Spelling suggestions: "subject:"metathesis"" "subject:"methathesis""
181 |
O efeito do substituinte no anel piperidina na reatividade de pré-catalisadores do tipo [RuCl2(PPh3)2(4-CH2X-pip)] em ROMP / The effect of the substituent in the piperidine ring in the reactivity of [RuCl2(PPh3)2(4-CH2X-pip)] as pre-catalyst for ROMPHenrique Koch Chaves 10 August 2011 (has links)
As moléculas de 4-CH2X-piperidinas, X = OH (1), H (2) e Ph (3) foram investigadas como ligantes ancilares nos novos complexos [RuCl2(PPh3)2(4-CH2X-pip)] para a polimerização via metátese por abertura de anel (ROMP) de norborneno (NBE) e norbornadieno (NBD). Os complexos foram obtidos pela síntese com [RuCl2(PPh3)3] e caracterizado por análise elementar de CHN, infravermelho e RMN 31P {1H}. Os resultados sugeriram moléculas pentacoordenadas com ambos os íons cloreto e ambos os ligantes fosfinas trans-posicionados em uma geometria pirâmide de base quadrada em cada caso; a amina está no eixo axial.<br /> ROMP de NBE com 1 foram realizadas em argônio em função do volume de etildiazoacetato (EDA; 2 - 8 µL), razão molar [NBE]/[Ru] (1.000 - 10.000), tempo ( 5 - 60 minutos) e temperatura (25 e 50 °C) para obter a melhor condição de reação. Com 2 µL de EDA a 50 °C por 30 minutos e [NBE]/[Ru] = 5000, poliNBE foi quantitativamente isolado com Mw = 20,6 x 104 e IPD = 2,2. Em condições similares, rendimentos de 80 e 83% foram obtidos com 2 e 3, respectivamente (Mw = 2,4 x 104 e 0,2 x 104; IPD = 2,3 e 1,8). Os rendimentos em presença de PPh3 em excesso (20 equivalentes) foram reduzidos para 18 - 32%, enquanto na presença de amina (20 equivalentes) o complexo foi totalmente inativo. É sugerido que as reações de ROMP ocorrem quando o ligante PPh3 abandona a esfera de coordenação do Ru, e a amina em excesso envenena o catalisador devido à forte coordenação σ. Experimentos com NBE em ar atmosférico resultaram em 68-77% de rendimentos, sugerindo boa resistência dos complexos à oxidação com O2.<br /> Os rendimentos para a ROMP de NBD foram de 100, 54 e 73% para 1, 2 e 3 respectivamente, utilizando as mesmas condições. Os poliNBD foram insolúveis em CHCl3. Poli[NBE-co-NBD] foram obtidos com 57 - 71% de rendimento com cada um dos complexos em presença de diferentes frações molares de comonômeros. / The molecules 4-CH2X-piperidines, X = OH (1), H (2) e Ph (3) were investigated as ancillary ligands in the new [RuCl2(PPh3)2(4-CH2X-pip)] complexes for ring opening metathesis polymerization (ROMP) of norbornene (NBE) and norbornadiene (NBD). The complexes were obtained from syntheses with [RuCl2(PPh3)3] and characterized by CHN elementary analyses, infrared and 31P-NMR. The results suggested penta-coordinated molecules with both chloro and both phosphine ligands trans-positioned in a square pyramid geometry in each case; the amine is the axial axis.<br /> ROMP of NBE with 1 were carried out in argon atmosphere in a function of ethyldiazoacetate volume (EDA; 2 - 8 µL), [NBE]/[Ru] molar ration (1,000 - 5,000), time (5- 60 min) and temperature (25 and 50 °C) to obtain the best reaction conditions. With 2 µL of EDA at 50 °C for 30 min and [NBE]/[Ru] = 5,000, polyNBE was quantitatively isolated with Mw = 20,6 x 104 e IPD = 2,2. In similar conditions, yields of 80 and 83% were obtained with 2 e 3, respectively (Mw = 2,4 x 104 and 0,2 x 104; PDI = 2,3 and 1,8). The yields in presence of PPh3 in excess (20 equivalents) were reduced to 18 - 32%, whereas in presence of amine (20 equivalents) the complexes were totally inactive. It is suggested that the ROMP reactions occurs when a PPh3 ligand leaves the Ru coordination sphere and the amine in excess poison the catalyst due to a strong σ-coordination. Experiments with NBE in atmospheric of air resulted in 68-77% yields, suggesting good O2-resitances of the complexes to oxidation.<br /> The yields for ROMP of NBD were 100, 54 and 73% with 1, 2 e 3, respectively, under the same conditions. The polyNBD were insolubles in CHCl3. Poly[NBE-co-NBD] were obtained with 57 - 71% yield with either one of the complexes in presence of different comonomer molar fractions.
