• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 13
  • 6
  • 1
  • Tagged with
  • 87
  • 43
  • 42
  • 24
  • 24
  • 22
  • 17
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Chemo-mechanical characterization of microstructure phases in cementitious systems by a novel NI-QEDS technique / Caractérisation chimico-mécanique des phases microstructurales de systèmes cimentaires avec la technique novatrice NI-QEDS

Wilson, William January 2017 (has links)
Face à la finitude des ressources de la terre et de sa capacité d’absorption de la pollution, le développement d’écobétons pour un futur industrialisé durable représente un défi majeur de la science du béton moderne. En raison de sa nature hétérogène complexe, les propriétés macroscopiques du béton dépendent fortement des constituants de sa microstructure (ex. silicates de calcium hydratés [C–S–H], Portlandite, inclusions anhydres, porosité, agrégats, etc.). De plus, la nécessité d’une exploitation rapide et optimale des matériaux cimentaires émergents dans les applications industrielles demande de nos jours une meilleure compréhension de leurs particularités chimico-mécaniques à l’échelle micrométrique. Cette thèse vise à développer une méthode de pointe de couplage de la nanoindentation et de la spectroscopie quantitative aux rayons X à dispersion d'énergie (NI-QEDS), puis à fournir une caractérisation chimico-mécanique originale des phases microstructurales présentes dans les matrices réelles de ciments mélangés. La combinaison d’analyses NI-QEDS statistiques et déterministes a ainsi permis d’élargir la compréhension des systèmes avec ciment Portland et ajouts cimentaires (ACs) conventionnels ou alternatifs. Plus spécifiquement, l’étude des C–(A)–S–H (C–S–H incluant l’aluminium ou non) dans différents systèmes à base de ciments mélangés a montré des compositions différentes pour cet hydrate (variations dans les taux de Ca, Si, Al, S et Mg), mais ses propriétés mécaniques n’ont pas été significativement affectées par l’incorporation des ACs dans des dosages typiques. Les résultats présentés ont aussi démontré le rôle important des autres phases imbriquées dans la matrice de C–(A)–S–H, soit les inclusions anhydres dures (ex. le clinker et les ACs) et les autres hydrates tels que la Portlandite et les hydrates riches en aluminium (ex. les carboaluminates) avec des propriétés mécaniques plus élevées que celles des C–(A)–S–H. La thèse est basée sur cinq articles couvrant : (1) une analyse NI-EDS de systèmes incorporant des volumes élevés de pouzzolanes naturelles; (2) le développement de la méthode NI-QEDS; des analyses statistiques NI-QEDS (3) de systèmes avec cendres volantes et laitier, et (4) d’un système combinant ciment, calcaire et argile calcinée; et (5) une exploration déterministe NI-QEDS de systèmes conventionnels et alternatifs incorporant la poudre de verre, le métakaolin, le laitier ou la cendre volante. Finalement, en plus d’avancer les derniers modèles et méthodes micromécaniques, l’outil développé a fourni une perception chimico-mécanique originale des phases microstructurales et de leur arrangement. Le dévoilement de la signature chimico-mécanique de ces pâtes de ciments mélangés particulièrement complexes offre un savoir unique pour l’ingénierie des bétons de demain. / Abstract : Facing the limitedness of the earth’s resources and pollution absorption capacity, the development of eco-concrete for a sustainable industrialized future is one of the major challenges of modern concrete science. Due to its complex heterogeneous nature, the macro-scale properties of concrete strongly depend on the microstructure constituents (e.g., calcium-silicate-hydrates [C–S–H], Portlandite, anhydrous inclusions, porosity, aggregates, etc.). Moreover, the need for rapid and optimal exploitation of emerging binding materials in industrial applications urges today a better understanding of their chemo-mechanical features at the micrometer scale. This thesis aims at developing a state-of-the-art method coupling NanoIndentation and Quantitative Energy-Dispersive Spectroscopy (NI-QEDS), and providing an original chemo-mechanical characterization of the microstructure phases in highly heterogeneous matrices of real blended-cement pastes. The combination of statistical and deterministic NI-QEDS analysis approaches opened new research horizons in the understanding of Portland-cement systems incorporating conventional and alternative supplementary cementitious materials (SCMs). More specifically, the investigations of C–(A)–S–H (C–S–H including aluminum or not) in different blended-cement systems showed variable compositions for this hydrate (i.e., Ca, Si, Al, S and Mg contents), but the mechanical properties were not significantly affected by the incorporation of SCMs in typical dosages. The presented results also showed the important role of the other phases embedded in the C–(A)–S–H matrix, i.e., hard anhydrous inclusions (e.g., clinker and SCMs) and other hydrates such as Portlandite and Al-rich hydrates (e.g., carboaluminates) with mechanical properties higher than those of the C–(A)–S–H. The thesis is based on five articles focusing on: (1) the NI-EDS investigation of high-volume natural pozzolan systems; (2) the development of the NI-QEDS method; the statistical NI-QEDS analyses of (3) fly ash and slag blended-cement systems and of (4) a limestone-calcined-clay system; and (5) the deterministic NI-QEDS exploration of alternative and conventional systems incorporating glass powder, metakaolin, slag or fly ash. Finally, the developed tool not only advanced the latest micromechanical methods and models, but also provided original chemo-mechanical insights on the microstructure phases and their arrangement. Unveiling the chemo-mechanical signature of these highly-complex blended cement pastes further provided unique knowledge for engineering concretes for tomorrow.
82

