Spelling suggestions: "subject:"micromechanics"" "subject:"micromechanic""
201 |
Advanced Driving Systems: Innovative AntriebssystemeMaisser, Peter, Tenberge, Peter 04 November 2002 (has links)
Modern product development is a highly complex process characterized by a pronounced interdisciplinary cooperation. Interdisciplinary cooperation accompanied with firm strategic and integrating concep
ts leads to innovation potentials in context of cooperative product engineering. The phrase "Mechatronics" represents exactly these novel methodological concepts in the developing process of innova
tive products with highly innovative functionality and structure.
The concept Mechatronics has been exemplary proven successfully in high-tech sectors. A glance at the automobile or high speed train technology gives an impressive and pursuing figure of the far reach
ing Mechatronics philosophy.
SME in general have not enough research and development resources to their disposal in order to comply with the ever increasing market demands. Ways out of this dilemma are strategic alliances on one
hand and the education of young "Mechatronicans" at universities on the other hand. ISOM 2002 aims to contribute by inviting SME representatives and students from universities and supplementary instit
utions in Saxony.
The key words of Mechatronics are sensors and actuators, integrated control strategies, modeling and simulation, effective design, safety and reliability. The symposium focuses on state-of-the-art in
Mechatronics, especially regarding to controlled high precision systems and particularly to novel electromechanical driving systems. It will point toward future research directions in these subjects.
ISOM 2002 is intended as a forum for those engineers and researchers from universities and industry in and outside Europe who actively participate in the young field of Mechatronics and uphold the old
spirit of exchanging theoretical and practical results within the scientific community. / Die moderne industrielle Produktentwicklung ist ein hochkomplexer Prozess, der gekennzeichnet ist durch eine stark ausgeprägte interdisziplinäre Arbeit. Diese Interdisziplinarität gepaart mit fundiert
en Strategie- und Integrationskonzepten führt zu erheblichen Innovationspotentialen im kooperativen Produkt-Engineering. Das Kunstwort Mechatronik steht genau für dieses neuartige methodologische Konz
ept im Entwicklungsprozess innovativer Produkte mit einem hohen Integrationsgrad von Funktionalität und Struktur.
Die Industrie hat in vielen High-Tech-Bereichen das Konzept Mechatronik beispielhaft realisiert. Ein Blick auf die Automobil- und Hochgeschwindigkeitszugtechnik zeigt in eindrucksvoller Weise die Tr
agfähigkeit der Mechatronik-Philosophie.
KMU verfügen oft nicht über das erforderliche FuE-Personal und die entsprechenden materiellen Ressourcen, um das enorme Entwicklungstempo mitzugehen. Wege zur Überwindung dieser Defizite sind strategi
sche Allianzen und eine gezielte Ausbildung von Mechatronikern an Hoch- und Fachschulen. Auch hierzu soll das Symposium einen Beitrag leisten, indem insbesondere Vertreter von KMU und Studenten der ga
stgebenden Universität sowie anderer Hochschuleinrichtungen Sachsens eingeladen wurden.
Zu den Schlüsselworten in der Mechatronik gehören Sensoren und Aktoren, integrierte Steuerstrategien, Modellierung und Simulation, effektiver Entwurf, Sicherheit und Zuverlässigkeit. Der derzeitige Sta
nd der Mechatronikforschung, vor allem mit Blick auf hochgenaue, gesteuerte mechatronische Systeme und insbesondere neuartige integrierte elektromechanische Antriebssysteme, soll im Mittelpunkt dieses
Symposiums stehen. Auch zukünftige Forschungsaufgaben für die Grundlagen- und anwendungsorientierte Forschung in den genannten Themenbereichen sollen aufgezeigt werden.
