• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 31
  • 18
  • 13
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 204
  • 61
  • 32
  • 31
  • 31
  • 27
  • 24
  • 24
  • 21
  • 20
  • 20
  • 19
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Multi-scale simulation of crack propagation in the ductile-brittle transition region / Mehrskalensimulation der Rissausbreitung im spröd-duktilen Übergangsbereich

Hütter, Geralf 03 September 2013 (has links) (PDF)
In the present thesis the crack propagation in the ductile-brittle transition region is studied on two scales with deterministic models. In the macroscopic model the ductile failure is described by a non-local Gurson-model whereas the discrete void microstructure is resolved around the crack tip in the microscopic model. The failure by cleavage is not evaluated by means of a post-processing criterion but is modeled equivalently using a cohesive zone model on both scales. Thus, cleavage is not a priori identified with unstable crack propagation but the transition between stable and unstable mode of propagation is a result of the simulation. The problem of handling completely failed material within the framework of non-local damage models is pointed out. A method to overcome this problem is proposed and successfully applied. The case of contained plastic yielding at the crack tip is addressed with a modified-boundary layer model. The macroscopic simulations reproduce many features which are known from experiments like the formation of stretch zones, cleavage after initial ductile tearing, pop-ins with crack arrest, among others. The microscopic simulations substantiate the understanding of the macroscopically observed behavior. Systematic parameter studies are performed. Starting with considerations on the limit cases like pure ductile failure or the lower-ductile brittle transition region allows to separate the effects of the different constitutive parameters. Based on these results, a methodology is proposed to extract the macroscopic material parameters from experiments. This scheme is successfully applied to experimental data from literature. The results show that the behavior of a low-constraint specimen can be reliably predicted with the parameters extracted from a high-constraint specimen. / In der vorliegenden Arbeit wird die Rissausbreitung im spröd-duktilen Übergangsbereich auf zwei Skalen mittels deterministischer Modelle untersucht. Das duktile Versagen wird im makroskopischen Modell durch ein nichtlokales Gurson-Modell beschrieben, während im mikroskopischen Modell die Porenmikrostruktur im Bereich um die Rissspitze diskret aufgelöst wird. Das mögliche Versagen durch Spaltbruch wird nicht, wie üblich, nachträglich durch ein spannungsbasiertes Kriterium bewertet. Stattdessen wird der Spaltbruch auf beiden Skalen durch ein Kohäsivzonenmodell abgebildet. Somit wird die Spaltbruchinitiierung nicht a priori mit instabiler Rissausbreitung gleichgesetzt. Vielmehr ist die Stabilität der Rissausbreitung ein Ergebnis der Simulationen. Außerdem wird das Problem der der Handhabung vollständig ausgefallenen Materials im Rahmen nichtlokaler Schädigungsmodelle herausgestellt. Es wird eine Methode vorgestellt, dieses Problem zu behandeln und erfolgreich angewendet. In den Simulationen wird der Fall vollständig eingebetteten, plastischen Fließens untersucht. Die Simulationen mit dem makroskopischen Modell geben viele Effekte wieder, die aus Experimenten bekannt sind. Dazu zählen die Ausbildung von Stretchzonen, die Spaltbruchinitiierung nach anfänglichem, duktilem Reißen oder lokale Instabilitäten mit Rissarrest. Die mikroskopischen Simulationen tragen zum Verständnis des makroskopisch beobachteten Verhaltens bei. In der vorliegenden Arbeit werden systematische Parameterstudien durchgeführt. Zunächst werden Grenzfälle wie das rein duktile Versagens oder der Spaltbruch in Abwesenheit der Mikroporen untersucht, um die Einflüsse der einzelnen Materialparameter abzugrenzen. Ausgehend von diesen Ergebnissen wird eine Prozedur vorgeschlagen, die Materialparameter des makroskopischen Modells Schritt für Schritt aus Experimenten zu bestimmen. Diese Prozedur wird erfolgreich auf experimentelle Daten aus der Literatur angewendet. Die Ergebnisse zeigen, dass es das entwickelte Modell erlaubt, das Verhalten einer Bruchmechanikprobe mit geringer Dehnungsbehinderung an der Rissspitze mit denjenigen Materialparametern vorherzusagen, die an Proben mit einer hohen Dehnungsbehinderung ermittelt wurden.
192