|
182 |
Influência do ambiente local no desempenho do catalisador de Grubbs / Effluence of the local environment on the activity of Grubbs catalystsAragão, Isaias Barbosa, 1990- 25 August 2018 (has links)
Orientadores: Daniela Zanchet, Regina Buffon / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-25T08:37:31Z (GMT). No. of bitstreams: 1
Aragao_IsaiasBarbosa_M.pdf: 4247291 bytes, checksum: 09937fc60abf375cebc0a59dc22ae39a (MD5)
Previous issue date: 2014 / Resumo: Nanopartículas (NPs) e os ligantes em sua superfície vêm ganhando espaço como meio suporte devido a suas propriedades que aliam o comportamento da catálise homogênea com a heterogênea. Em longo prazo, imagina-se que o controle do ambiente local de espécies ancoradas na superfície destas NPs possa mimetizar o sítio catalítico de enzimas. Visando explorar a influência do ambiente local, foi avaliado o desempenho do catalisador de Grubbs de primeira geração em duas condições: encapsulado em matriz de sílica e na presença de NPs de ouro (NPs-Au). Apesar das reações de encapsulamento pelo método sol-gel serem rotas bastante exploradas, os resultados não foram encorajadores devido à desativação do complexo de rutênio nas condições de formação do gel, tanto pela via hidrolítica quanto não-hidrolítica. Com relação às NPs-Au, elas foram sintetizadas com misturas de ligantes (1-octanotiol e ácido 3-mercaptopropiônico), mostrando separação de fases dos ligantes, com a formação de domínios (raias). Nos estudos com catalisador de Grubbs em reações de metátese (autometátese do 1-hexeno e polimerização por abertura de anel do 1,5-ciclooctadieno), tanto a presença das NPs-Au como a de tiol livre tiveram influência negativa, levando a sua desativação prematura. Na presença de NPs-Au, houve queda da atividade, chegando a conversões nulas para razões mássicas maiores de que 1 mg de ouro/10 mg de catalisador, estando possivelmente associado à complexação das mercaptanas das NPs-Au com o complexo de rutênio. Buscando viabilizar o ancoramento do catalisador nas NPs-Au, sintetizou-se um ligante carbeno NHC com a funcionalização do esqueleto carbônico posterior do anel com um grupamento alil, que representa a primeira etapa para introdução de grupos funcionais e ancoramento em NPs / Abstract: The use of nanoparticles (NPs) and their protecting layer as support in catalysis start to be exploited, due to their unique characteristics at the interface of homogeneous and heterogeneous catalysts. At long term, the tuning of the local environment of catalytic species anchored on the surface of NPs may be a way to mimic the active site of enzymes. Aiming to explore the influence of the local environment, we evaluated the activity of the first generation Grubbs catalyst under two conditions: encapsulating it in a silica matrix and in the presence of gold NPs (NPs-Au). Although the heterogenization via the sol-gel method is a well-known and well-explored route, we could not obtain good results due to catalyst deactivation under gel formation in both hydrolytic and non-hydrolytic (nonaqueous) conditions. Considering the NPs-Au, they were synthesized with success using a mixture of ligands (1-octanethiol and 3-mercaptopropionic acid) that showed phase segregation and formation of stripes. The evaluation of the Grubbs catalyst on metathesis reactions (self-metathesis of 1-hexene and ring opening polymerization of 1,5-ciclooctadiene) showed premature deactivation in the presence of both NPs-Au and free thiol. In the presence of NPs-Au, the catalytic activity descreased, achieving null results when weight ratios bigger than 1mg of NPs-Au to 10 mg of catalyst were used, possibly associated to the interaction between the mercaptans and the ruthenium catalyst. To make possible the catalyst anchoring on the NPs-Au surface, a NHC carbene with an allyl group on its carbon backbone was synthesized, corresponding to the first step to introduce functional groups to the catalyst / Mestrado / Quimica Inorganica / Mestre em Química
