Spelling suggestions: "subject:"micelle"" "subject:"bicelle""
71 |
Micelles inverses d'AOT et de C12E4 : Structure et évaluation de leurs compressibilités par simulation de dynamique moléculaireAbel, Stéphane 30 March 2007 (has links) (PDF)
Les micelles inverses (MI) sont des nano-gouttelettes d'eau, thermodynamiquement stables, dispersées dans une phase organique (généralement une huile), entourées d'une monocouche de tensioactif. Elles sont des modèles membranaires simplifiés, utilisées en biochimie pour solubiliser des protéines enzymes membranaires, peu ou pas solubles. Le fait que la dimension des micelles inverses dépend du rapport molaire Wo=[H2O]/[détergent] et que le contenu en eau dans des micelles inverses peut être finement contrôlé, ce sont des modèles intéressants pour étudier les effets de l'hydratation et du confinement sur la conformation des peptides, protéines et des acidesnucléiques. Dans ce travail de thèse, nous avons étudié à l'aide des techniques de simulation de dynamique moléculaire (DM), les propriétés structurales et volumétriques (volume et compressibilité) de petites micelles inverses (i.e. avec des rapports 2 ≤ Wo ≤ 7) constituées d'un détergent ionique, le bis(2-ethylexyl sulfosuccinate) de sodium (AOT) et d'un non-ionique, le tétraéthylène glycol monododecylether (C12E4), en fonction de leur hydratation. Ces systèmes micellaires ont été simulés explicitement dans les conditions ambiantes de température et de pression avec des concentrations en solvant organique suffisantes pour reproduire les phases micellaires inverses. 1. Influence de l'hydratation sur les propriétés structurales et volumétriques des micelles inverses d'AOT. Dans un premier temps, nous avons étudié l'influence de la quantité d'eau solubilisée sur les propriétés structurales et dynamiques de l'eau confinée dans les micelles inverses d'AOT. Nous avons montré que : • Les micelles inverses construites avec une géométrie sphérique, ont toutes évoluées au cours des simulations vers une forme ellipsoïdale avec des rapports, entre l'axe majeur et mineur de l'ellipsoïde, plus élevés pour le coeur d'eau que pour la micelle (1.24 - 1.41 et 1.67 - 2.1, respectivement). Nos simulations reproduisent la dépendance linéaire de Rw en fonction de Wo donnée dans la littérature pour ce système ternaire, si on modélise les micelles comme des objets sphériques. Dans les micelles inverses les plus petites, la diffusion de translation de l'eau est fortement ralentie par la forte densité en ions et par le nombre de molécules d'eau liées aux têtes polaires, mais tend à se rapprocher de l'eau pure avec l'augmentation de Wo. • Quand aux propriétés volumétriques des micelles inverses et de l'AOT, nos calculs montrent que les compressibilités isothermes (comprises entre (70 et 78 (± 6).10-5 MPa-1 et 74 et 85 (± 4).10-5, respectivement) des micelles inverses modélisées, interprétés à l'aide du milieu effectif, augmentent de façon linéaire avec le rapport Wo, en accord avec les données de la littérature expérimentale. Dans le cas du volume de l'eau confinée nous avons calculé que celui-ci change peu (4 % de différence), par rapport à l'eau pure, et reste constant avec Wo. La compressibilité de l'eau confinée varie en fonction de Wo entre 24 et 60.10-5 MPa-1. 2. Influence de l'hydratation sur la structure octapeptide d'une alanine encapsulée dans les micelles inverses d'AOT. Dans un second temps, nous avons examiné l'influence de l'hydratation des têtes polaires des molécules d'AOT sur la stabilisation de la structure secondaire d'un peptide modèle (un octapeptide alanine en hélice-a), confiné dans des micelles d'AOT de rapport Wo » 4.8 et 6.8. Ce peptide est instable dans l'eau. Nous avons montré que : • L'insertion des peptides dans les micelles affecte la structure des micelles inverses et notamment celle du coeur d'eau. Dans la micelle la plus petite, où l'eau est majoritairement liée aux têtes polaires et donc peu disponible pour hydrater le peptide, la structure secondaire en hélice-a de l'octapeptide est conservée, alors quelle est plus ou moins rapidement perdue dans les micelles plus hydratées. • Dans le cas des propriétés volumétriques (volumes et compressibilités isothermiques), celles-ci changent peu avec l'insertion des octapeptides dans les deux micelles et restent voisines des valeurs obtenues pour les micelles vides. 