Modélisation 3D d'assemblages flip chip pour la fiabilisation des composants électroniques à haute valeur ajoutée de la famille "More than Moore / 3D modeling of flip chip assemblies for the reliability of high value electronic components of the « More than Moore » group

Kpobie, Wiyao 10 December 2014 (has links)
La technologie flip chip est de plus en plus répandue dans l'industrie électronique [trois dimensions (3D) System in Package] et est principalement utilisée pour la fabrication de réseaux détecteurs de grand format (mégapixels) et faible pas. Pour étudier la fiabilité de ces assemblages, des simulations numériques basées sur des méthodes d'éléments finis semblent être l'approche la moins chère. Cependant, de très grands assemblages contiennent plus d'un million de billes de brasure, et le processus d'optimisation de ces structures par des simulations numériques se révèle être une tâche très fastidieuse. Dans de nombreuses applications, la couche d'interconnexion de tels assemblages flip chip se compose de microbilles de brasure noyées dans de l'époxy. Pour ces configurations, nous proposons une approche alternative, qui consiste à remplacer cette couche d'interconnexion hétérogène par un matériau homogène équivalent (MHE). Un modèle micromécanique pour l'estimation de ses propriétés thermoélastiques équivalentes a été mis au point. La loi de comportement obtenue pour le MHE a ensuite été implémentée dans le logiciel par éléments finis (Abaqus®). Les propriétés élastiques des matériaux de l'assemblage sont définies par la littérature et également déterminées expérimentalement par une méthode de caractérisation mécanique : la nano-indentation. Les réponses thermomécaniques des assemblages testés soumis à des chargements correspondant aux conditions de fabrication ont été analysées. La technique d'homogénéisation-localisation a permis d'estimer les valeurs moyennes des contraintes et des déformations dans chaque phase de la couche d'interconnexion. Pour accéder plus précisément aux champs de contraintes et déformations dans ces phases, deux modèles de zoom structurel (couplage de modèles et submodeling), en tenant compte de la géométrie réelle de la bille de brasure, ont été testés. Les champs de contrainte et de déformation locaux obtenus corroborent avec les initiations de dommage observées expérimentalement sur les billes de brasure / Flip chip technology is increasingly prevalent in electronics assembly [threedimensional (3D) system in package] and is mainly used at fine pitch for manufacture of megapixel large focal-plane detector arrays. To estimate the reliability of these assemblies, numerical simulations based on finite-element methods appear to be the cheapest approach. However, very large assemblies contain more than one million solder bumps, and the optimization process of such structures through numerical simulations turns out to be a very time-consuming task. In many applications, the interconnection layer of such flip-chip assemblies consists of solder bumps embedded in epoxy filler. For such configurations, we propose an alternative approach, which consists in replacing this heterogeneous interconnection layer by a homogeneous equivalent material (HEM). A micromechanical model for the estimation of its equivalent thermoelastic properties has been developed. The constitutive law of the HEM obtained was then implemented in finite-element software (Abaqus®). Elastic properties of materials that compose the assembly were found in literature and by using mechanical characterization method especially nano-indentation. Thermomechanical responses of tested assemblies submitted to loads corresponding to manufacturing conditions have been analyzed. The homogenization-localization process allowed estimation of the mean values of stresses and strains in each phase of the interconnection layer. To access more precisely to the stress and strain fields in these phases, two models of structural zoom (model coupling and submodeling), taking into account the real solder bump geometry, have been tested. The local stress and strain fields obtained corroborate the experimentally damage initiation of the solder bumps observed
83