|
183 |
Mechanistic study on tertiary phosphine complexes of ruthenium as olefin metathesis catalysts.Oosthuizen, Sharon 15 May 2008 (has links)
Ruthenium carbene complexes, with the general structure, [LL’Ru=CHR], are commonly known as Grubbs type catalysts, named after the discoverer of these metathesis catalysts. The discovery was quite revolutionary, since the catalysts proved to be easy to handle, tolerant towards various functional groups and more stable with regard to air and water than previous transition metal catalysts. Another important advantage was that all types of olefin metathesis reactions could be initiated without the help of co-catalysts or promoters. Today Grubbs type catalysts find wide application in especially organic and synthetic chemistry. A well-known example is the SHOP-process which produces long chain -olefins, while other important applications include the synthesis of macro-cyclic and cyclic olefins. The current study involved experimental and theoretical work to investigate various aspects comprising synthetic procedures, reactivity, kinetics, geometry and electronic properties of the complexes. Results are discussed briefly in the following paragraphs. The first aim of the project was to synthesise a Grubbs type catalyst. Initial efforts were focused on the preparation of a first generation catalyst through various methods. This included modifying the reported method for the synthesis of [(PPh3)2Cl2Ru=CH-CH=CMe2] to yield [(PPh2Cy)2Cl2Ru=CHCH= CMe2] instead; a phosphine exchange reaction with the complex [(PPh3)2Cl2Ru=CH-CH=CMe2] and free phosphine PPh2Cy; and utilising the analogue arsine ligand, AsPh3, to synthesise [(AsPh3)2Cl2Ru=CHCH=CMe2]; but unfortunately no success was achieved. However, it was possible to synthesise a novel second generation Grubbs type catalyst, [(IMesH2)(PPh2Cy)Cl2Ru=CHPh], through the phosphine exchange reaction of [(IMesH2)(NC5H5)2Cl2Ru=CHPh] and PPh2Cy. The new complex was tested in kinetic reaction studies and phosphine exchange reactions. Results showed that [(IMesH2)(PPh2Cy)Cl2Ru=CHPh] was catalytically active for the ring closing metathesis of commercial diethyl diallylmalonate. The reaction was first order with regard to the olefin, contrary to the second order kinetic results reported for similar reactions catalysed by first generation Grubbs catalysts. The phosphine exchange reactions were very successful and a rate constant could be determined. The rate constant was independent of the free phosphine concentration and activation parameters had relatively large, positive values; results indicative of a dissociative mechanism. These findings are in correlation with literature reports. A kinetic investigation was done on the catalyst-olefin coordination involving the functionalized olefins vinyl acetate, allyl acetate and allyl cyanide; and the first generation Grubbs catalyst, [(PCy3)2Cl2Ru=CHPh]. A two-step rate law, similar to an interchange mechanism, was determined. Phobcat, [(PhobCy)2Cl2Ru=CHPh], is modified first generation Grubbs type catalyst with rigid bicyclic phosphine rings which was recently developed by the Sasol Homogeneous Metathesis Group. In the current study Phobcat was compared to Grubbs1-PCy3 in the cross metathesis reaction of 1-octene. Results showed that Phobcat was up to 60% more active and had a 5 hour longer lifetime than Grubbs 1-PCy3. Theoretical studies were done on the three functionalized olefins of the earlier experimental study to gain fundamental understanding of steric and electronic influences on these catalyst-olefin systems. Without exception, coordination via the heteroatom of the olefin was significantly more favourable than coordination via the double bond functionality. This result indicates that metathesis of these olefins is highly unlikely, since the stable heteroatom coordination will suppress the parallel Ru=C/C=C interaction which is compulsory for the metathesis reaction. Orbital studies highlighted the difference between coordination of acetate and cyanide, but no trend of an electronic nature could be recognised. / Prof. A. Roodt