Advanced Driving Systems / Innovative Antriebssysteme

Maisser, Peter, Tenberge, Peter 04 November 2002 (has links) (PDF)
Modern product development is a highly complex process characterized by a pronounced interdisciplinary cooperation. Interdisciplinary cooperation accompanied with firm strategic and integrating concep ts leads to innovation potentials in context of cooperative product engineering. The phrase "Mechatronics" represents exactly these novel methodological concepts in the developing process of innova tive products with highly innovative functionality and structure. The concept Mechatronics has been exemplary proven successfully in high-tech sectors. A glance at the automobile or high speed train technology gives an impressive and pursuing figure of the far reach ing Mechatronics philosophy. SME in general have not enough research and development resources to their disposal in order to comply with the ever increasing market demands. Ways out of this dilemma are strategic alliances on one hand and the education of young "Mechatronicans" at universities on the other hand. ISOM 2002 aims to contribute by inviting SME representatives and students from universities and supplementary instit utions in Saxony. The key words of Mechatronics are sensors and actuators, integrated control strategies, modeling and simulation, effective design, safety and reliability. The symposium focuses on state-of-the-art in Mechatronics, especially regarding to controlled high precision systems and particularly to novel electromechanical driving systems. It will point toward future research directions in these subjects. ISOM 2002 is intended as a forum for those engineers and researchers from universities and industry in and outside Europe who actively participate in the young field of Mechatronics and uphold the old spirit of exchanging theoretical and practical results within the scientific community. / Die moderne industrielle Produktentwicklung ist ein hochkomplexer Prozess, der gekennzeichnet ist durch eine stark ausgeprägte interdisziplinäre Arbeit. Diese Interdisziplinarität gepaart mit fundiert en Strategie- und Integrationskonzepten führt zu erheblichen Innovationspotentialen im kooperativen Produkt-Engineering. Das Kunstwort Mechatronik steht genau für dieses neuartige methodologische Konz ept im Entwicklungsprozess innovativer Produkte mit einem hohen Integrationsgrad von Funktionalität und Struktur. Die Industrie hat in vielen High-Tech-Bereichen das Konzept Mechatronik beispielhaft realisiert. Ein Blick auf die Automobil- und Hochgeschwindigkeitszugtechnik zeigt in eindrucksvoller Weise die Tr agfähigkeit der Mechatronik-Philosophie. KMU verfügen oft nicht über das erforderliche FuE-Personal und die entsprechenden materiellen Ressourcen, um das enorme Entwicklungstempo mitzugehen. Wege zur Überwindung dieser Defizite sind strategi sche Allianzen und eine gezielte Ausbildung von Mechatronikern an Hoch- und Fachschulen. Auch hierzu soll das Symposium einen Beitrag leisten, indem insbesondere Vertreter von KMU und Studenten der ga stgebenden Universität sowie anderer Hochschuleinrichtungen Sachsens eingeladen wurden. Zu den Schlüsselworten in der Mechatronik gehören Sensoren und Aktoren, integrierte Steuerstrategien, Modellierung und Simulation, effektiver Entwurf, Sicherheit und Zuverlässigkeit. Der derzeitige Sta nd der Mechatronikforschung, vor allem mit Blick auf hochgenaue, gesteuerte mechatronische Systeme und insbesondere neuartige integrierte elektromechanische Antriebssysteme, soll im Mittelpunkt dieses Symposiums stehen. Auch zukünftige Forschungsaufgaben für die Grundlagen- und anwendungsorientierte Forschung in den genannten Themenbereichen sollen aufgezeigt werden. Das Symposium versteht sich als Treffpunkt für diejenigen Forscher und Entwickler, die in Europa an Hochschulen ebenso wie in der Industrie auf diesem Gebiet aktiv sind und sich auf einen Austausch th eoretischer, experimenteller und anwendungsspezifischer Erfahrungen, die bei der wissenschaftlichen Arbeit auf dem noch jungen Gebiet der Mechatronik erlangt wurden, freuen.
193

Chemo-mechanical characterization of microstructure phases in cementitious systems by a novel NI-QEDS technique / Caractérisation chimico-mécanique des phases microstructurales de systèmes cimentaires avec la technique novatrice NI-QEDS