Das Symposium versteht sich als Treffpunkt für diejenigen Forscher und Entwickler, die in Europa an Hochschulen ebenso wie in der Industrie auf diesem Gebiet aktiv sind und sich auf einen Austausch th
eoretischer, experimenteller und anwendungsspezifischer Erfahrungen, die bei der wissenschaftlichen Arbeit auf dem noch jungen Gebiet der Mechatronik erlangt wurden, freuen.
|
202 |
Design optimization of heterogeneous microstructured materialsEmami, Anahita January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Our ability to engineer materials is limited by our capacity to tailor the material’s microstructure morphology and predict resulting properties. The insufficient knowledge on microstructure-property relationship is due to complexity and randomness in all materials at different scales. The objective of this research is to establish a design optimization methodology for microstructured materials. The material design problem is stated as finding the optimum microstructure to maximize the desired performance satisfying material processing constrains. This problem has been solved in this thesis by means of numerical techniques through four main steps: microstructure characterization, model reconstruction, property evaluation, and optimization. Two methods of microstructure characterizations have been investigated along with the advantages and disadvantages of each method. The first microstructure characterization method is a statistical method which utilizes correlation functions to extract the microstructural information. Algorithms for calculating these correlations functions have been developed and optimized based on their computational cost using MATLAB software. The second microstructure characterization method is physical characterization which works based on evaluation of physical features in microstructured domain. These features have been measured by means of MATLAB codes. Three model reconstruction techniques are proposed based on these characterization methods and employed to generate material models for further evaluation. The first reconstructing algorithm uses statistical functions to reconstruct the statistical equivalent model through simulating annealing optimization method. The second algorithm uses cellular automaton concepts to simulate the grain growth utilizing physical descriptors, and the third one generates elliptical inclusions in a material matrix using physical characteristic of microstructure. The finite element method is used to analysis the mechanical behavior of material models. Several material samples with different microstructural characteristics have been generated to model the micro-scale design domain of AZ31 magnesium alloy and magnesium matrix composite with silicon carbide fibers. Then, surrogate models have been created based on these samples to approximate the entire design domain and demonstrate the sensitivity of the desired mechanical property to two independent microstructural features. Finally, the optimum microstructure characteristics of material samples for fracture strength maximization have been obtained.
|
203 |
Failure mechanism and reliability prediction for bonded layered structure due to cracks initiating at the interfaceWang, Yaou 27 August 2009 (has links)
No description available.
|
204 |
Les écoles d' horlogerie de Besançon : une contribution décisive au développement industriel local et régional (1793-1974) / The Besancon watchmaking schoolsBriselance, Claude 28 October 2015 (has links)
L’Histoire des écoles d’horlogerie de Besançon est inhérente à la naissance et à la continuité d’une industrie spécifique très localisée sur un territoire. Avec elles nous partons de l’ère « proto-industrielle » qui plonge ses racines dans les idéaux révolutionnaires de 1793 pour aboutir aux bouleversements technologiques de l’électronique et du « quartz » des années 1970… S’inscrivant sur la longue durée, trois « écoles » vont se succéder. Pour répondre aux attentes d’une industrie horlogère qui doit constamment faire face aux évolutions techniques, chacune à sa manière, va innover pour constituer un « corpus » original de formation qui n’est pas sans bousculer les rites et usages du temps. Si les deux premières « écoles » eurent une durée de vie limitée, la dernière entité, née en 1861 de la volonté municipale, va pendant plus d’un siècle, accompagner toute une ville (et sa région) dans sa réussite industrielle. Dès sa création, et au fur et à mesure des adaptations qu’elle a su mettre en place, par la qualité et la spécificité des formations dispensées, elle va irriguer de ses élèves toute une industrie toujours à l’affût de personnels qualifiés. Au plan national elle va diffuser le nom de Besançon comme « capitale française de l’horlogerie » en formant nombre d’horlogers-rhabilleurs tenant boutiques et autres ateliers de réparation par tout le territoire… Elle va servir de référence pour implanter dans la Cité des laboratoires de recherche et d’enseignement supérieur : un Observatoire chronométrique, une École d’ingénieurs, un Centre d’études horlogères et de développement industriel (Cétéhor)… Elle va contribuer à la diversification industrielle