|
184 |
Métathèse croisée d'alcènes contenant des N-hétéroaryles. Trifluorométhylation d'ène-carbamates cycliques et dérivés / Cross-metathesis of aleknes containing N-heteroaryles. Trifluoromethylation of cyclic ene-carbamates and derivativesLafaye, Kévin 16 November 2015 (has links)
La métathèse d'oléfines est une des réactions les plus efficaces pour former des liaisons carbone-carbone et elle est maintenant utilisée pour synthétiser une large gamme de composés tels que des polymères, des produits issus de la pétrochimie, des produits pharmaceutiques ou des molécules naturelles. Une large gamme de groupes fonctionnels est tolérée comme des alcools, des amides, des carbamates et des sulfonamides. Cependant, des limites restent à surmonter comme la présence de N-hétéroaryles enrichis qui désactivent le catalyseur par coordination au centre métallique et/ou réagissent avec les intermédiaires. Nous décrivons dans ce manuscrit que le choix du substituant approprié d'une pyridine contenant une oléfine permet à la métathèse croisée d'avoir lieu et cette méthode a été appliquée à d'autres N-hétéroaryles.Outre les N-hétéroaryles, les composés fluorés sont largement utilisés en chimie médicinale, en agrochimie et dans le domaine des matériaux. Parmi ces composés fluorés, le groupement trifluorométhyle est le motif le plus utilisé. En effet, comparés à leurs analogues non fluorés, les composés possédant un groupement trifluorométhyle ont souvent de meilleures propriétés biologiques. C'est pourquoi il est intéressant de développer de nouvelles méthodes d'introduire ce groupement sur des molécules organiques, plus particulièrement des hétérocycles azotés. Dans ce but, nous avons développé une nouvelle méthode de trifluorométhylation d'ènes-carbamates cycliques pour accéder à des pipéridines, tétrhydropyridines et dihydropyridines trifluorométhylées. / Has now been applied to the synthesis of a wide range of compounds such as polymers, petrochemicals, pharmaceuticals and naturals compounds. A large range of functional groups are well tolerated including alcohols, amides, carbamates and sulfonamides. However, some limitations still have to be overcome Olefin metathesis has emerged has one of the most efficient carbon-carbon bond forming reaction and such as rich N-heteroaryles which are probably causing desactivation of the ruthenium catalyst by coordination of the metal center and/or reacting with the intermediates. We describe in this manuscript that a suitable choice of the 2-substituent olefinic substituted pyridine allows the cross-metathesis to occur and the method has been applied to others N-heteroaryles. Apart from N-heteroaryles, fluorinated compounds are widely used in pharmaceuticals, agrochemicals and materials. Among the organofluorides, the trifluoromethyl group is the most important motif used. In fact, compared to their non-fluorinated counterpart, trifluoromethylated compounds often show enhanced biological properties. Thus, new ways to introduce trifluoromethyl group into organic molecules, especially nitrogen heterocycles, are of keen interest. In this aim, we have developed a new method to introduce the trifluoromethyl moiety onto various cyclic ene-carbamates to access trifluoromethylated piperidines, tetrahydropyridines and dihydropyridines.