Wilson, William January 2017 (has links)
Face à la finitude des ressources de la terre et de sa capacité d’absorption de la pollution, le développement d’écobétons pour un futur industrialisé durable représente un défi majeur de la science du béton moderne. En raison de sa nature hétérogène complexe, les propriétés macroscopiques du béton dépendent fortement des constituants de sa microstructure (ex. silicates de calcium hydratés [C–S–H], Portlandite, inclusions anhydres, porosité, agrégats, etc.). De plus, la nécessité d’une exploitation rapide et optimale des matériaux cimentaires émergents dans les applications industrielles demande de nos jours une meilleure compréhension de leurs particularités chimico-mécaniques à l’échelle micrométrique. Cette thèse vise à développer une méthode de pointe de couplage de la nanoindentation et de la spectroscopie quantitative aux rayons X à dispersion d'énergie (NI-QEDS), puis à fournir une caractérisation chimico-mécanique originale des phases microstructurales présentes dans les matrices réelles de ciments mélangés. La combinaison d’analyses NI-QEDS statistiques et déterministes a ainsi permis d’élargir la compréhension des systèmes avec ciment Portland et ajouts cimentaires (ACs) conventionnels ou alternatifs. Plus spécifiquement, l’étude des C–(A)–S–H (C–S–H incluant l’aluminium ou non) dans différents systèmes à base de ciments mélangés a montré des compositions différentes pour cet hydrate (variations dans les taux de Ca, Si, Al, S et Mg), mais ses propriétés mécaniques n’ont pas été significativement affectées par l’incorporation des ACs dans des dosages typiques. Les résultats présentés ont aussi démontré le rôle important des autres phases imbriquées dans la matrice de C–(A)–S–H, soit les inclusions anhydres dures (ex. le clinker et les ACs) et les autres hydrates tels que la Portlandite et les hydrates riches en aluminium (ex. les carboaluminates) avec des propriétés mécaniques plus élevées que celles des C–(A)–S–H. La thèse est basée sur cinq articles couvrant : (1) une analyse NI-EDS de systèmes incorporant des volumes élevés de pouzzolanes naturelles; (2) le développement de la méthode NI-QEDS; des analyses statistiques NI-QEDS (3) de systèmes avec cendres volantes et laitier, et (4) d’un système combinant ciment, calcaire et argile calcinée; et (5) une exploration déterministe NI-QEDS de systèmes conventionnels et alternatifs incorporant la poudre de verre, le métakaolin, le laitier ou la cendre volante. Finalement, en plus d’avancer les derniers modèles et méthodes micromécaniques, l’outil développé a fourni une perception chimico-mécanique originale des phases microstructurales et de leur arrangement. Le dévoilement de la signature chimico-mécanique de ces pâtes de ciments mélangés particulièrement complexes offre un savoir unique pour l’ingénierie des bétons de demain. / Abstract : Facing the limitedness of the earth’s resources and pollution absorption capacity, the development of eco-concrete for a sustainable industrialized future is one of the major challenges of modern concrete science. Due to its complex heterogeneous nature, the macro-scale properties of concrete strongly depend on the microstructure constituents (e.g., calcium-silicate-hydrates [C–S–H], Portlandite, anhydrous inclusions, porosity, aggregates, etc.). Moreover, the need for rapid and optimal exploitation of emerging binding materials in industrial applications urges today a better understanding of their chemo-mechanical features at the micrometer scale. This thesis aims at developing a state-of-the-art method coupling NanoIndentation and Quantitative Energy-Dispersive Spectroscopy (NI-QEDS), and providing an original chemo-mechanical characterization of the microstructure phases in highly heterogeneous matrices of real blended-cement pastes. The combination of statistical and deterministic NI-QEDS analysis approaches opened new research horizons in the understanding of Portland-cement systems incorporating conventional and alternative supplementary cementitious materials (SCMs). More specifically, the investigations of C–(A)–S–H (C–S–H including aluminum or not) in different blended-cement systems showed variable compositions for this hydrate (i.e., Ca, Si, Al, S and Mg contents), but the mechanical properties were not significantly affected by the incorporation of SCMs in typical dosages. The presented results also showed the important role of the other phases embedded in the C–(A)–S–H matrix, i.e., hard anhydrous inclusions (e.g., clinker and SCMs) and other hydrates such as Portlandite and Al-rich hydrates (e.g., carboaluminates) with mechanical properties higher than those of the C–(A)–S–H. The thesis is based on five articles focusing on: (1) the NI-EDS investigation of high-volume natural pozzolan systems; (2) the development of the NI-QEDS method; the statistical NI-QEDS analyses of (3) fly ash and slag blended-cement systems and of (4) a limestone-calcined-clay system; and (5) the deterministic NI-QEDS exploration of alternative and conventional systems incorporating glass powder, metakaolin, slag or fly ash. Finally, the developed tool not only advanced the latest micromechanical methods and models, but also provided original chemo-mechanical insights on the microstructure phases and their arrangement. Unveiling the chemo-mechanical signature of these highly-complex blended cement pastes further provided unique knowledge for engineering concretes for tomorrow.
194

Influence of Contact Stresses on Shape Recovery in Sputter Deposited NiTiCu Thin Films

