• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 8
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 17
  • 13
  • 12
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Microchannel Radiator: an Investigation of Microchannel Technology with Applications in Automotive Radiator Heat Exchangers

Checketts, Gus Thomas 08 1900 (has links)
Microchannels have been used in electronics cooling and in air conditioning applications as condensers. Little study has been made in the application of microchannels in automotive heat exchangers, particularly the radiator. The presented research captures the need for the design improvement of radiator heat exchangers in heavy-duty vehicles in order to reduce aerodynamic drag and improve fuel economy. A method for analyzing an existing radiator is set forth including the needed parameters for effective comparisons of alternative designs. An investigation of microchannels was presented and it was determined that microchannels can improve the overall heat transfer of a radiator but this alone will not decrease the dimensions of the radiator. Investigations into improving the air-side heat transfer were considered and an improved fin design was found which allows a reduction in frontal area while maintaining heat transfer. The overall heat transfer of the design was improved from the original design by 7% well as 52% decrease in frontal area but at the cost of 300% increase in auxiliary power. The energy saved by a reduction in frontal area is not substantial enough to justify the increase of auxiliary power. The findings were verified through a computational fluid dynamic model to demonstrate the heat transfer and pressure drop of microchannel tubes. The results confirmed that heat transfer of microchannels does improve the thermal performance of the radiator but the pressure drop is such that the net benefit does not outweigh the operating cost. An additional CFD study of the new fin geometry and air-side heat transfer predictions was conducted. The results of the study confirmed the theoretical calculations for the fin geometry.
52

Ion Tracks for Micro- and Nanofabrication : From Single Channels to Superhydrophobic Surfaces

Spohr, Reimar January 2010 (has links)
A method is described for preset-count irradiations between 1 and 100 ions singling-out individual ions from an ion beam with more than a billion ions arriving per second. The ion tracks are etched in a conductometric system with real-time evaluation of the acquired data. The etch process can be interrupted when reaching a preset channel diameter. Cylindrical channels are obtained by adding surfactants to the etch solution forming a self-assembled barrier between etching medium and polymer. Asymmetric etching of single ion tracks leads to pH sensitive conical pores with diode-like properties. Using etched channels as template, homogeneous and multilayer magnetic single-wires are electrodeposited. The magnetoresistivity of the wires is studied. Single-track applications comprise critical apertures (cylindric, conic, necked), asymmetric pores (pH sensitive, biospecific), Giant Magneto Resistance sensors, and spintronic devices. On the basis of studies with individual ion tracks we tackled tilted multiporous systems such as ion beam lithography with a masked ion beam leading to micro-structures with inclined walls and anisotropic superhydrophobic ion track textures, analogous to biological shingle structures on butterfly wings. We demonstrated qualitatively, that the asymmetry of the texture translates into motion under ultrasonic agitation. This could lead to the development of rotary drives.
53

Spectroscopie diélectrique hyperfréquence de cellules individualisées sous électroporation / Microwave dielectric spectroscopy of single cells under electroporation