3. Influence de la conformation des têtes polaires des détergents sur la structure des micelles inverses de C12E4 avec un rapport Wo=3 Enfin, dans un troisième temps, nous avons étudié l'effet de l'hydratation faible sur la structure et les propriétés volumétriques des micelles inverses de C12E4 dans un rapport Wo=3 avec deux conformations possibles pour les têtes polaires des détergents (i.e. étendue vs. gauche). Ces deux micelles inverses ont été simulées dans le décane. Nous avons montré que : • Seules les propriétés structurales des coeurs d'eau des micelles sont significativement affectées par les conformations données aux têtes polaires des détergents. Lorsque que les têtes polaires sont gauches, l'eau confinée est peu liée aux têtes polaires et reste au centre de la micelle pour former un pool d'eau compact avec une structure proche de celle de l'eau pure. Avec les têtes polaires en conformation étendue, le piégeage des molécules d'eau au niveau des têtes des C12E4 est favorisé, ce qui a pour conséquence une diminution de leur diffusion de translation. • Quand aux compressibilités isothermes des micelles inverses, celles-ci ne sont pas significativement modifiées en fonction de la conformation des têtes polaires des détergents et sont proches de 54 et 57 (± 5).10-5 MPa-1. Le volume des molécules d'eau confinées dans les deux micelles ne montrent pas de variations que leur état soit liée ou libre et sont proches du volume de l'eau pure. Cependant, on constate que les compressibilités isothermes de l'eau confinée présentent des différences en fonction de leur état l'eau liée présente une compressibilité isothermique environ deux fois plus faible (25 (± 2).10-5 MPa-1) que celle de l'eau pure, et sa compressibilité augmente avec la fraction d'eau libre dans les micelles. Finalement, la confrontation de nos résultats avec ceux de la littérature nous a permis de proposer un modèle de structure pour les micelles inverses de C12E4 de rapport Wo< 3.ety.
|
72 |
Prolonged Drug Release from Gels, using Catanionic MixturesBramer, Tobias January 2007 (has links)
<p>The use of catanionic drug-surfactant mixtures was proven to be an efficient novel method of obtaining prolonged drug release from gels. It was shown that various commonly used drug compounds are able to form catanionic mixtures together with oppositely charged surfactants. These mixtures exhibited interesting phase behaviour, where, among other structures, vesicles and large worm-like or branched micelles were found. The size of these aggregates makes them a potential means of prolonging the drug release from gels, as only monomer drugs in equilibrium with larger aggregates were readily able to diffuse through the gel. When the diffusion coefficient for drug release from the formulation based upon a catanionic mixture was compared to that obtained for the drug substance and gel alone, the coefficient was some 10 to 100 times smaller.</p><p>The effects of changes in the pH and ionic strength on the catanionic aggregates was also investigated, and this method of prolonging the release was found to be quite resilient to variations in both. Although the phase behaviour was somewhat affected, large micelles and vesicles were still readily found. The drug release was significantly prolonged even under physiological conditions, that is, at a pH of 7.4 and an osmolality corresponding to 0.9% NaCl.</p><p>Surfactants of low irritancy, capric and lauric acid, may successfully be used instead of the more traditional surfactants, such as sodium lauryl sulfate (SDS), and prolonged release can still be obtained with ease.</p><p>Some attempts to deduce the release mechanism from the proposed systems have also been made using transient current measurements, dielectric spectroscopy, and modelling of the release using the regular solution theory. In these studies, the previous assumptions made concerning the mechanism responsible for the release were confirmed to a large extent. Only small amounts of the drug existed in monomer form, and most seemed to form large catanionic aggregates with the oppositely charged surfactant.</p>
|
73 |
The multifarious self-assembly of triblock copolymers : from multi-responsive polymers and multi-compartment micellesSkrabania, Katja January 2008 (has links)
New ABC triblock copolymers were synthesized by controlled free-radical polymerization via Reversible Addition-Fragmentation chain Transfer (RAFT). Compared to amphiphilic diblock copolymers, the prepared materials formed more complex self-assembled structures in water due to three different functional units. Two strategies were followed: The first approach relied on double-thermoresponsive triblock copolymers exhibiting Lower Critical Solution Temperature (LCST) behavior in water. While the first phase transition triggers the self-assembly of triblock copolymers upon heating, the second one allows to modify the self-assembled state. The stepwise self-assembly was followed by turbidimetry, dynamic light scattering (DLS) and 1H NMR spectroscopy as these methods reflect the behavior on the macroscopic, mesoscopic and molecular scale. Although the first phase transition could be easily monitored due to the onset of self-assembly, it was difficult to identify the second phase transition unambiguously as the changes are either marginal or coincide with the slow response of the self-assembled system to relatively fast changes of temperature.
