• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 15
  • Tagged with
  • 140
  • 140
  • 45
  • 42
  • 30
  • 29
  • 26
  • 23
  • 22
  • 21
  • 20
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Advanced process window design for 01005 assemblies

Ramasubramanian, Arun Shrrivats. January 2008 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Department of Systems Science and Industrial Engineering, Thomas J. Watson School of Engineering and Applied Science, 2008. / Includes bibliographical references.
102

Multiscale EM and circuit simulation using the Laguerre-FDTD scheme for package-aware integrated-circuit design

Srinivasan, Gopikrishna January 2008 (has links)
Thesis (Ph.D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Prof. Madhavan Swaminathan; Committee Member: Prof. Andrew Peterson; Committee Member: Prof. Sungkyu Lim
103

Methodology for predicting microelectronic substrate warpage incorporating copper trace pattern characteristics

McCaslin, Luke January 2008 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Sitaraman, Suresh; Committee Member: Peak, Russell; Committee Member: Ume, Charles
104

Stress relieving technique for plastic packages in a high volume manufacturing environment

Batra, Ashish, January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Systems Science and Industrial Engineering, 2009. / Includes bibliographical references.
105

Signal and power integrity co-simulation using the multi-layer finite difference method

Bharath, Krishna. January 2009 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Madhavan Swaminathan; Committee Member: Andrew F. Peterson; Committee Member: David C. Keezer; Committee Member: Saibal Mukhopadyay; Committee Member: Suresh Sitaraman.
106

Process analysis and performance characterization of a novel anisotropic conductive adhesive for lead-free surface mount electronics assembly

Ramkumar, S. Manian. January 2008 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Systems Science and Industrial Engineering, 2007. / Includes bibliographical references (leaves 278-290).
107

Assembly, reliability, and rework of stacked CSP components

Iyer, Satyanarayan Shivkumar. January 2008 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Systems Science and Industrial Engineering, 2008. / Includes bibliographical references.
108

Thermo-Mechanical Characterization and Interfacial Thermal Resistance Studies of Chemically Modified Carbon Nanotube Thermal Interface Material - Experimental and Mechanistic Approaches

Mustapha, Lateef Abimbola, Mustapha, Lateef Abimbola January 2017 (has links)
Effective application of thermal interface materials (TIM) sandwiched between silicon and a heat spreader in a microelectronic package for improved heat dissipation is studied through thermal and mechanical characterization of high thermally conductive carbon nanotubes (CNTs) integrated into eutectic gallium indium liquid metal (LM) wetting matrix. Thermal conductivity data from Infrared microscopy tool reveals the dependence of experimental factors such as matrix types, TIM contacting interfaces, orientation of CNTs and wetting of CNTs in the matrix on the thermal behavior of TIM composite. Observed generalized trend on LM-CNT TIM shows progressive decrease in effective thermal conductivity with increasing CNT volume fractions. Further thermal characterizations LM-CNT TIM however show over 2x increase in effective thermal conductivity over conventional polymer TIMs (i.e. TIM from silicone oil matrix) but fails to meet 10x improvement expected. Poor wetting of CNT with LM matrix is hypothesized to hinder thermal improvement of LM-CNT TIM composite. Thus, wetting enhancement technique through electro-wetting and liquid crystal (LC) based matrix proposed to enhance CNT-CNT contact in LM-CNT TIM results in thermal conductivity improvement of 40 to 50% with introduction of voltage gradient of 2 to 24 volts on LM-CNT TIM sample with 0.1 to 1 percent CNT volume fractions over non voltage LM-CNT TIM test samples. Key findings through this study show that voltage tests on LC- CNT TIM can cause increased CNT-CNT networks resulting in 5x increase in thermal conductivity over non voltage LC-CNT TIM and over 2x improvement over silicone-CNT TIMs. Validation of LM wetting of CNT hypothesis further shows that wetting and interface adhesion mechanisms are not the only factors required to improve thermal performance of LM-CNT TIM. Anisotropic characteristic of thermal conductivity of randomly dispersed CNTs is a major factor causing lower thermal performance of LM-CNTs TIM composite. Other factors resulting in LM-CNT TIM decreasing thermal conductivity with increasing CNT loading are (i) Lack of CNT-CNT network due to large difference in surface tension and mass density between CNTs and LM in TIM composite (ii) Structural stability of MWCNT and small MFP of phonons in ~5um MWCNTs compared to the system resulted in phonon scattering with reduced heat flow (iii) CNT percolation threshold limit not reached owing to thermal shielding due to CNT tube interfacial thermal resistance. While mixture analytical models employed are able to predict thermal behaviors consistent with CNT-CNT network and CNT- polymer matrix contact phenomenon, these models are not equipped to predict thermo-chemical attributes of CNTs in LM-CNT TIM. Extent of LM-CNT wetting and LM-solid surface interfacial contact impacts on interfacial thermal resistance are investigated through LM contact angle, XPS/AES and SEM-EDX analyses on Au/Ni and Ni coated copper surfaces. Contact angle measurements in the range of 120o at both 55oC and 125oC show non wetting of LM on CNT, Au and Ni surfaces. Interface reactive wetting elemental composition of 21 days aged LM on Au/Ni and Ni surfaces reveals Ga dissolution in Au and Ni diffusion of ~0.32um in Au which are not present for similar analysis of 1 day LM on Au/Ni surface. Formation of Au-Ni-Ga IMC and IMC-oxide iono-covalency occurrence at the interface causes reduction in surface tension and reduction in interfacial contact resistance.
109