Tamra, Amar 09 March 2017 (has links)
L'électroporation est un procédé physique qui consiste à appliquer des impulsions de champ électrique pour perméabiliser de manière transitoire ou permanente la membrane plasmique. Ce phénomène est d'un grand intérêt dans le domaine clinique ainsi que dans l'industrie en raison de ses diverses applications, notamment l'électrochimiothérapie qui combine les impulsions électriques à l'administration d'une molécule cytotoxique, dans le cadre du traitement des tumeurs. L'analyse de ce phénomène est traditionnellement réalisée à l'aide des méthodes optique et biochimique (microscopie, cytométrie en flux, test biochimique). Elles sont très efficaces mais nécessitent l'utilisation d'une large gamme de fluorochromes et de marqueurs dont la mise en œuvre peut être laborieuse et coûteuse tout en ayant un caractère invasif aux cellules. Durant ces dernières années, le développement de nouveaux outils biophysiques pour l'étude de l'électroporation a pris place, tels que la diélectrophorèse et la spectroscopie d'impédance (basse fréquence). Outre une facilité de mise en œuvre, ces méthodes représentent un intérêt dans l'étude des modifications membranaires de la cellule. De là vient l'intérêt d'opérer au-delà du GHz, dans la gamme des micro-ondes, pour laquelle la membrane cytoplasmique devient transparente et le contenu intracellulaire est exposé. L'extraction de la permittivité relative suite à l'interaction champ électromagnétique/cellules biologiques reflète alors l'état cellulaire. Cette technique, la spectroscopie diélectrique hyperfréquence, se présente comme une méthode pertinente pour analyser les effets de l'électroporation sur la viabilité cellulaire. De plus, elle ne nécessite aucune utilisation des molécules exogènes (non-invasivité) et les mesures sont directement réalisées dans le milieu de culture des cellules. Deux objectifs ont été définis lors de cette thèse dont les travaux se situent à l'interface entre trois domaines scientifiques : la biologie cellulaire, l'électronique hyperfréquence et les micro-technologies. Le premier objectif concerne la transposition de l'électroporation conventionnelle à l'échelle micrométrique, qui a montré une efficacité aussi performante que la première. La deuxième partie du travail concerne l'étude par spectroscopie diélectrique HyperFréquence de cellules soumises à différents traitements électriques (combinés ou non à une molécule cytotoxique). Ces travaux présentent une puissance statistique et montrent une très bonne corrélation (R2 >0 .94) avec des techniques standards utilisées en biologie, ce qui valide 'biologiquement' la méthode d'analyse HF dans le contexte d'électroporation. Ces travaux montrent en outre que la spectroscopie diélectrique hyperfréquence s'avère être une technique puissante, capable de révéler la viabilité cellulaire suite à un traitement chimique et/ou électrique. Ils ouvrent la voie à l'analyse 'non-invasive' par spectroscopie diélectrique HyperFréquence de cellules électroporées in-situ. / Electroporation is a physical process that consists in applying electric field pulses to transiently or permanently permeabilize the plasma membrane. This phenomenon is of great interest in the clinical field as well as in the industry because of its various applications, in particular electrochemotherapy which combines electrical pulses with the administration of a cytotoxic molecule in the treatment of tumors. The evaluation of this phenomenon is raditionally carried out using optical and biochemical methods (microscopy, flow cytometry, biochemical test). They are very effective but require the use of a wide range of fluorochromes and markers, which can be laborious and costly to implement, while being invasive to the cells. In recent years, the development of new biophysical tools for the study of electroporation has taken place, such as dielectrophoresis and impedance spectroscopy (low frequency). In addition to the ease of implementation, these methods are of interest in the study of membrane modifications of the cell. Hence the advantage of operating beyond the GHz, in the range of microwaves, for which the cytoplasmic membrane becomes transparent and the intracellular content is exposed. The extraction of the relative permittivity as a result of the electromagnetic field / biological cell interaction then reflects the cell state. This technique, microwave dielectric spectroscopy, is a relevant method for analyzing the effects of electroporation on cell viability. Moreover, it does not require any use of the exogenous molecules (non-invasive) and the measurements are directly carried out in the culture medium of the cells. Two objectives were defined during this thesis whose work is located at the interface between three scientific fields: cellular biology, microwave electronics and micro-technologies. The first objective concerns the transposition of conventional electroporation to the micrometric scale, which has shown an efficiency as efficient as the first. The second part of the work concerns the study by HighFrequency dielectric spectroscopy of cells subjected to different electrical treatments (combined or not with a cytotoxic molecule). This work presents a statistical power and shows a very good correlation (R2> 0.94) with standard techniques used in biology, which biologically validates the HF analysis method in the context of electroporation. This work also shows that microwave dielectric spectroscopy proves to be a powerful technique capable of revealing cell viability following chemical and / or electrical treatment. They open the way to 'non-invasive' analysis by hyper-frequency dielectric spectroscopy of electroporated cells in situ.
54

The Dynamics of Coupled Resonant Systems and Their Applications in Sensing

Conor S Pyles (9759650) 14 December 2020 (has links)
The field of coupled resonant systems is a rich research area with enumerable real-world applications, including the fields of neural computing and pattern recognition, energy harvesting, and even modeling the behavior of certain types of biological systems. This work is primarily focused on the study of the behaviors of two subsets of this field: large networks of globally coupled resonators (which, in this work, refers to passive, damped resonant elements which require external stimulus) and smaller networks of oscillators (referring to active devices capable of self-sustained motion), which are coupled through a network of light-sensitive resistive elements. In the case of the former, we begin by developing an analytical and experimental framework to examine the behaviors of this system under various conditions, such as different coupling modalities and element-level parametric mistunings. Once a proper understanding of the dynamics of these systems has been established, we go on to develop the system into a single-input, single-output, multi-analyte volatile organic compound sensor. For the study of oscillator networks, we begin by building a device which utilizes a network of Colpitts oscillators, coupled through a series of color-filtered CdSe photocells. We then establish that through the analysis of particular emergent behaviors (most notably, frequency locking within the network), this type of system may show promise as a threshold color sensor. By exploiting these behaviors, this type of system may find applications in neuromorphic computing (particularly in optical pattern recognition).
55