Gelli, N V R Vikram January 2016 (has links) (PDF)
NiTiCu is a shape memory alloy that regains its original shape after large amount of shape changing deformation when heated above a critical temperature called reverse martensitic trans-formation temperature( Af). When external load is applied on the sample in twinned martensite phase at low temperature, it deforms by detwinning, accommodating large amount of strains. When it is heated above Af, the shape recovers by transformation of the martensite to austenite phase. However, the amount of shape recovery degrades over time due to internal factors such as precipitates, residual strains and thermal history as well as external factors such as stresses. Severe localized stresses induced by contacts result in plastic deformation that affect the reverse martensitic transformation and hence the shape recovery. In this work, we study how varying levels of contact stresses induced in NiTiCu thin film affect its shape recovery. NiTiCu thin films of six different compositions are deposited on Si(100) wafer by co-sputtering from elemental targets. After deposition, the films are annealed at 500 C for 4 h to make them crystalline. The composition of the films varied linearly with applied power to the targets. Uniformity in composition over a 4 inch substrate area is achieved by substrate rotation. All the films show ne grain microstructure after annealing. The subsurface of the Ni-rich films is columnar. Ni-rich films have annealing cracks and the crack width increases with Ni composition in the films. The roughness of as-deposited films is found to be more for Ni-rich films compared to Ti-rich films. The roughness of the Ni-rich and Ti-rich films increased after annealing. From the X-ray diffraction studies, it was observed that the films are nanocrystalline. Indentation is carried out using a Berkovich diamond indenter with spherical apex, at nine different locations with loads ranging from 0.25 mN to 25 mN. A predefined array is chosen for indentation such that the larger indents act as a guide to precisely locate minute indents generated at lower loads, with residual depth as small as 10 nm, for imaging in high-resolution microscopes like Scanning Electron Microscope as well as in Atomic Force Microscope . In Ti60 (a Ti-rich) lm, the residual indents generated at loads greater than 10 mN show radial cracks originating at corners. Average crack length increases with the maximum load used for generating the indent. Sequential sectioning of Ti48 (a Ni-rich) lm using Focused Ion Beam microscope, revealed that the cracks originate at the lm-substrate interface and reach the surface. In Ti48 lm, residual indents do not show any indentation cracks. The indentation stresses are accommodated by breaking of the columnar structure and the voids between them. Delamination of the film from the substrate is observed on either sides of the indent in both the Ti60 and Ti48 films. The hardness of the films is high at low loads and decrease as the load increases. The deformation by indentation at lower loads is mainly due to detwinning as only the apex of the indenter, which is nearly spherical, is in contact with the sample and the resulting stresses are low. As the load increases, the deformation starts getting accommodated through dislocations along with detwinning as the stress beneath the indenter increases. Spherical cavity model extended to SMA shows that inner hemisphere near the tip contains dislocations where stresses are very high, surrounded by detwinned region with stresses that are relatively low. When the sample is heated above reverse martensitic transformation temperature to induce shape recovery in the indents, only the detwinned region recovers to the original shape. Recovery ratio, quantification of shape recovery, is calculated from the depth of the indents before and after heating. Recovery ratio in Ti60 films is found to be large at low loads and decreases with increase in load. The decrease in shape recovery in Ti60 is attributed to the increase in the amount of plastic deformation at the expense of detwinning. Three-dimensional mapping of the surfaces shows that the recovery ratio is high at the apex of the indent at the maximum depth and reduces towards the edges of the indent. There is no evident recovery in Ti48 films. The shape recovery of SMAs can be achieved by Joule heating. When electric current is passed through the material, it heats up by Joule heating because of the intrinsic resistivity. The resistivity and hence the resistance would get effected by the dislocation based plastic deformation induced by the contact. This might result in shape recovery through resistive heating. Towards understanding this, the effect of contact stresses on electrical contact resistance is studied. Experimental setup is designed, developed and calibrated for studying the variation of electrical contact resistance of the NiTiCu thin films as a function of load. Electrical contact resistance is found to decrease with increase in applied load. Contact stresses in sub-micron NiTiCu thin films are simulated by carrying out nanoindentation at different loads. The recovery ratio is high when the stresses induced by the contact is less, at lower loads. The shape recovery ratio is reduced when the induced contact stresses in-creases. There is no shape recovery at the sharp edges of the indentation where contact stresses are very high. Hence, by carefully designing the features to reduce the stress concentrations, the performance of the device can be improved.
195

On advanced techniques for generation and discretization of the microstructure of complex heterogeneous materials