The Effect of Plasma on Silicon Nitride, Oxynitride and Other Metals for Enhanced Epoxy Adhesion for Packaging Applications

Gaddam, Sneha Sen 08 1900 (has links)
The effects of direct plasma chemistries on carbon removal from silicon nitride (SiNx) and oxynitride (SiOxNy ) surfaces and Cu have been studied by x-photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O2,NH3 and He capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiNx) and Silicon oxynitride (SiOxNy ) surfaces. O2plasma and He plasma treatment results in the formation of silica overlayer. In contrast, the exposure to NH3 plasma results in negligible additional oxidation of the SiNx and SiOxNy surface. Ex-situ contact angle measurements show that SiNx and SiOxNy surfaces when exposed to oxygen plasma are initially more hydrophilic than surfaces exposed to NH3 plasma and He plasma, indicating that the O2 plasma-induced SiO2 overlayer is highly reactive towards ambient corresponding to increased roughness measured by AFM. At longer ambient exposures (>~10 hours), however surfaces treated by either O2, He or NH3 plasma exhibit similar steady state contact angles, correlated with rapid uptake of adventitious carbon, as determined by XPS. Surface passivation by exposure to molecular hydrogen prior to ambient exposure significantly retards the increase in the contact angle upon the exposure to ambient. The results suggest a practical route to enhancing the time available for effective bonding to surfaces in microelectronics packaging applications.
110

Experimental and theoretical assessment of thin glass panels as interposers for microelectronic packages

McCann, Scott R. 22 May 2014 (has links)
As the microelectronic industry moves toward stacking of dies to achieve greater performance and smaller footprint, there are several reliability concerns when assembling the stacked dies on current organic substrates. These concerns include excessive warpage, interconnect cracking, die cracking, and others. Silicon interposers are being developed to assemble the stacked dies, and then the silicon interposers are assembled on organic substrates. Although such an approach could address stacked-die to interposer reliability concerns, there are still reliability concerns between the silicon interposer and the organic substrate. This work examines the use of diced glass panel as an interposer, as glass provides intermediate coefficient of thermal expansion between silicon and organics, good mechanical rigidity, large-area panel processing for low cost, planarity, and better electrical properties. However, glass is brittle and low in thermal conductivity, and there is very little work in existing literature to examine glass as a potential interposer material. Starting with a 150 x 150 mm glass panel with a thickness of 100 µm, this work has built alternating layers of dielectric and copper on both sides of the panel. The panels have gone through typical cleanroom processes such as lithography, electroplating, etc. Upon fabrication, the panels are diced into individual substrates of 25 x 25 mm and a 10 x 10 mm flip chip with a solder bump pitch of 75 um is then reflow attached to the glass substrate followed by underfill dispensing and curing. The warpage of the flip-chip assembly is measured. In parallel to the experiments, numerical models have been developed. These models account for viscoplastic behavior of the solder. The models also mimic material addition and etching through element “birth-and-death” approach. The warpage from the models has been compared against experimental measurements for glass substrates with flip chip assembly. It is seen that the glass substrates provide significantly lower warpage compared to organic substrates, and thus could be a potential candidate for future 3D systems.

Page generated in 0.0967 seconds