On advanced techniques for generation and discretization of the microstructure of complex heterogeneous materials

Sonon, Bernard 18 December 2014 (has links)
The macroscopic behavior of complex heterogeneous materials is strongly governed by the interactions between their elementary constituents within their microstructure. Beside experimental efforts characterizing the behaviors of such materials, there is growing interest, in view of the increasing computational power available, in building models representing their microstructural systems integrating the elementary behaviors of their constituents and their geometrical organization. While a large number of contributions on this aspect focus on the investigation of advanced physics in material parameter studies using rather simple geometries to represent the spatial organization of heterogeneities, few are dedicated to the exploration of the role of microstructural geometries by means of morphological parameter studies.<p>The critical ingredients of this second type of investigation are (I) the generation of sets of representative volume elements ( RVE ) describing the geometry of microstructures with a satisfying control on the morphology relevant to the material of interest and (II) the discretization of governing equations of a model representing the investigated physics on those RVEs domains. One possible reason for the under-representation of morphologically detailed RVEs in the related literature may be related to several issues associated with the geometrical complexity of the microstructures of considered materials in both of these steps. Based on this hypothesis, this work is aimed at bringing contributions to advanced techniques for the generation and discretization of microstructures of complex heterogeneous materials, focusing on geometrical issues. In particular, a special emphasis is put on the consistent geometrical representation of RVEs across generation and discretization methodologies and the accommodation of a quantitative control on specific morphological features characterizing the microstructures of the covered materials.<p>While several promising recent techniques are dedicated to the discretization of arbitrary complex geometries in numerical models, the literature on RVEs generation methodologies does not provide fully satisfying solutions for most of the cases. The general strategy in this work consisted in selecting a promising state-of-the-art discretization method and in designing improved RVE generation techniques with the concern of guaranteeing their seamless collaboration. The chosen discretization technique is a specific variation of the generalized / extended finite element method that accommodates the representation of arbitrary input geometries represented by level set functions. The RVE generation techniques were designed accordingly, using level set functions to define and manipulate the RVEs geometries. <p>The RVE methodologies developed are mostly morphologically motivated, incorporating governing parameters allowing the reproduction and the quantitative control of specific morphological features of the considered materials. These developments make an intensive use of distance fields and level set functions to handle the geometrical complexity of microstructures. Valuable improvements were brought to the RVE generation methodologies for several materials, namely granular and particle-based materials, coated and cemented geomaterials, polycrystalline materials, cellular materials and textile-based materials. RVEs produced using those developments have allowed extensive testing of the investigated discretization method, using complex microstructures in proof-of-concept studies involving the main ingredients of RVE-based morphological parameter studies of complex heterogeneous materials. In particular, the illustrated approach offers the possibility to address three crucial aspects of those kinds of studies: (I) to easily conduct simulations on a large number of RVEs covering a significant range of morphological variations for a material, (II) to use advanced constituent material behaviors and (III) to discretize large 3D RVEs. Based on those illustrations and the experience gained from their realization, the main strengths and limitations of the considered discretization methods were clearly identified. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
84

Étude et modélisation du comportement en compression du bois sous sollicitations d'impacts / Experimental investigation and numerical modelling of wood under compressive impact loadings