Sonon, Bernard 18 December 2014 (has links)
The macroscopic behavior of complex heterogeneous materials is strongly governed by the interactions between their elementary constituents within their microstructure. Beside experimental efforts characterizing the behaviors of such materials, there is growing interest, in view of the increasing computational power available, in building models representing their microstructural systems integrating the elementary behaviors of their constituents and their geometrical organization. While a large number of contributions on this aspect focus on the investigation of advanced physics in material parameter studies using rather simple geometries to represent the spatial organization of heterogeneities, few are dedicated to the exploration of the role of microstructural geometries by means of morphological parameter studies.<p>The critical ingredients of this second type of investigation are (I) the generation of sets of representative volume elements ( RVE ) describing the geometry of microstructures with a satisfying control on the morphology relevant to the material of interest and (II) the discretization of governing equations of a model representing the investigated physics on those RVEs domains. One possible reason for the under-representation of morphologically detailed RVEs in the related literature may be related to several issues associated with the geometrical complexity of the microstructures of considered materials in both of these steps. Based on this hypothesis, this work is aimed at bringing contributions to advanced techniques for the generation and discretization of microstructures of complex heterogeneous materials, focusing on geometrical issues. In particular, a special emphasis is put on the consistent geometrical representation of RVEs across generation and discretization methodologies and the accommodation of a quantitative control on specific morphological features characterizing the microstructures of the covered materials.<p>While several promising recent techniques are dedicated to the discretization of arbitrary complex geometries in numerical models, the literature on RVEs generation methodologies does not provide fully satisfying solutions for most of the cases. The general strategy in this work consisted in selecting a promising state-of-the-art discretization method and in designing improved RVE generation techniques with the concern of guaranteeing their seamless collaboration. The chosen discretization technique is a specific variation of the generalized / extended finite element method that accommodates the representation of arbitrary input geometries represented by level set functions. The RVE generation techniques were designed accordingly, using level set functions to define and manipulate the RVEs geometries. <p>The RVE methodologies developed are mostly morphologically motivated, incorporating governing parameters allowing the reproduction and the quantitative control of specific morphological features of the considered materials. These developments make an intensive use of distance fields and level set functions to handle the geometrical complexity of microstructures. Valuable improvements were brought to the RVE generation methodologies for several materials, namely granular and particle-based materials, coated and cemented geomaterials, polycrystalline materials, cellular materials and textile-based materials. RVEs produced using those developments have allowed extensive testing of the investigated discretization method, using complex microstructures in proof-of-concept studies involving the main ingredients of RVE-based morphological parameter studies of complex heterogeneous materials. In particular, the illustrated approach offers the possibility to address three crucial aspects of those kinds of studies: (I) to easily conduct simulations on a large number of RVEs covering a significant range of morphological variations for a material, (II) to use advanced constituent material behaviors and (III) to discretize large 3D RVEs. Based on those illustrations and the experience gained from their realization, the main strengths and limitations of the considered discretization methods were clearly identified. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
196

Étude et modélisation du comportement en compression du bois sous sollicitations d'impacts / Experimental investigation and numerical modelling of wood under compressive impact loadings

Wouts, Jérémy 05 September 2017 (has links)
Le bois est un matériau cellulaire naturel et excellent absorbeur d’énergie. Employé au sein de structures du type limiteur d’impact, il subit de nombreux phénomènes lors d’un cas de chute. Une large campagne expérimentale est réalisée afin d’analyser les réponses en compression du hêtre et de l’épicéa, en fonction de la direction de sollicitation, de la vitesse de déformation pour la plage [0.001-600] s−1 et de deux types de restrictions latérales qualifiées d’extrêmes. La direction longitudinale se révèle la plus sensible à la vitesse ainsi qu’au type de restrictions latérales et les conséquences sur la capacité d’absorption d’énergie du bois sont alors significatives. Par ailleurs, les protocoles développés ont vocation à être déclinés pour un large panel d’essences aux propriétés mécaniques variées. Un modèle matériau élastoplastique, isotrope transverse et sensible à la vitesse de déformation est élaboré à l’aide des techniques multi-échelles et de la micromécanique. Les propriétés élastiques macroscopiques sont estimées à l’aide du schéma d’homogénéisation de Mori-Tanaka à partir de données issues de la microstructure. Un critère de type Gurson étendu reposant sur l’approche micromécanique de l’endommagement ductile est employé pour retranscrire le comportement non linéaire, la densification et le caractère compressible du bois. Des paramètres de dégradation découplés du critère sont appliqués selon la direction longitudinale. La modélisation proposée repose sur une description simplifiée du bois et les résultats numériques associés illustrent la bonne capacité du modèle à reproduire les différentes réponses observées lors d’un cas de chute. / Wood is a natural cellular material, which is widely and advantageously used as shock absorber for the transport of radioactive materials. Accident situations are evaluated based on the 9 m drop test, which allows us to observe the complex crushing behavior of wood. A compressive experimental study is conducted on spruce and beech wood species over a large range of strain rates (from 0.001 to 600 s−1) to investigate the effect of the loading direction and of two extreme lateral confinements. The longitudinal direction is the most sensitive to the effect of strain rate and of lateral confinements which have significant consequences on the energy absorption. Besides, the experimental investigation can be adapted to various wood species with very different mechanical properties. A strain rate dependent elastoplastic model with transversal isotropy is developed using multi-scale and micromechanics techniques. The elastic macroscopic properties of wood are estimated with a Mori-Tanaka scheme and information extracted from the microstructure. The Gurson type criterion based on the micromechanical approach of the ductile damage is used in order to describe the non linear behavior of wood, its densification regime and its compressibility as well. Additionally, uncoupled degradation parameters are applied to reproduce the failure mechanisms involved in the longitudinal response. A simplified description of wood is used within the modeling and the numerical results exhibit the good ability of the model to reproduce the various wood responses during an accident situation.
197

Multi-scale simulation of crack propagation in the ductile-brittle transition region