The second approach towards advanced polymeric micelles exploited the thermodynamic incompatibility of “triphilic” block copolymers – namely polymers bearing a hydrophilic, a lipophilic and a fluorophilic block – as the driving force for self-assembly in water. The self-assembly of these polymers in water produced polymeric micelles comprising a hydrophilic corona and a microphase-separated micellar core with lipophilic and fluorophilic domains – so called multi-compartment micelles. The association of triblock copolymers in water was studied by 1H NMR spectroscopy, DLS and cryogenic transmission electron microscopy (cryo-TEM). Direct imaging of the polymeric micelles in solution by cryo-TEM revealed different morphologies depending on the block sequence and the preparation conditions. While polymers with the sequence hydrophilic-lipophilic-fluorophilic built core-shell-corona micelles with the core being the fluorinated compartment, block copolymers with the hydrophilic block in the middle formed spherical micelles where single or multiple fluorinated domains “float” as disks on the surface of the lipophilic core. Increasing the temperature during micelle preparation or annealing of the aqueous solutions after preparation at higher temperatures induced occasionally a change of the micelle morphology or the particle size distribution.
By RAFT polymerization not only the desired polymeric architectures could be realized, but the technique provided in addition a precious tool for molar mass characterization. The thiocarbonylthio moieties, which are present at the chain ends of polymers prepared by RAFT, absorb light in the UV and visible range and were employed for end-group analysis by UV-vis spectroscopy. A variety of dithiobenzoate and trithiocarbonate RAFT agents with differently substituted initiating R groups were synthesized. The investigation of their absorption characteristics showed that the intensity of the absorptions depends sensitively on the substitution pattern next to the thiocarbonylthio moiety and on the solvent polarity. According to these results, the conditions for a reliable and convenient end-group analysis by UV-vis spectroscopy were optimized. As end-group analysis by UV-vis spectroscopy is insensitive to the potential association of polymers in solution, it was advantageously exploited for the molar mass characterization of the prepared amphiphilic block copolymers. / Die Arbeit widmet sich der Synthese von neuen amphiphilen ternären "ABC" Block-Copolymeren und der Untersuchung ihrer Selbstorganisation zu mizellaren Überstrukturen in wässriger Lösung. Die Block-Copolymere wurden durch kontrollierte radikalische Polymerisation mittels des sogenannten „RAFT“ Prozesses (radical addition fragmentation chain transfer) hergestellt. Neben der Realisierung der gewünschten Polymerarchitekturen erlaubte es die Methode, die Molmassen der Polymere durch Endgruppenanalyse zu bestimmen. Die Kettenenden der Polymere tragen infolge des Polymerisationsmechanismus’ definierte Funktionalitäten, welche UV- und sichtbares Licht absorbieren und somit durch UV-vis-Spektroskopie quantifizierbar sind. Das Absorptionsverhalten der Endgruppen wurde untersucht und die UV-vis-Endgruppenanalyse optimiert. Es zeigte sich, dass die Vorteile der Methode ihre generelle Anwendbarkeit und ihre Unempfindlichkeit gegenüber der Assoziation von Polymeren in Lösung sind.
Aufgrund ihrer drei unterschiedlichen Blöcke bilden die synthetisierten ABC Triblockcopolymere komplexere selbstorganisierte Strukturen als die bisher üblichen Diblockcopolymere. Die Triebkraft für ihre Selbstorganisation in wässriger Lösung ist im wesentlichen der hydrophobe Effekt. Es wurden zwei unterschiedliche Ansätze verfolgt: Zum einen wurden doppelt-schaltbare Triblockcopolymere hergestellt, von denen ein Block permanent wasserlöslich ist, während die anderen Blöcke jeweils eine untere Entmischungstemperatur in wässriger Lösung aufweisen. Diese Blöcke „schalten“ beim Erwärmen von hydrophil auf hydrophob. Oberhalb des ersten Phasenübergangs - bei der niedrigeren Entmischungstemperatur - assoziieren die Makromoleküle und bilden Polymermizellen im Nanometerbereich. Beim weiteren Erwärmen „schaltet“ auch der zweite Block und modifiziert den selbstorganisierten Zustand, während der permanent wasserlösliche Block für die Stabilisierung der Aggregate sorgt. Die Assoziation der Block-Copolymere ist nach Abkühlen der wässrigen Lösung vollständig reversibel. Die stufenweise Selbstorganisation wurde mit Hilfe von Turbidimetrie, Dynamischer Lichtstreuung (DLS) und 1H-NMR-Spektroskopie untersucht, da diese Methoden das Verhalten auf der makroskopischen, mesoskopischen und molekularen Skala widerspiegeln. Obwohl der einsetzende Selbstorganisationsprozess problemlos zu detektieren war, konnten die Veränderungen infolge des zweiten Phasenübergang nicht immer eindeutig identifiziert werden, da sie zum Teil mit der langsamen Reaktion des Systems auf relativ schnelle Temperaturänderungen zusammenfielen. Außerdem hängt die Aggregatbildung nicht nur sensibel von der detaillierten Polymerarchitektur ab, sondern unterliegt auch teilweise einer kinetischen Kontrolle.