Wouts, Jérémy 05 September 2017 (has links)
Le bois est un matériau cellulaire naturel et excellent absorbeur d’énergie. Employé au sein de structures du type limiteur d’impact, il subit de nombreux phénomènes lors d’un cas de chute. Une large campagne expérimentale est réalisée afin d’analyser les réponses en compression du hêtre et de l’épicéa, en fonction de la direction de sollicitation, de la vitesse de déformation pour la plage [0.001-600] s−1 et de deux types de restrictions latérales qualifiées d’extrêmes. La direction longitudinale se révèle la plus sensible à la vitesse ainsi qu’au type de restrictions latérales et les conséquences sur la capacité d’absorption d’énergie du bois sont alors significatives. Par ailleurs, les protocoles développés ont vocation à être déclinés pour un large panel d’essences aux propriétés mécaniques variées. Un modèle matériau élastoplastique, isotrope transverse et sensible à la vitesse de déformation est élaboré à l’aide des techniques multi-échelles et de la micromécanique. Les propriétés élastiques macroscopiques sont estimées à l’aide du schéma d’homogénéisation de Mori-Tanaka à partir de données issues de la microstructure. Un critère de type Gurson étendu reposant sur l’approche micromécanique de l’endommagement ductile est employé pour retranscrire le comportement non linéaire, la densification et le caractère compressible du bois. Des paramètres de dégradation découplés du critère sont appliqués selon la direction longitudinale. La modélisation proposée repose sur une description simplifiée du bois et les résultats numériques associés illustrent la bonne capacité du modèle à reproduire les différentes réponses observées lors d’un cas de chute. / Wood is a natural cellular material, which is widely and advantageously used as shock absorber for the transport of radioactive materials. Accident situations are evaluated based on the 9 m drop test, which allows us to observe the complex crushing behavior of wood. A compressive experimental study is conducted on spruce and beech wood species over a large range of strain rates (from 0.001 to 600 s−1) to investigate the effect of the loading direction and of two extreme lateral confinements. The longitudinal direction is the most sensitive to the effect of strain rate and of lateral confinements which have significant consequences on the energy absorption. Besides, the experimental investigation can be adapted to various wood species with very different mechanical properties. A strain rate dependent elastoplastic model with transversal isotropy is developed using multi-scale and micromechanics techniques. The elastic macroscopic properties of wood are estimated with a Mori-Tanaka scheme and information extracted from the microstructure. The Gurson type criterion based on the micromechanical approach of the ductile damage is used in order to describe the non linear behavior of wood, its densification regime and its compressibility as well. Additionally, uncoupled degradation parameters are applied to reproduce the failure mechanisms involved in the longitudinal response. A simplified description of wood is used within the modeling and the numerical results exhibit the good ability of the model to reproduce the various wood responses during an accident situation.
85

Modélisation Micromécanique et Identification Inverse de l'Endommagement par Approches Cohésives

Blal, Nawfal 12 September 2013 (has links) (PDF)
Un modèle micromécanique est proposé pour une collection de zones cohésives insérées entre toutes les mailles d'une discrétisation de type éléments finis cohésifs-volumiques. Le principe de l'approche consiste à introduire un composite équivalent 'matrice-inclusions' comme une représentation de la discrétisation cohésive-volumique. Le modèle obtenu à l'aide de techniques d'homogénéisation (schéma de Hashin Shtrikman et approche de P. Ponte Castañeda) permet de décrire le comportement macroscopique élastique, fragile et ductile. Il est valable quel que soit le taux de triaxialité appliqué et la forme de la loi cohésive retenue, et permet de relier, d'une façon explicite, les propriétés macroscopiques du matériau aux différents paramètres cohésifs ainsi qu'à la densité de maillage. Un premier résultat est l'établissement d'un critère pratique permettant de définir les raideurs cohésives au regard de la souplesse additionnelle inhérente à l'utilisation des modèles de zones cohésives intrinsèques. L'extension du modèle au cas de la rupture fragile et ductile, permet d'obtenir d'autres critères pratiques pour calibrer les autres paramètres cohésifs (contrainte cohésive maximale, ouverture critique, énergie de fissuration, . . . ). L'utilisation couplée des critères obtenus permet une calibration inverse des paramètres de la loi cohésive en fonction des propriétés macroscopiques du matériau et de la taille de maillage. De fait il est possible de prédire un comportement homogène global indépendamment de la taille du maillage.
86