|
185 |
Approches synthétiques de la Dasyscyphine D et du Laingolide A / Synthetic approaches of Dasyscyphin D and Laingolide ALemaire, Gaétan 12 November 2014 (has links)
Ce manuscrit présente une approche synthétique de deux produits naturels, la Dasyscyphine D et le Laingolide A. En ce qui concerne la Dasysyphine D, nous avons étudié une étape-clé de cycloaddition de Diels-Alder entre un diène et un diénophile, préparés par des réactions de couplage pallado-catalysées et/ou de métathèse cyclisante. Pour le Laingolide A, plusieurs isomères ont été synthétisés dans le but de déterminer la configuration relative des trois centres stéréogènes. Cette synthèse fait intervenir une réaction tandem dimérisation croisée/oxonia-Cope et une macrocyclisation finale formant un motif énamide. / This manuscript presents the synthetic approach of two natural products, Dasyscyphin D and Laingolide A. Concerning Dasysphin D, the key step of the synthesis is a Diels-Alder cycloaddition between a diene and a dienophile, which were prepared by palladium-catalyzedcross coupling and/or metathesis reactions. For Laingolide A, several isomers have been synthesized in order to determine the relative configuration of the three stereogenic centers.This synthesis involves a tandem cross dimerization/oxonia-Cope reaction, and a final macrocyclization to install the enamide moiety.
|
186 |
Real-time analysis of ring closing metathesis reactionsLiu, Jie 15 May 2018 (has links)
Ring closing metathesis (RCM) is a chemical transformation that converts a bisalkene compound into a cycloalkene. It is catalyzed by transition metal complexes containing carbene ligands (that feature metal-carbon double bonds). The mechanism is well-understood, however, there are numerous details of the reaction that are less well understood, especially concerning catalyst activation and decomposition and formation of byproducts. This thesis takes a new approach to the study of RCM: analysis of the reaction using real-time mass spectrometric techniques. Electrospray ionization (ESI) mass spectrometry was employed in this study, and the real-time aspect was enabled by using pressurized sample infusion (PSI). Observation of the reactants and products was enabled using charge-tagged bis-alkenes of the general formula [Bu2N{(CH2)nCH=CH2}2]+ [PF6]–. These were synthesized in two steps using a generally applicable methodology to generate a wide range of ring sizes of the product, from 5- to 15-membered rings. Examination of their behavior under carefully optimized RCM conditions using Grubbs’ second-generation catalyst showed a wide variation in reaction rates and amount of byproducts, largely due to ring-strain effects (especially high for 5- and 9-membered rings). Byproducts always exhibited a 14 Da mass unit difference from starting materials or products, and Orbitrap MS analysis confirmed it was CH2. Isomerization was suspected to lead to byproducts. A pathway for byproducts via isomerization and cross metathesis was proposed. The source of actual isomerization catalyst was believed to be from the precatalyst itself as the evidence of precatalyst decomposition was observed. Finally, to prove our isomerization hypothesis, an authentic isomerization catalyst was deliberately added into a fast and clean reaction along with Grubbs’ second-generation catalyst, and it produced the expected byproducts. Only small amounts of oligomeric intermediates were observed, probably because of the low
concentrations used. [ClPCy3]+ was a new short-lived decomposition product stemming from catalyst breakdown, along with already-known imidazolium and protonated phosphine decomposition products. Overall, the thesis provides deep new insights into the nature of RCM reactions, in particular revealing the importance of isomerization in RCM reactions that are slow due to ring strain effects and in uncovering a new decomposition pathway for important RCM catalysts. / Graduate
|
187 |
Synthèse totale d'un précurseur biomimétique des chalasines polycyliques et développement d'une méthodologie de photooxygénation bioinspirée / Total synthesis of a biomimetic precursor towards polycyclic chalasans and development of a bioinspired photoxygenation methodologyLaroche, Benjamin 03 October 2016 (has links)
