatabasen. En delstudie visade att det är möjlighet att ställa in mönsterdimensionerna, så att töjningsegenskaperna hos metamaterialet kan justeras.
38

Study of Two-dimensional Kirigami in Different Materials / Studie av tvådimensionell Kirigami i olika material

Noble, Joseph January 2018 (has links)
De mekaniska egenskaperna hos ett tvådimensionellt material kan ändras med hjälp av Kirigami, som är en japansk klippkonst i papper. Material där man med geometriförändringar ändrar materialegenskaperna kallas metamaterial. I det här examensarbetet dokumenteras inverkan av ett Kirigami-mönster i olika material, bland annat plast och papper. Resultaten kommer att användas för att utvärdera om något passar att användas till ett stasband framtaget av Ortrud Medical AB. Remsan har en mönstrad ”fjäderyta”, som påverkar styvheten, och en kraftzoon. I det här arbetet studeras enbart det mönstrade området. För att utvärdera materialen och välja det mest lämpade, användes Pughs utvärderingsmatris. Materialen utvärderas bland annat med avseende på robusthet, dragmotstånd och patientkomfort. Ett av materialen valdes ut för ytterligare provning på grund av dess intressanta deformationsbeteende. I det här arbetet tillämpas både experimentella och analytiska metoder. Resultaten användes sedan för att verifiera en FE-modell av systemet. Modellen och experimenten gav liknade resultat vid små deformationer, dock begränsades verifieringen av materialdatabasen. En delstudie visade att det är möjlighet att ställa in mönsterdimensionerna, så att töjningsegenskaperna hos metamaterialet kan justeras. / The mechanical properties of a 2D material can be altered with Kirigami, a Japanese paper cutting art. Such altered materials are called metamaterials – where a certain geometry is imposed on a material to change its material properties.  This thesis documents the effects of a specific Kirigami pattern cut into a range of different 2D materials, such as plastic films or paper – the results of which will be used to evaluate the suitability of each material candidate to a product, the ‘IV strip’, designed and produced by Ortrud Medical AB.  The strip contains a patterned ‘spring’ area, which has reduced stiffness due to the patterned defects imposed on it, and a force indication zone. The force indication zone will not be considered. The material selection study used a Pugh’s Evaluation matrix method to choose the best candidate. A few materials were chosen due their suitability in criteria such as robustness of results, tearing force and patient comfort. One material was selected for further experimentation due to its interesting stress/strain characteristics. A further study was then carried out to assess the possibility of tuning the pattern dimensions to alter the tensile properties of the metamaterial. This study includes both computational and experimental methods to verify the feasibility of a simulation model. The study found that it is possible to draw relationships between cut length and stiffness of the pattern. Whilst the computational and experimental results were similar for very small deformations, the FEM simulation struggles at higher deformations because of the lack of available material properties for the program input.
39

Improving the Performance of Dual Linear Polarization Antennas with Metamaterial Structures