de la ville dans des domaines connexes à l’horlogerie, notamment dans le découpage, la micromécanique, l’appareillage et les microtechniques… Nationalisée en 1891, elle fait dès lors partie de la petite élite des Écoles Nationales Professionnelles (par assimilation), qui vont marquer le développement industriel du Pays. En 1933, quand elle intègre ses nouveaux locaux, par le nombre et l’originalité de ses filières (de l’ouvrier qualifié à l’ingénieur), par sa dotation en matériels modernes, elle est signalée comme étant le « premier établissement de l’enseignement technique » en France. Le cheminement de cette dernière école fait aussi ressortir une histoire « humaine », « prosopographique », qui met en exergue les nombreux anciens élèves qui se sont lancés avec grande réussite dans la création d’entreprises. Restés fidèles à leur école, ils ont contribué au renom et au développement de la richesse économique de la cité et de sa région… Avec ces écoles d’horlogerie, on aborde enfin l’histoire de l’Enseignement Technique en France. Pour répondre à la demande d’une industrie horlogère en pleine croissance qui déplorait les carences de l’apprentissage en atelier, elles ont été pionnières en ouvrant la voie de « la scolarisation » de la formation professionnelle. Par leurs innovations pédagogiques, et soutenues par les Anciens Élèves, elles ont su établir un lien « École-Entreprise » des plus fructueux qui marque encore la mémoire collective des Bisontins…En 1974 elle perd toute référence à l’horlogerie pour devenir le Lycée Jules Haag. Le temps de l’histoire est désormais advenu pour tenter de comprendre ce qui a fait la force et la réussite de ces « Écoles d’horlogerie » dans leur participation active, sur la durée, à la prospérité économique et industrielle d’une ville et de sa région… / The history of the watchmaking schools in Besançon is part of the birth and continuous development of a specific industry in a very limited sector of the French territory. When studying those schools we start at the « protoindustrial » time with its roots in the revolutionary ideals of 1793 and end up with the technological upheavals of electronics and the « quartz » technology in the 1970s. Three « schools » followed one another over the long term. Each school aimed at satisfying the demands of a watchmakng industry confronted to rapidly changing technical evolutions ; so it innovated in its own way by creating an original « corpus » in the students training and most of the time upset the practices and common ideas of the time. If the first two « schools » had a limited lifespan, the last one created in 1861 by the town council itself has been supporting the industrial growth of the city and the surrounding region. Since its foundation it has stuck to the industrial reality by placing the emphasis on high standards and opening new specific branches whenever necessary, thus answering the needs of firms always looking for highly qualified staff. For a large number of French people Besançon became the « capital town of the watchmaking industry » thanks to the shops or repair workshops kept by Besançon-trained former students all over France… It served as a background to set up research and university laboratories in the city : Observatoire Chronométrique, Ecole d’Ingénieurs, Centre d’Etudes Horlogères et de Développement Industriel (Cétéhor)… It contributed to the industrial diversification of the town in fields related to watchmaking such as mechanical cutting, micromechanics, equipment and microtechniques. It was nationalized in 1891 and then belonged to the very small elite goup of the Professional National Schools that influenced the future industrial development of the country. In 1933 it moved into sparkling-new premises and was acknowledged as the flagship of technical education in France : it offered a large number of innovating courses ranging from the skilled worker to the engineer and was granted the latest equipments in every field. The path of this new school also enhanced a « humane » and « prosopographical » history ; it highlighted the part played by the numerous former students who created their own successful businesses. Being faithful to their old school they contributed to the renown and economic growth and prosperity of the city and its region… Beyond the local impact we must regard the history of the watchmaking schools as an important part of the history of Technical Education in France. To meet the needs of a soaring watchmaking industry they opened the way to the transfer of professional training from apprenticeship in workshops with its observed shortcomings to education in technical high schools. Their pedagogical innovations, the strong support of their former students created a vital school-business link that still lives on in the collective memory of the town inhabitants.In 1974 its name changed to Lycée Jules Haag thus losing any reference to watchmaking. Let us now try and understand the strong influence and success of those watchmaking schools, the active part they played in the economic industrial prosperity of a town and its surrounding region…
|
Page generated in 0.1043 seconds