Numerical modelling of inflatable structures made of orthotropic technical textiles : application to the frames of inflatable tents / Modélisation numérique des structures gonflables en textiles techniques orthotropes : application aux armatures des tentes gonflables

Apedo, Komla Lolonyo 10 September 2010 (has links)
L'objectif principal visé par cette thèse est de modéliser les poutres gonflables en textiles techniques orthotropes. Les approches statiques font l'objet de ce rapport. Avant d'aborder ce problème, nous avons été amenés à identifier tous les paramètres qui ont un effet direct sur les propriétés mécaniques effectives de ces composites. Ainsi, nous avons développé un modèle micro mécanique de prédiction de ces propriétés mécaniques. Le modèle proposé est basé sur l’analyse d'un volume élémentaire représentatif (VER) prenant en compte non seulement les propriétés mécaniques et la. fraction de volume de chaque phase dans le VER mais également leur géométrie et leur architecture. Chaque fil dans le VER a été modélisé comme un matériau isotrope transverse (contenant les fibres et la résine). La méthode dite d’assemblage de cylindres a été utilisée pour l’homogénéisation au niveau des fils. Une deuxième homogénéisation est ensuite réalisée. Elle prend en compte la fraction de volume de chaque constituant (fils de chaîne, fils de trame et résine non prise en compte dans les fils). Le modèle a été validé par des résultats expérimentaux existant dans la littérature. Une élude paramétrique a été menée afin d'étudier les effets des divers paramètres géométriques et mécaniques sur ces propriétés mécaniques. Dans l'analyse structurale, un modèle poutre gonflable 3D de Timoshenko en tissu orthotrope a été proposé. Il prend en compte les non-linéarités géométriques et l'effet de la force suiveuse générée par la pression de gonflage. Les équations d'équilibre non-linéaires dérivent du principe des travaux virtuels en configuration lagrangienne totale. Dans une première approche, une linéarisation a été faite autour de la configuration de référence précontrainte pour obtenir les équations adaptées aux problèmes linéaires. A titre d'exemple, le problème de flexion plane a été abordé. Quatre cas de conditions aux limites ont été traités et les résultats obtenus améliorent les modèles existants dans le cas de tissu isotrope. Les charges de plissage ont été également proposées dans chaque cas traité. Dans une deuxième approche, les équations non-linéaires ont été discrétisées par la méthode des éléments finis. Deux types de solutions ont été alors proposées : les solutions aux problèmes éléments finis linéaires obtenues par une linéarisation des équations discrétisées autour de la configuration de référence précontrainte et les solutions aux problèmes éléments finis non-linéaires réalisées en adoptant une méthode Quasi-Newton sous sa forme incrémentale. A titre d’exemple, la flexion d’une poutre encastrée-libre a été étudiée et les résultats améliorent les modèles théoriques. Le modèle éléments finis non-linéaire a été comparé favorablement à un modèle éléments finis coque mince 3D. Une étude paramétrique a été ensuite effectuée. Elle a porté sur l'influence des propriétés mécaniques et sur de la pression de gonflage sur la réponse de la poutre. Les solutions éléments finis linéaires se sont avérées proches des résultats théoriques linéarisés d'une part et les résultats du modèle éléments finis non-linéaire se sont avérés proches des résultats du modèle linéaire dans le cas des propriétés mécaniques élevées alors que le modèle éléments finis non-linéaire est indispensable pour modéliser ces poutres lorsque les propriétés mécaniques du tissu sont faibles / The main objective of this thesis was to model inflatable beams made frorn orthotropic woven fabric composites. The static aspects were investigated in this report. Before planning to develop these models, it was necessary to know all the parameters which have a direct effect on the effective mechanical properties these composites. Thus, a micro­ mechanical model was performed for predicting the effective mechanical properties. The proposed model was based on the analysis of the representative volume element (RVE). The model took into account not only the mechanical properties and volume fraction of each components in the RVE but also their geometry and architecture. Each yarn in the RVE was modelled as a transversely isotropic material (containing fibres and resin) using the concentric cylinders model (CCIVI). A second volumetric averaging which took into account the volume fraction of each constituent (warp yarn, weft yarn and resin), was performed. The model was validated favorably against experimental available data. A parametric study was conducted in order to investigate the effects of various geometrical and mechanical parameters on the elastic properties of these composites. ln the structural analysis, a 3D Timoshenko airbeam with a homogeneous orthotropic woven fabric (OWF) was addressed. The model took into account the geometrical nonlinearities and the inflation pressure follower force effect. The analytical equilibrium equations were performed using the total Lagrangian form of the virtual work principle. As these equations were nonlinear, in a first approach, a linearization was performed at the prestressed reference configuration to obtain the equations devoted to linearized problems. As example, the bending problem was investigated. Four cases of boundary conditions were treated and the deflections and rotations results improved the existing models in the case of isotropic fabric. The wrinkling load in every case was also proposed. In a second approach, the nonlinear equilibrium equations of the 3DTimoshenko airbeam were discretized by the finite element method. Two finite element solutions were then investigated : finite element solutions for linearized problems which were obtained by the means of the linearization around the prestressed reference configuration of the nonlinear equations and nonlinear finite element solutions which were performed by the use of an optimization algorithm based on the Qua.si-Newton method. As an example, the bending problem of a cantilever inflated beam under concentrated load was considered and the deflection results improve the theoretical models. As these beams are made from fabric, the beam models were validated through their comparison with a 3D thin-shell finite element model. The influence of the material effective properties and the inflation pressure on the beam response was also investigated through a parametric study. The finite element solutions for linearized problems were found to be close to the theoretical linearized results. On the other hand, the results for the nonlinear finite element model were shown to be close to the results for the linearized finite element model in the case of high mechanical properties and the non linear finite element model was used to improve the linearized model when the mechanical properties of the fabric are low
87