Der zweite Ansatz zu komplexeren Polymermizellen basierte auf der Inkompatibilität „triphiler“ Blockcopolymere als Triebkraft für die Selbstorganisation. Das heißt, die Block-Copolymere bestehen aus einem hydrophilen, einen lipophilen und einen fluorophilen (Fluorkohlenwasserstoff-liebenden) Teil, die jeweils miteinander unverträglich sind. Die Polymere assoziierten in Wasser zu Polymermizellen mit einer hydrophilen Korona und einem unterstrukturierten Mizellkern mit separaten Kohlenwasserstoff- und Fluorkohlenwasserstoff-Domänen – sogenannten Multi-Kompartiment-Mizellen. Die Assoziation der Triblock-Copolymere wurde mit 1H-NMR-Spektroskopie, DLS und cryogener Transmissionselektronenmikroskopie (cryo-TEM) untersucht. Die unmittelbare Abbildung der Polymermizellen in Lösung mittels cryo-TEM enthüllte unterschiedliche Morphologien in Abhängigkeit von der Blocksequenz und den Präparationsbedingungen. Während Polymere mit der Blocksequenz hydrophil-lipophil-fluorophil Kern-Schale-Korona-Mizellen mit der Fluor-Domäne als Kern bildeten, wurde eine neue, unerwartete Mizellmorphologie für die Polymere mit dem hydrophilen Block in der Mitte gefunden: Einzelne oder mehrere Fluordomänen “schwimmen” als Scheiben auf dem lipophilen Kern. Die beobachteten Morphologien sind weitgehend stabil, unterliegen aber ebenfalls - zumindest teilweise - einer kinetischen Kontrolle. So führten erhöhte Temperaturen während der Mizellpräparation gelegentlich zu einer Veränderung der Mizellmorphologie oder Partikelgröße.
|
74 |
Synthesis and self-assembly of multiple thermoresponsive amphiphilic block copolymersWeiß, Jan January 2011 (has links)
In the present thesis, the self-assembly of multi thermoresponsive block copolymers in dilute aqueous solution was investigated by a combination of turbidimetry, dynamic light scattering, TEM measurements, NMR as well as fluorescence spectroscopy. The successive conversion of such block copolymers from a hydrophilic into a hydrophobic state includes intermediate amphiphilic states with a variable hydrophilic-to-lipophilic balance. As a result, the self-organization is not following an all-or-none principle but a multistep aggregation in dilute solution was observed. The synthesis of double thermoresponsive diblock copolymers as well as triple thermoresponsive triblock copolymers was realized using twofold-TMS labeled RAFT agents which provide direct information about the average molar mass as well as residual end group functionality from a routine proton NMR spectrum. First a set of double thermosensitive diblock copolymers poly(N-n-propylacrylamide)-b-poly(N-ethylacrylamide) was synthesized which differed only in the relative size of the two blocks. Depending on the relative block lengths, different aggregation pathways were found. Furthermore, the complementary TMS-labeled end groups served as NMR-probes for the self-assembly of these diblock copolymers in dilute solution. Reversible, temperature sensitive peak splitting of the TMS-signals in NMR spectroscopy was indicative for the formation of mixed star-/flower-like micelles in some cases. Moreover, triple thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (A), poly(methoxydiethylene glycol acrylate) (B) and poly(N-ethylacrylamide) (C) were obtained from sequential RAFT polymerization in all possible block sequences (ABC, BAC, ACB). Their self-organization behavior in dilute aqueous solution was found to be rather complex and dependent on the positioning of the different blocks within the terpolymers. Especially the localization of the low-LCST block (A) had a large influence on the aggregation behavior. Above the first cloud point, aggregates were only observed when the A block was located at one terminus. Once placed in the middle, unimolecular micelles were observed which showed aggregation only above the second phase transition temperature of the B block. Carrier abilities of such triple thermosensitive triblock copolymers tested in fluorescence spectroscopy, using the solvatochromic dye Nile Red, suggested that the hydrophobic probe is less efficiently incorporated by the polymer with the BAC sequence as compared to ABC or ACB polymers above the first phase transition temperature. In addition, due to the problem of increasing loss of end group functionality during the subsequent