Le phénomène d'oxygénation tardive des produits naturels a été investigué sur deux modèles d'études : les chalasines polycycliques et les diterpènes résiniques. Pour les chalasines, les cibles de synthèse envisagées étaient la trichoderone A et la trichodermone, deux chalasines d'origine fongique isolées récemment du champignon endophyte Trichoderma gamsii. En plus de leurs structures fascinantes, ces chalasines ont montré une inhibition modérée contre la lignée cellulaire tumorale humaine HeLa. Les études rétrosynthétiques de la trichoderone A et de la trichodermone, basées sur les hypothèses de biosynthèse des PKS-NRPS, ont dévoilé la possibilité d'un précurseur biomimétique commun par l'intermédiaire d'oxygénations bio-inspirées fréquentes in vivo. Ces travaux de thèse décrivent la synthèse totale de ce précurseur biosynthétique à travers le développement d'une nouvelle méthodologie de métathèse d'ényne cyclisante, suivie d'un réarrangement [3,3] d'Ireland-Claisen. La construction du squelette polycyclique repose sur une stratégie de Diels-Alder intramoléculaire, accédant ainsi au précurseur desiré. Des résultats préliminaires encourageants d'oxygénation bio-inspirées sont également décrits, en vue de l'accès vers les chalasines naturelles trichoderone A et trichodermone. Concernant les acides résiniques, une nouvelle méthodologie de photooxygénation bioinspirée a été développée. A l'aide d'un montage simple et efficace, des réactions de photooxygénations couplées à des réarrangements de Hock et de Kornblum-DeLaMare ont permis la formation de produits naturels ainsi que des molécules originales montrant des des activités antibactériennes prometteuses. / The late-stage oxygenation of natural products has been investigated on two studies templates: the polycyclic chalasans, the main topic of this thesis, and onto resinic diterpenes. Concerning the polycyclic chalasans, the envisaged synthetic targets were trichoderone A and trichodermone, two fungal secondary metabolites recently isolated from the endophytic fungus Trichoderma gamsii. In addition to their fascinating structures, these chalasans showed a moderate inhibition against human tumor HeLa cell line, which makes them very attractive for total synthesis. Based on the biosynthesis of PKS-NRPS compounds, the retrosynthetic studies of trichoderone A and trichodermone suggested the possibility of a common biomimetic precursor through bioinspired oxygenations frequently occurring in vivo. This thesis developed the total synthesis of this biomimetic precursor including the development of a new ring-closing enyne metathesis methodology, followed by a [3,3] Ireland-Claisen rearrangement. The construction of the polycyclic skeleton is based on an intramolecular Diels-Alder strategy, affording the desired precursor. Encouraging preliminary results have also been described towards the access to the natural chalasans trichoderone A and trichodermone, which have never been synthesized so far. On the subject of resinic diterpenes, a new bioinspired photooxygenation methodology has been developed. Thanks to a simple and efficient experimental set-up, photooxygenation reactions coupled with Hock and Kornblum-DeLaMare rearrangements allowed the formation of already isolated natural products, as well as novel molecules exhibiting promising antibacterial activities.
|
188 |
Synthèses originales de polyuréthanes sans isocyanate (NIPUs) / Original synthesis of Non-Isocyanate PolyUrethanes (NIPUs)Vanbiervliet, Élise 28 September 2016 (has links)
Actuellement, les polyuréthanes (PUs) sont produits industriellement par polyaddition entre un diisocyanate et un polyol. Le caractère fortement sensibilisant des isocyanates, mettent ces composés sous forte pression réglementaire au niveau européen (REACH) et ont créé le besoin d'obtenir des PUs ne provenant pas d'isocyanates, lesquels sont plus communément appelés Non-Isocyanate PolyUréthanes (NIPUs). Les travaux de cette thèse visent ainsi à établir de nouvelles voies d'accès à des NIPUs. Des pré-polymères téléchéliques ont été synthétisés via la réaction de métathèse. Plusieurs groupements terminaux (jusqu'à 16), réagissant à température ambiante avec une amine primaire, ont été greffés avec succès à ces pré-polymères. La réaction avec plusieurs diamines a conduit à la synthèse de nouveaux matériaux NIPUs entièrement caractérisés. Les stratégies de synthèses développées au cours de ces travaux de thèse ouvrent de nouvelles perspectives quant à l'industrialisation de NIPUs. / Conventional polyurethanes (PUs) involve the use of isocyanates, which are considerably toxic and require phosgene for their manufacture. To tackle environmental issues, it is necessary to elaborate different routes to PUs. In this context, two isocyanate-free strategies towards the preparation of polythiourethanes (PTUs), i.e. non-isocyanate polyurethanes (NIPUs), have being developed. The first way involves the synthesis of α,ω-di(dithiocyclocarbonate) telechelic poly(propylene glycol) (bis(5DTCC)-PPG), poly(tetrahydrofurane diglycidyl ether) (bis(5DTCC)-PTG), upon chemical modification of the corresponding α,ω-diepoxide telechelic polymers (PPG, PTG, respectively) through cycloaddition of carbon disulfide. The second approach involves the ring-opening metathesis polymerization (ROMP), using Grubbs’ 2nd generation ruthenium catalyst, of cycloolefins using 16 differents chain-transfer agents. Bis(5DTCC) telechelic copolyolefins are thus synthesized. Reaction of the end-capping 5DTCC moieties with a diamine by ring-opening polyaddition ultimately affords at room temperature the corresponding NIPTU.