Les écoles d' horlogerie de Besançon : une contribution décisive au développement industriel local et régional (1793-1974) / The Besancon watchmaking schools

Briselance, Claude 28 October 2015 (has links)
L’Histoire des écoles d’horlogerie de Besançon est inhérente à la naissance et à la continuité d’une industrie spécifique très localisée sur un territoire. Avec elles nous partons de l’ère « proto-industrielle » qui plonge ses racines dans les idéaux révolutionnaires de 1793 pour aboutir aux bouleversements technologiques de l’électronique et du « quartz » des années 1970… S’inscrivant sur la longue durée, trois « écoles » vont se succéder. Pour répondre aux attentes d’une industrie horlogère qui doit constamment faire face aux évolutions techniques, chacune à sa manière, va innover pour constituer un « corpus » original de formation qui n’est pas sans bousculer les rites et usages du temps. Si les deux premières « écoles » eurent une durée de vie limitée, la dernière entité, née en 1861 de la volonté municipale, va pendant plus d’un siècle, accompagner toute une ville (et sa région) dans sa réussite industrielle. Dès sa création, et au fur et à mesure des adaptations qu’elle a su mettre en place, par la qualité et la spécificité des formations dispensées, elle va irriguer de ses élèves toute une industrie toujours à l’affût de personnels qualifiés. Au plan national elle va diffuser le nom de Besançon comme « capitale française de l’horlogerie » en formant nombre d’horlogers-rhabilleurs tenant boutiques et autres ateliers de réparation par tout le territoire… Elle va servir de référence pour implanter dans la Cité des laboratoires de recherche et d’enseignement supérieur : un Observatoire chronométrique, une École d’ingénieurs, un Centre d’études horlogères et de développement industriel (Cétéhor)… Elle va contribuer à la diversification industrielle de la ville dans des domaines connexes à l’horlogerie, notamment dans le découpage, la micromécanique, l’appareillage et les microtechniques… Nationalisée en 1891, elle fait dès lors partie de la petite élite des Écoles Nationales Professionnelles (par assimilation), qui vont marquer le développement industriel du Pays. En 1933, quand elle intègre ses nouveaux locaux, par le nombre et l’originalité de ses filières (de l’ouvrier qualifié à l’ingénieur), par sa dotation en matériels modernes, elle est signalée comme étant le « premier établissement de l’enseignement technique » en France. Le cheminement de cette dernière école fait aussi ressortir une histoire « humaine », « prosopographique », qui met en exergue les nombreux anciens élèves qui se sont lancés avec grande réussite dans la création d’entreprises. Restés fidèles à leur école, ils ont contribué au renom et au développement de la richesse économique de la cité et de sa région… Avec ces écoles d’horlogerie, on aborde enfin l’histoire de l’Enseignement Technique en France. Pour répondre à la demande d’une industrie horlogère en pleine croissance qui déplorait les carences de l’apprentissage en atelier, elles ont été pionnières en ouvrant la voie de « la scolarisation » de la formation professionnelle. Par leurs innovations pédagogiques, et soutenues par les Anciens Élèves, elles ont su établir un lien « École-Entreprise » des plus fructueux qui marque encore la mémoire collective des Bisontins…En 1974 elle perd toute référence à l’horlogerie pour devenir le Lycée Jules Haag. Le temps de l’histoire est désormais advenu pour tenter de comprendre ce qui a fait la force