Hütter, Geralf 01 August 2013 (has links)
In the present thesis the crack propagation in the ductile-brittle transition region is studied on two scales with deterministic models. In the macroscopic model the ductile failure is described by a non-local Gurson-model whereas the discrete void microstructure is resolved around the crack tip in the microscopic model. The failure by cleavage is not evaluated by means of a post-processing criterion but is modeled equivalently using a cohesive zone model on both scales. Thus, cleavage is not a priori identified with unstable crack propagation but the transition between stable and unstable mode of propagation is a result of the simulation. The problem of handling completely failed material within the framework of non-local damage models is pointed out. A method to overcome this problem is proposed and successfully applied. The case of contained plastic yielding at the crack tip is addressed with a modified-boundary layer model. The macroscopic simulations reproduce many features which are known from experiments like the formation of stretch zones, cleavage after initial ductile tearing, pop-ins with crack arrest, among others. The microscopic simulations substantiate the understanding of the macroscopically observed behavior. Systematic parameter studies are performed. Starting with considerations on the limit cases like pure ductile failure or the lower-ductile brittle transition region allows to separate the effects of the different constitutive parameters. Based on these results, a methodology is proposed to extract the macroscopic material parameters from experiments. This scheme is successfully applied to experimental data from literature. The results show that the behavior of a low-constraint specimen can be reliably predicted with the parameters extracted from a high-constraint specimen. / In der vorliegenden Arbeit wird die Rissausbreitung im spröd-duktilen Übergangsbereich auf zwei Skalen mittels deterministischer Modelle untersucht. Das duktile Versagen wird im makroskopischen Modell durch ein nichtlokales Gurson-Modell beschrieben, während im mikroskopischen Modell die Porenmikrostruktur im Bereich um die Rissspitze diskret aufgelöst wird. Das mögliche Versagen durch Spaltbruch wird nicht, wie üblich, nachträglich durch ein spannungsbasiertes Kriterium bewertet. Stattdessen wird der Spaltbruch auf beiden Skalen durch ein Kohäsivzonenmodell abgebildet. Somit wird die Spaltbruchinitiierung nicht a priori mit instabiler Rissausbreitung gleichgesetzt. Vielmehr ist die Stabilität der Rissausbreitung ein Ergebnis der Simulationen. Außerdem wird das Problem der der Handhabung vollständig ausgefallenen Materials im Rahmen nichtlokaler Schädigungsmodelle herausgestellt. Es wird eine Methode vorgestellt, dieses Problem zu behandeln und erfolgreich angewendet. In den Simulationen wird der Fall vollständig eingebetteten, plastischen Fließens untersucht. Die Simulationen mit dem makroskopischen Modell geben viele Effekte wieder, die aus Experimenten bekannt sind. Dazu zählen die Ausbildung von Stretchzonen, die Spaltbruchinitiierung nach anfänglichem, duktilem Reißen oder lokale Instabilitäten mit Rissarrest. Die mikroskopischen Simulationen tragen zum Verständnis des makroskopisch beobachteten Verhaltens bei. In der vorliegenden Arbeit werden systematische Parameterstudien durchgeführt. Zunächst werden Grenzfälle wie das rein duktile Versagens oder der Spaltbruch in Abwesenheit der Mikroporen untersucht, um die Einflüsse der einzelnen Materialparameter abzugrenzen. Ausgehend von diesen Ergebnissen wird eine Prozedur vorgeschlagen, die Materialparameter des makroskopischen Modells Schritt für Schritt aus Experimenten zu bestimmen. Diese Prozedur wird erfolgreich auf experimentelle Daten aus der Literatur angewendet. Die Ergebnisse zeigen, dass es das entwickelte Modell erlaubt, das Verhalten einer Bruchmechanikprobe mit geringer Dehnungsbehinderung an der Rissspitze mit denjenigen Materialparametern vorherzusagen, die an Proben mit einer hohen Dehnungsbehinderung ermittelt wurden.
198

Thermal Characterization of Heated Microcantilevers and a Study on Near-Field Radiation

Park, Keunhan 05 April 2007 (has links)
Recently, remarkable advances have been made in the understanding of micro/nanoscale energy transport, opening new opportunities in various areas such as thermal management, data storage, and energy conversion. This dissertation focuses on thermally-sensed nanotopography using a heated silicon microcantilever and near-field thermophotovoltaic (TPV) energy conversion system. A heated microcantilever is a functionalized atomic force microscope (AFM) cantilever that has a small resistive heater integrated at the free end. Besides its capability of increasing the heater temperature over 1,000 K, the resistance of a heated cantilever is a very sensitive function of temperature, suggesting that the heated cantilever can be used as a highly sensitive thermal metrology tool. The first part of the dissertation discusses the thermal characterization of the heated microcantilever for its usage as a thermal sensor in various conditions. Particularly, the use of heated cantilevers for tapping-mode topography imaging will be presented, along with the recent experimental results on the thermal interaction between the cantilever and substrate. In the second part of the dissertation, the so-called near-field TPV device is introduced. This new type of energy conversion system utilizes the significant enhancement of radiative energy transport due to photon tunneling and surface polaritons. Investigation of surface and bulk polaritons in a multilayered structure reveals that radiative properties are significantly affected by polariton excitations. The dissertation then addresses the rigorous performance analysis of the near-field TPV system and a novel design of a near-field TPV device.
199