polymerization steps, a novel concept for the one-step synthesis of multi thermoresponsive block copolymers was developed. This allowed to synthesize double thermoresponsive di- and triblock copolymers in a single polymerization step. The copolymerization of different N-substituted maleimides with a thermosensitive styrene derivative (4-vinylbenzyl methoxytetrakis(oxyethylene) ether) led to alternating copolymers with variable LCST. Consequently, an excess of this styrene-based monomer allowed the synthesis of double thermoresponsive tapered block copolymers in a single polymerization step. / Die Selbstorganisation von mehrfach thermisch schaltbaren Blockcopolymeren in verdünnter wässriger Lösung wurde mittels Trübungsphotometer, dynamischer Lichtstreuung, TEM Messungen, NMR sowie Fluoreszenzspektroskopie untersucht. Die schrittweise Überführung eines hydrophilen in ein hydrophobes Blockcopolymer beinhaltet ein oder mehr amphiphile Zwischenstufen mit einstellbarem hydrophilen zu lipophilen Anteil (HLB). Dies führt dazu, dass die Selbstorganisation solcher Polymere in Lösung nicht nur einem Alles-oder-nichts-Prinzip folgt sondern ein mehrstufiges Aggregationsverhalten beobachtet wird. Die Synthese von doppelt thermisch schaltbaren Diblockcopolymeren und dreifach thermisch schaltbaren Triblockcopolymeren wurde durch sequenzielle RAFT Polymerisation realisiert. Dazu wurden zweifach TMS-markierte RAFT Agentien verwendet, welche die Bestimmung der molaren Masse sowie der verbliebenen Endgruppenfunktionalität direkt aus einem Protonen NMR Spektrum erlauben. Mit diesen RAFT Agentien wurde zunächst eine Serie von doppelt thermisch schaltbaren Diblockcopolymeren aus Poly(N-n-propylacrylamid)-b-Poly(N-ethylacrylamid), welche sich lediglich durch die relativen Blocklängen unterscheiden, hergestellt. In Abhängigkeit von der relativen Blocklänge wurde ein unterschiedliches Aggregationsverhalten der Diblockcopolymere in verdünnter wässriger Lösung beobachtet. Des Weiteren wirken die komplementär TMS-markierten Endgruppen als NMR-Sonden während der schrittweisen Aggregation dieser Polymere. Reversible, temperaturabhängige Peakaufspaltung der TMS-Signale in der NMR Spektroskopie spricht für eine Aggregation in gemischte stern-/blumenartige Mizellen, in denen ein Teil der hydrophoben Endgruppen in den hyrophoben Kern zurückfaltet. Obendrein wurden dreifach thermisch schaltbare Triblockcopolymere aus Poly(N-n-propylacrylamid) (A), Poly(methoxydiethylen glycol acrylat) (B) und Poly(N-ethylacrylamid) (C) in allen möglichen Blocksequenzen (ABC, BAC, ACB) durch schrittweisen Aufbau mittels RAFT Polymerisation erhalten. Das Aggregationsverhalten dieser Polymere in verdünnter wässriger Lösung war relativ komplex und hing stark von der Position der einzelnen Blöcke in den Triblockcopolymeren ab. Besonders die Position des Blocks mit der niedrigsten LCST (A) war ausschlaggebend für die resultierenden Aggregate. So wurde oberhalb der ersten Phasenübergangstemperatur nur Aggregation der Triblockcopolymere beobachtet, wenn der A Block an einem der beiden Enden der Polymere lokalisiert war. Wurde der A Block hingegen in der Mitte der Polymere positioniert, entstanden unimere Mizellen zwischen der ersten und zweiten Phasenübergangstemperatur, welche erst aggregierten, nachdem der zweite Block (B) seinen Phasenübergang durchlief. Die Transportereigenschaften dieser Triblockcopolymere wurden mittels Fluoreszenzspektroskopie getestet. Dazu wurde die Einlagerung eines hydrophoben, solvatochromen Fluoreszenzfarbstoffes, Nilrot, in Abhängigkeit der Temperatur untersucht. Im Gegensatz zu den Polymeren mit der Blocksequenz ABC oder ACB, zeigten die Polymere mit der Sequenz BAC eine verminderte Aufnahmefähigkeit des hydrophoben Farbstoffes oberhalb des ersten Phasenübergangs, was auf die fehlende Aggregation und die damit verbundenen relativ kleinen hydrophoben Domänen der unimolekularen Mizellen zwischen der ersten und zweiten Phasenübergangstemperatur zurückzuführen ist. Aufgrund des zunehmenden Verlustes von funktionellen Endgruppen während der RAFT Synthese von Triblockcopolymeren wurde ein neuartiges Konzept zur Einschrittsynthese von mehrfach schaltbaren Blockcopolymeren entwickelt. Dieses erlaubt die Synthese von mehrfach schaltbaren Diblock- und Triblockcopoylmeren in einem einzelnen Reaktionsschritt. Die Copolymeriation von verschiedenen N-substituierten Maleimiden mit einem thermisch schaltbaren Styrolderivat (4-Vinylbenzylmethoxytetrakis(oxyethylene) ether) ergab alternierende Copolymere mit variabler LCST. Die Verwendung eines Überschusses dieses styrolbasierten Monomers erlaubt ferner die Synthese von Gradientenblockcopolymeren in einem einzelnen Polymerisationsschritt.