Aqbi, Sadiq 08 February 2018 (has links)
In this dissertation, the operation of dual-linear polarized antennas is considered in order to provide ideal performance suited for several applications including polarimetric synthetic aperture radar (SAR), wireless and satellite communications. The underlying objectives realized in this work are reported as design realizations of dual-linear polarized antennas with low cross polarization patterns and high isolation between ports that employ special properties of the electromagnetic metamaterial (MTM) structures. Some of these key properties appear as negative permittivity, negative permeability, negative refractive index, and antiparallel nature of the phase velocity and the group velocity. The antenna design is carried out at two frequencies, 5.5 GHz and 10 GHz, and key physical issues that affect the operation of dual-linear polarization operation antennas are treated in light of electromagnetic MTM properties. It’s well known that a dual linear polarized antenna poses a big challenges such as cross polarization patterns and high mutual coupling between two input ports. Therefore, these drawbacks are key topic that receive significant attention in literature which reports on how to mitigate these drawbacks, however, at the expense of complexity of the antenna structures. The MTM structures have received considerable coverage in antenna research for obtaining size reduction, directivity enhancement, and beam steering. For this purpose, different MTMs structures are chosen in this thesis for achieving additional improvements, while keeping the antenna design as simple as possible, something which is very difficult to accomplish using conventional design methods.:Chapter 1: Introduction Chapter 2: Dual linear Polarization Antennas and Arrays Chapter 3: Fundamental Theory of Metamaterials Chapter 4: Metamaterial Structures Design-Methodology Chapter 5: Design of Dual Linear Polarization Using CRLH-TL Metamaterial Line Feed Chapter 6: Cross Polarization Discrimination Enhancement of a Dual Linear Polarization Antenna Using Split Ring Resonator Chapter 7: Antenna Array Design Chapter 8: Conclusions and Future Work / In der folgenden Dissertation wird der Einsatz von zweifach linear polarisierten Antennen zur idealen Ausführung von verschiedenen Anwendungen, einschließlich von polarimetrischen Synthetic Aperture Radar (SAR), kabellose und satellitengestützte Kommunikation, diskutiert. Die Ziele dieser Arbeit werden dargestellt durch die Gestaltung von zweifach linear polarisierten Antennen mit gering Kreuz-Polarisationsmustern und die starke Isolation zwischen den Ports durch die einzigartigen Eigenschaften der Strukturen des elektromagnetischen Metamaterials (electromagnetic metamaterial; MTM). Einige dieser Eigenschaften treten als negative Permittivität, negative Permeabilität, negativer Brechungsindex und als antiparallel Richtungen (Gegenvektor) der Phasen-und Gruppengeschwindigkeit auf. Somit wird die Antennengestaltung auf zwei Frequenzen übertragen, 5,5GHz und 10 GHz, und die Ausführung der zweifach linearen Polarisation wird durch die elektromagnetischen Eigenschaften des MTM illustriert. Weil die Kreuzpolarisationsmuster und starke gegenseitige Koppelung zwischen zwei Input-Ports bei einer zweifach linear polarisierten Antenne große Schwierigkeiten bereiten, werden diese im Großteil der Fachliteratur als Schwerpunkte gesetzt, was zu einer Milderung der Nachteile führte, jedoch dafür die Komplexität der Antennenstruktur zunahm. Die Vielfalt an MTM ist ein bedeutender Teil im Bereich der Antennenforschung einschließlich der Größenverkleinerung, der Verbesserung der Richtcharakteristik und der Strahlensteuerung. Für diesen Zweck werden in dieser Dissertation verschiedenste MTM Strukturen ausgewählt um weitere Verbesserungen der Antennenstruktur zu ermöglichen und gleichzeitig die Einfachheit der Struktur zu bewahren, was mit konventionellen Gestaltungsmethoden nur schwer zu erreichen ist.:Chapter 1: Introduction Chapter 2: Dual linear Polarization Antennas and Arrays Chapter 3: Fundamental Theory of Metamaterials Chapter 4: Metamaterial Structures Design-Methodology Chapter 5: Design of Dual Linear Polarization Using CRLH-TL Metamaterial Line Feed Chapter 6: Cross Polarization Discrimination Enhancement of a Dual Linear Polarization Antenna Using Split Ring Resonator Chapter 7: Antenna Array Design Chapter 8: Conclusions and Future Work
40

Metamaterial window glass for adaptable energy efficiency

Mann, Tyler Pearce 02 October 2014 (has links)
A computational analysis of a metamaterial window design is presented for the purpose of increasing the energy efficiency of buildings in seasonal or cold climates. Commercial low-emissivity windows use nanometer-scale Ag films to reflect infrared energy, while retaining most transmission of optical wavelengths for functionality. An opportunity exists to further increase efficiency through a variable emissivity implementation of Ag thin-film structures. 3-D finite-difference time-domain simulations predict non-linear absorption of near-infrared energy, providing the means to capture a substantial portion of solar energy during cold periods. The effect of various configuration parameters is quantified, with prediction of the net sustainability advantage. Metamaterial window glass technology can be realized as a modification to current, commercial low-emissivity windows through the application of nano-manufactured films, creating the opportunity for both new and after-market sustainable construction. / text

Page generated in 0.0916 seconds