Modelagem do comportamento termo-mecânico transiente de estruturas de materiais compósitos pela teoria de volumes finitos

Cavalcante, Márcio André Araújo 10 February 2006 (has links)
The advance of the materials science has motivated the advent of composite materials with different characteristics that assure high performance thermo-mechanical, such as the advanced fiber reinforced composites and those that present a gradual variation in its microstructure. Nowadays, many computational models and analytical methods are being employed for evaluation of the behavior of such materials. An alternative technique, applied to the steady-state thermo-mechanical analysis, which considers the coupling between microstructure and macrostructure behaviors, is that originally denominated of Higher-Order Theory. In this work is used the same theoretical base of the Higher-Order Theory, with a simplification in the discretization and assembly of the system of equations. In this way, this theory presents some similarities in relation to the finite-volume technique used in fluid dynamics problems, reason for which is enough reasonable to adopt the denomination finitevolume theory for this method. Besides, as a contribution of this study, it is presented a parametric formulation that allows a larger flexibility in the mesh generation and a reduction of the problem in relation to the number of variables, particularly appropriate for analysis of structures with curved contour. The formulation was also extended for the accomplishment of transient thermo-mechanical analysis. In the present study, a three-dimensional formulation of the method is also used for the determination of the effective properties of fiber reinforced composites and particulate materials, where comparisons were accomplished with micromechanics simplified models and with those based on the mean field theory (selfconsistent, Mori-Tanaka and differential scheme). Besides, there is a series of numerical applications in bi-dimensional thermo-elastic and elastic problems, where are accomplished verifications using analytical solutions and comparisons with the finite element method. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O avanço da ciência de materiais tem proporcionado o advento de materiais compósitos com características peculiares que asseguram elevado desempenho termo-mecânico, tais como os compósitos avançados reforçados por fibras e aqueles dotados de microestrutura com variação gradual. Atualmente, muitos modelos computacionais, assim como métodos analíticos, vêm sendo empregados para avaliação do comportamento de tais materiais. Uma técnica alternativa, voltada à análise termo-mecânica em regime estacionário, na qual o comportamento do material é analisado considerando-se o acoplamento entre microestrutura e macroestrutura, é aquela originalmente denominada de Higher-Order Theory. Neste trabalho, utiliza-se a mesma base teórica da Higher-Order Theory, com uma simplificação em termos de discretização e montagem do sistema de equações. Neste sentido, esta teoria apresenta algumas semelhanças em relação à técnica de volumes finitos usada em problemas de dinâmica dos fluidos, razão pela qual é bastante razoável adotar a denominação teoria de volumes finitos para o método. Além disso, como uma contribuição deste estudo, apresenta-se uma formulação paramétrica que permite uma maior flexibilidade na geração da malha e uma diminuição do problema em relação ao número de incógnitas, particularmente apropriada para análise de estruturas com contorno curvo. A formulação também foi ampliada para possibilitar a execução de análises termo-mecânicas transientes. No presente estudo, também é utilizada uma formulação tridimensional do método para a determinação das propriedades efetivas de materiais compósitos reforçados por fibras e particulados, onde foram realizadas comparações com modelos simplificados da micromecânica e com aqueles baseados na teoria de campos médios (Auto-consistente, Mori-Tanaka e Esquema Diferencial). Além disso, há uma série de aplicações numéricas em problemas termo-elásticos e elásticos bidimensionais, onde são realizadas verificações a partir de soluções analíticas e comparações com o método dos elementos finitos.
200

Numerical modelling of inflatable structures made of orthotropic technical textiles : application to the frames of inflatable tents / Modélisation numérique des structures gonflables en textiles techniques orthotropes : application aux armatures des tentes gonflables