|
75 |
Prolonged Drug Release from Gels, using Catanionic MixturesBramer, Tobias January 2007 (has links)
The use of catanionic drug-surfactant mixtures was proven to be an efficient novel method of obtaining prolonged drug release from gels. It was shown that various commonly used drug compounds are able to form catanionic mixtures together with oppositely charged surfactants. These mixtures exhibited interesting phase behaviour, where, among other structures, vesicles and large worm-like or branched micelles were found. The size of these aggregates makes them a potential means of prolonging the drug release from gels, as only monomer drugs in equilibrium with larger aggregates were readily able to diffuse through the gel. When the diffusion coefficient for drug release from the formulation based upon a catanionic mixture was compared to that obtained for the drug substance and gel alone, the coefficient was some 10 to 100 times smaller. The effects of changes in the pH and ionic strength on the catanionic aggregates was also investigated, and this method of prolonging the release was found to be quite resilient to variations in both. Although the phase behaviour was somewhat affected, large micelles and vesicles were still readily found. The drug release was significantly prolonged even under physiological conditions, that is, at a pH of 7.4 and an osmolality corresponding to 0.9% NaCl. Surfactants of low irritancy, capric and lauric acid, may successfully be used instead of the more traditional surfactants, such as sodium lauryl sulfate (SDS), and prolonged release can still be obtained with ease. Some attempts to deduce the release mechanism from the proposed systems have also been made using transient current measurements, dielectric spectroscopy, and modelling of the release using the regular solution theory. In these studies, the previous assumptions made concerning the mechanism responsible for the release were confirmed to a large extent. Only small amounts of the drug existed in monomer form, and most seemed to form large catanionic aggregates with the oppositely charged surfactant.
|
76 |
Propagation and Retention of Viscoelastic Surfactants in Carbonate CoresYu, Meng 2011 May 1900 (has links)
Viscoelastic surfactant have found numerous application in the oil fields as fracturing and matrix acidizing fluid additives in the recent years. They have the ability to form long worm-like micelles with the increase in pH and calcium concentration, which results in increasing the viscosity and elasticity of partially spent acids.
On one hand, concentration of surfactant in the fluids has profound effects on their performance downhole. Additionally, there is continuous debate in the industry on whether the gel generated by these surfactants causes formation damage, especially in dry gas wells. Therefore, being able to analyze the concentration of these surfactants in both live and spent acids is of great importance for production engineers who apply surfactant-based fluids in the oil fields. In the present work, a two-phase titration method was optimized for quantitative analysis of a carboxybetaine viscoelastic surfactant, and surfactant retention in calcite cores was quantitatively determined by two phase titration method and the benefits of using mutual solvents to break the surfactant gel formed inside the cores was assessed.
On the other hand, high temperatures and low pH are usually involved in surfactant applications. Surfactants are subjected to hydrolysis under such conditions due to the existence of a peptide bond (-CO-NH-) in their molecules, leading to alteration in the rheological properties of the acid. The impact of hydrolysis at high temperatures on the apparent viscosity of carboxybetaine viscoelastic surfactant-based acids was evaluated in the present study, and the mechanism of viscosity changes was determine by molecular dynamics (MD) simulations.