|
189 |
The design and synthesis of multidentate N-heterocyclic carbenes as metathesis catalyst ligands / Design and synthesis of multidentate NHC as metathesis catalyst ligandsTruscott, Byron John January 2011 (has links)
This study has focused on the design and preparation of bi– and tridentate N–Heterocyclic Carbene (NHC) ligands in order to investigate the effect of a multidentate approach to the formation, stability and catalytic activity of coordination complexes. Chapters 1 – 3 provide background information of relevant catalysis, carbene and coordination chemistry, followed by previous work performed within our research group. In Chapter 4 attention is given to the synthetic aspects of the research conducted, comprising two distinct approaches to the preparation of unsymmetrical saturated and unsaturated NHCs. Firstly, an investigation of the saturated NHC ligands yielded three novel, unsymmetrical pro–ligands, viz., two halopropyl imidazolinium salts and a bidentate hydroxypropyl imidazolinium salt. Secondly, eight imidazolium salts have been generated, including a hydroxypropyl analogue and novel decyl and tridentate malonyl derivatives. These compounds were prepared using microwave–assisted methodology for the alkylation of N– mesitylimidazole – an approach that drastically reduced reaction times (from 8 hours – 7 days to ca. 0.5 – 2 hours) and facilitated isolation of the imidazolium salts. Many of the compounds prepared in this study are novel and were fully characterized using HRMS and 1– and 2–D NMR analysis. Coordination studies using a selection of the prepared pro–ligands afforded an alkoxy–NHC silver derivative and four novel Ru–complexes, viz., Grubbs II–type Ru–complexes containing:– chloropropyl imidazolinylidene; propenyl imidazolylidene; and bidentate alkoxypropyl imidazolylidene ligands. Furthermore, a well–defined benzyl mesitylimidazolylidene Ru–complex has been isolated, which exhibited good stability in air. DFT–level geometry–optimization studies, using the Accelrys DMol3 package have given valuable insights into the likely geometries of the prepared and putative catalysts.
|
190 |
New Directions in Catalyst Design and Interrogation: Applications in Dinitrogen Activation and Olefin MetathesisBlacquiere, Johanna M. January 2011 (has links)
A major driving force for development of new catalyst systems is the need for more efficient synthesis of chemical compounds essential to modern life. Catalysts having superior performance offer significant environmental and economic advantages, but their discovery is not trivial. Well-defined, homogeneous catalysts can offer unparalleled understanding of ligand effects, which proves invaluable in directing redesign strategies. This thesis work focuses on the design of ruthenium complexes for applications in dinitrogen activation and olefin metathesis. The complexes developed create new directions in small-molecule activation and asymmetric catalysis by late-metal complexes.
Also examined are the dual challenges, ubiquitous in catalysis, of adequate interrogation of catalyst structure and performance. Insight into both is essential to enable correlation of ligand properties with catalyst activity and/or selectivity. Improved methods for accelerated assessment of catalyst performance are described, which expand high-throughput catalyst screening to encompass parallel acquisition of kinetic data. A final aspect focuses on direct examination of metal complexes, both as isolated species, and under catalytic conditions. Applications of charge-transfer MALDI mass spectrometry to structural elucidation in organometallic chemistry is described, and the technique is employed to gain insight into catalyst decomposition pathways under operating conditions.
|
Page generated in 0.0333 seconds