Apedo, Komla Lolonyo 10 September 2010 (has links)
L'objectif principal visé par cette thèse est de modéliser les poutres gonflables en textiles techniques orthotropes. Les approches statiques font l'objet de ce rapport. Avant d'aborder ce problème, nous avons été amenés à identifier tous les paramètres qui ont un effet direct sur les propriétés mécaniques effectives de ces composites. Ainsi, nous avons développé un modèle micro mécanique de prédiction de ces propriétés mécaniques. Le modèle proposé est basé sur l’analyse d'un volume élémentaire représentatif (VER) prenant en compte non seulement les propriétés mécaniques et la. fraction de volume de chaque phase dans le VER mais également leur géométrie et leur architecture. Chaque fil dans le VER a été modélisé comme un matériau isotrope transverse (contenant les fibres et la résine). La méthode dite d’assemblage de cylindres a été utilisée pour l’homogénéisation au niveau des fils. Une deuxième homogénéisation est ensuite réalisée. Elle prend en compte la fraction de volume de chaque constituant (fils de chaîne, fils de trame et résine non prise en compte dans les fils). Le modèle a été validé par des résultats expérimentaux existant dans la littérature. Une élude paramétrique a été menée afin d'étudier les effets des divers paramètres géométriques et mécaniques sur ces propriétés mécaniques. Dans l'analyse structurale, un modèle poutre gonflable 3D de Timoshenko en tissu orthotrope a été proposé. Il prend en compte les non-linéarités géométriques et l'effet de la force suiveuse générée par la pression de gonflage. Les équations d'équilibre non-linéaires dérivent du principe des travaux virtuels en configuration lagrangienne totale. Dans une première approche, une linéarisation a été faite autour de la configuration de référence précontrainte pour obtenir les équations adaptées aux problèmes linéaires. A titre d'exemple, le problème de flexion plane a été abordé. Quatre cas de conditions aux limites ont été traités et les résultats obtenus améliorent les modèles existants dans le cas de tissu isotrope. Les charges de plissage ont été également proposées dans chaque cas traité. Dans une deuxième approche, les équations non-linéaires ont été discrétisées par la méthode des éléments finis. Deux types de solutions ont été alors proposées : les solutions aux problèmes éléments finis linéaires obtenues par une linéarisation des équations discrétisées autour de la configuration de référence précontrainte et les solutions aux problèmes éléments finis non-linéaires réalisées en adoptant une méthode Quasi-Newton sous sa forme incrémentale. A titre d’exemple, la flexion d’une poutre encastrée-libre a été étudiée et les résultats améliorent les modèles théoriques. Le modèle éléments finis non-linéaire a été comparé favorablement à un modèle éléments finis coque mince 3D. Une étude paramétrique a été ensuite effectuée. Elle a porté sur l'influence des propriétés mécaniques et sur de la pression de gonflage sur la réponse de la poutre. Les solutions éléments finis linéaires se sont avérées proches des résultats théoriques linéarisés d'une part et les résultats du modèle éléments finis non-linéaire se sont avérés proches des résultats du modèle linéaire dans le cas des propriétés mécaniques élevées alors que le modèle éléments finis non-linéaire est indispensable pour modéliser ces poutres lorsque les propriétés mécaniques du tissu sont faibles / The main objective of this thesis was to model inflatable beams made frorn orthotropic woven fabric composites. The static aspects were investigated in this report. Before planning to develop these models, it was necessary to know all the parameters which have a direct effect on the effective mechanical properties these composites. Thus, a micro­ mechanical model was performed for predicting the effective mechanical properties. The proposed model was based on the analysis of the representative volume element (RVE). The model took into account not only the mechanical properties and volume fraction of each components in the RVE but also their geometry and architecture. Each yarn in the RVE was modelled as a transversely isotropic material (containing fibres and resin) using the concentric cylinders model (CCIVI). A second volumetric averaging which took into account the volume fraction of each constituent (warp yarn, weft yarn and resin), was performed. The model was validated favorably against experimental available data. A parametric study was conducted in order to investigate the effects of various geometrical and mechanical parameters on the elastic properties of these composites. ln the structural analysis, a 3D Timoshenko airbeam with a homogeneous orthotropic woven fabric (OWF) was addressed. The model took into account the geometrical nonlinearities and the inflation pressure follower force effect. The analytical equilibrium equations were performed using the total Lagrangian form of the virtual work principle. As these equations were nonlinear, in a first approach, a linearization was performed at the prestressed reference configuration to obtain the equations devoted to linearized problems. As example, the bending problem was investigated. Four cases of boundary conditions were treated and the deflections and rotations results improved the existing models in the case of isotropic fabric. The wrinkling load in every case was also proposed. In a second approach, the nonlinear equilibrium equations of the 3DTimoshenko airbeam were discretized by the finite element method. Two finite element solutions were then investigated : finite element solutions for linearized problems which were obtained by the means of the linearization around the prestressed reference configuration of the nonlinear equations and nonlinear finite element solutions which were performed by the use of an optimization algorithm based on the Qua.si-Newton method. As an example, the bending problem of a cantilever inflated beam under concentrated load was considered and the deflection results improve the theoretical models. As these beams are made from fabric, the beam models were validated through their comparison with a 3D thin-shell finite element model. The influence of the material effective properties and the inflation pressure on the beam response was also investigated through a parametric study. The finite element solutions for linearized problems were found to be close to the theoretical linearized results. On the other hand, the results for the nonlinear finite element model were shown to be close to the results for the linearized finite element model in the case of high mechanical properties and the non linear finite element model was used to improve the linearized model when the mechanical properties of the fabric are low

Page generated in 0.0478 seconds