Our results indicate that, first, significant amount of surfactant has been retained in the carbonate matrix after acidizing treatment and there is a need to use internal breakers when surfactant-based acids are used in dry gas wells or water injectors. Second, hydrolysis at high temperatures has great impact on surfactant-acid rheological properties. Short time viscosity build-up and effective gel break-down can be achieved if surfactant-acid treatments are carefully designed; otherwise, unexpected viscosity reduction and phase separation may occur, which will affect the outcome of acid treatments.
|
77 |
Bilayer Discs - Fundamental Investigations and Applications of Nanosized Membrane ModelsJohansson, Emma January 2007 (has links)
The bilayer disc is a flat, lipid aggregate structure in the nanometre regime. It is composed of a bilayer of amphiphilic molecules with micelle-forming amphiphilic molecules supporting the rim, which prevent disc fusion and self-closure. Stable discs have been found in lipid mixtures containing polyethylene glycol (PEG)-lipids as a rim-stabilizing component. One of the aims of the work described in this thesis was to increase the fundamental knowledge and understanding of the systems in which these discs are formed. Other micelle-forming surfactants apart from PEG-lipids were also explored to see if they could be used to stabilize the disc aggregate structure. Due to the similarities of these lipid discs with natural membranes it was hypothesized that they could be used as models for biological membranes. It was demonstrated that discs are formed in PEG-lipid/lipid systems when the lipid mixture contains components that reduce the spontaneous curvature and increase the monolayer bending rigidity. Discoidal structures are furthermore preferred when the lipids are in the gel phase, probably due to a combination of high bending rigidity and reduced PEG-lipid/lipid miscibility. The disc size could be varied by changing the PEG-lipid concentration. The size and size homogeneity of the discs could also be varied by changing the preparation path. Generally, the preferences of certain lipid systems to form discs remained when the PEG-lipid was replaced by more conventional surfactants. However, discs prepared in PEG-lipid/lipid systems are more useful as model membranes because of their relatively large size and good temperature, dilution and long-term stability. Data obtained with isothermal titration calorimetry and drug partition chromatography indicate that these bilayer discs may serve as an attractive and sometimes superior alternative to liposomes in studies of drug-membrane interactions.
|
78 |
Élaboration de copolymères amphiphiles à base de poly (3-hydroxyalcanoate)sBabinot, Julien 12 December 2012 (has links) (PDF)
Les poly (3-hydroxyalcanoates) (PHAs) sont des polyesters aliphatiques produits et accumulés par des bactéries en tant que réserve de carbone et d'énergie. Ils sont constitués d'unités β-hydroxyesters et possèdent des chaînes latérales de longueur variable, pouvant être fonctionnalisées. Ils possèdent des propriétés de biodégradabilité et de biocompatibilité; ceci leur confère de vastes possibilités d'utilisation dans le domaine biomédical, notamment pour la mise au point de systèmes de libération contrôlée de principes actifs. Dans cette optique, nous nous sommes intéressés à la synthèse de copolymères amphiphiles de différentes architectures à base de PHAs, ainsi qu'à l'étude de leurs propriétés d'auto-association en milieu aqueux. Une méthode simple et efficace permettant le greffage d'oligomères de poly (éthylène glycol) (PEG) a tout d'abord été mise au point grâce à l'utilisation de la chimie " click ". Une série de copolymères diblocs bien définis PHA-b-PEG a ainsi pu être synthétisée par cycloaddition de Huisgen catalysée par le cuivre (CuAAC). Les copolymères diblocs à base de PHAs à moyennes chaînes latérales (PHA-mcl) ont montré leur capacité à s'auto-associer en milieu aqueux et à former des micelles monodisperses présentant une concentration micellaire critique très faible. Par la suite des copolymères de type greffés PHOU-g-PEG ont été synthétisés par addition thiol-ène. Les analyses par cryo microscopie électronique à transmission (cryo-TEM) ont montré que dans ce cas les copolymères s'auto-associaient en structures vésiculaires, ou polymersomes. Enfin, la synthèse de copolymères amphiphiles greffés porteurs de chaînes perfluorées PHOU-g-(F;PEG) a permis l'obtention de structures auto-associées plus complexes. Le cryo-TEM a en effet révélé la formation de micelles multicompartimentées, c'est à dire possédant un coeur présentant une séparation de phase entre les domaines hydrophobes et les domaines fluorés. Des tests biologiques préliminaires ont montré la cytocompatibilité de ces micelles
|
79 |
Investigations on Colloidal Synthesis of Copper Nanoparticles in a Two-phase Liquid-liquid SystemDadgostar, Nafiseh January 2008 (has links)
Synthesis of copper nanoparticles by a colloidal recipe in a two-phase liquid-liquid mixture (toluene/water) was investigated. The synthesis recipe used in this work was originally applied for the fabrication of alkylamine-capped gold nanoparticles. This method involves transferring metal cations from the aqueous layer to the organic one by the phase transfer reagent, tetraoctylammonium bromide, followed by reduction with sodium borohydride in the presence of oleylamine, which was used as the stabilising ligand.