et la réussite de ces « Écoles d’horlogerie » dans leur participation active, sur la durée, à la prospérité économique et industrielle d’une ville et de sa région… / The history of the watchmaking schools in Besançon is part of the birth and continuous development of a specific industry in a very limited sector of the French territory. When studying those schools we start at the « protoindustrial » time with its roots in the revolutionary ideals of 1793 and end up with the technological upheavals of electronics and the « quartz » technology in the 1970s. Three « schools » followed one another over the long term. Each school aimed at satisfying the demands of a watchmakng industry confronted to rapidly changing technical evolutions ; so it innovated in its own way by creating an original « corpus » in the students training and most of the time upset the practices and common ideas of the time. If the first two « schools » had a limited lifespan, the last one created in 1861 by the town council itself has been supporting the industrial growth of the city and the surrounding region. Since its foundation it has stuck to the industrial reality by placing the emphasis on high standards and opening new specific branches whenever necessary, thus answering the needs of firms always looking for highly qualified staff. For a large number of French people Besançon became the « capital town of the watchmaking industry » thanks to the shops or repair workshops kept by Besançon-trained former students all over France… It served as a background to set up research and university laboratories in the city : Observatoire Chronométrique, Ecole d’Ingénieurs, Centre d’Etudes Horlogères et de Développement Industriel (Cétéhor)… It contributed to the industrial diversification of the town in fields related to watchmaking such as mechanical cutting, micromechanics, equipment and microtechniques. It was nationalized in 1891 and then belonged to the very small elite goup of the Professional National Schools that influenced the future industrial development of the country. In 1933 it moved into sparkling-new premises and was acknowledged as the flagship of technical education in France : it offered a large number of innovating courses ranging from the skilled worker to the engineer and was granted the latest equipments in every field. The path of this new school also enhanced a « humane » and « prosopographical » history ; it highlighted the part played by the numerous former students who created their own successful businesses. Being faithful to their old school they contributed to the renown and economic growth and prosperity of the city and its region… Beyond the local impact we must regard the history of the watchmaking schools as an important part of the history of Technical Education in France. To meet the needs of a soaring watchmaking industry they opened the way to the transfer of professional training from apprenticeship in workshops with its observed shortcomings to education in technical high schools. Their pedagogical innovations, the strong support of their former students created a vital school-business link that still lives on in the collective memory of the town inhabitants.In 1974 its name changed to Lycée Jules Haag thus losing any reference to watchmaking. Let us now try and understand the strong influence and success of those watchmaking schools, the active part they played in the economic industrial prosperity of a town and its surrounding region…

Page generated in 0.1109 seconds