Several modifications were made to the original recipe to produce copper nanoparticles with high degrees of purity and stability. These particles are potentially applicable in various industries and are considered as an alternative for expensive metal nanoparticles, such as gold, silver, and platinum. Due to the high tendency of copper for oxidation, all of the synthesis experiments were carried out in a glove box under the flow of an inert gas (N2 or Ar). The concentration of Cl− was initially increased to form anionic complexes of copper that could later react with the cationic phase transfer reagent. This modification was followed to enhance the efficiency of the transferring step; however, the presence of anion, Cl−, at the surface of the synthesized particles was reported to change their properties; thus, increasing chloride concentration was eventually ignored.
The decanting of two phases prior to the reduction step was also investigated to examine whether the site of the reduction reaction could be limited to cores of reverse micelles.
The aggregated nanoparticles, which were fabricated by reducing the decanted organic phase, were heated after the synthesis at 150°C for 30 minutes to obtain a light green solution of nanoparticles. However, further characterization was not possible due to the hydrocarbon impurities. Dodecane, which was employed as the solvent for post-synthesis heating procedure, is believed to result in these impurities. Further investigation is required to explain the mechanism by which post-synthesis heating facilitates nanoparticle stabilization.
Duplication of the original recipe for copper in an inert atmosphere resulted in a mixture of assembled layers of separated copper nanocrystals with an average size of ~ 5 nm and aggregated clusters of cubic copper (I) oxide nanoparticles. The possible mechanism for this division is believed to be the presence of the phase transfer reagent capped to the surface of a portion of synthesized particles leading to their metastability.
|
80 |
Investigations on Colloidal Synthesis of Copper Nanoparticles in a Two-phase Liquid-liquid SystemDadgostar, Nafiseh January 2008 (has links)
Synthesis of copper nanoparticles by a colloidal recipe in a two-phase liquid-liquid mixture (toluene/water) was investigated. The synthesis recipe used in this work was originally applied for the fabrication of alkylamine-capped gold nanoparticles. This method involves transferring metal cations from the aqueous layer to the organic one by the phase transfer reagent, tetraoctylammonium bromide, followed by reduction with sodium borohydride in the presence of oleylamine, which was used as the stabilising ligand.
Several modifications were made to the original recipe to produce copper nanoparticles with high degrees of purity and stability. These particles are potentially applicable in various industries and are considered as an alternative for expensive metal nanoparticles, such as gold, silver, and platinum. Due to the high tendency of copper for oxidation, all of the synthesis experiments were carried out in a glove box under the flow of an inert gas (N2 or Ar). The concentration of Cl− was initially increased to form anionic complexes of copper that could later react with the cationic phase transfer reagent. This modification was followed to enhance the efficiency of the transferring step; however, the presence of anion, Cl−, at the surface of the synthesized particles was reported to change their properties; thus, increasing chloride concentration was eventually ignored.
The decanting of two phases prior to the reduction step was also investigated to examine whether the site of the reduction reaction could be limited to cores of reverse micelles.
The aggregated nanoparticles, which were fabricated by reducing the decanted organic phase, were heated after the synthesis at 150°C for 30 minutes to obtain a light green solution of nanoparticles. However, further characterization was not possible due to the hydrocarbon impurities. Dodecane, which was employed as the solvent for post-synthesis heating procedure, is believed to result in these impurities. Further investigation is required to explain the mechanism by which post-synthesis heating facilitates nanoparticle stabilization.
Duplication of the original recipe for copper in an inert atmosphere resulted in a mixture of assembled layers of separated copper nanocrystals with an average size of ~ 5 nm and aggregated clusters of cubic copper (I) oxide nanoparticles. The possible mechanism for this division is believed to be the presence of the phase transfer reagent capped to the surface of a portion of synthesized particles leading to their metastability.
|
Page generated in 0.0502 seconds