Analysis of Pop-Up Rings for the Fabrication of Giant MEMS Hemispheric Shell Resonators

Calvin Mitchell Jones (9524552) 16 December 2020 (has links)
Fabrication of hemispherical structures for application in hemispherical resonator gyro-scopes (HRG) is an integral part of modern sensing systems, especially in relation to space navigation. First, it is important for these structures to be as symmetric as possible in order to accurately track both in-plane and out-of-plane acceleration that occurs in fast moving satellites and space crafts. Next, they need to be larger for easier application in current mm scale systems and to maintain a lower noise floor and high quality factor. The work in this paper introduces a methodology for the analyzation of the micromachining process for larger symmetric hemispherical shell resonators (HSR). This is in order to increase their size while maintaining symmetry through isotropic etching using HNA and the pop-up ring mask design. The implementation of the pop-up ring mask allows for symmetric etching of<111> silicon and larger MEMS structures at a low cost while giving more design control to the user in comparison to alternative designs such as the pinhole. The investigation of how hemispheric structures are affected based on the adjustment of the pop-up ring design serves to both create larger symmetric HSRs and create a better model for future designs and applications. During this investigation, a range of design tests were done to create the hemispherical resonator molds in order to gauge the effectiveness of the pop-up ring changes. These results were then used to develop a method for achieving the desired larger symmetric HSRs.
56

COMPLEMENTARY ELECTRONIC DEVICES BASED ON TWO-DIMENSIONAL TELLURIUM

Mingyi Wang (18570733) 10 January 2025 (has links)
<p dir="ltr">The exploration of tellurene as a large-area, stable p-type semiconductor has been a key focus of research for several years. In my work, I have made notable strides by successfully fabricating ambipolar Te-FETs using contact engineering techniques. Notably, we observed that the polarity characteristics of Te flakes depend on their thickness: thinner flakes exhibit p-type behavior, while thicker ones show n-FET characteristics.</p><p dir="ltr">To better understand the carrier transport mechanism in 2D Te FETs, we developed a novel "sandwich" model. This model accounts for the differing properties of the surface layer compared to the inner layers, combining insights from both experimental data and advanced simulations. By addressing the variations between the surface and the body layers, we have gained new insights into the thickness-dependent polarity of Te FETs—an area previously explained through band structure alignment theory in other 2D semiconductors.</p><p dir="ltr">Surface native oxide's influence on FET transport has often been neglected in similar materials. However, in our research, we specifically focused on charge transfer doping caused by Te's native oxide. By directly reducing the surface oxide layer, we highlighted the importance of environment-induced surface defects, like native oxide, which are almost unavoidable in nanoelectronics based on 2D materials. These defects result in a chemically distinct surface composition, causing band bending in the out-of-plane direction near the surface.</p><p dir="ltr">In addition to these fundamental findings, we reached a significant practical milestone by successfully constructing a monolithic CMOS inverter. This was achieved through careful control of Te thickness and contact design, ensuring optimal device performance. We also advanced polarity engineering by demonstrating a homojunction based on Te flakes of different thicknesses, showcasing the versatility and potential of polarity control in 2D materials. This has exciting implications for the development of photodetectors and photovoltaic devices.</p><p dir="ltr">Overall, our research provides important insights into the transport mechanisms and polarity engineering of 2D semiconductors, with a particular focus on tellurene. Our findings not only enhance the understanding of Te FETs but also have broader implications for the field of 2D materials and their applications in advanced electronics.</p>
57

Reduced Degradation of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Solar Cells by Graphene Encapsulation

Kyle Reiter (6639662) 14 May 2019 (has links)
<div> <div> <div> <p>Organic-inorganic halide perovskite solar cells have increased efficiencies substantially (from 3% to > 22%), within a few years. However, these solar cells degrade very rapidly due to humidity and no longer are capable of converting photons into electrons. Methylammonium Lead Triiodide (CH3NH3PbI3 or MAPbI3) is the most common type of halide perovskite solar cell and is the crystal studied in this thesis. Graphene is an effective encapsulation method of MAPbI3 perovskite to reduce degradation, while also being advantageous because of its excellent optical and conductive properties. Using a PMMA transfer method graphene was chemical vapor depostion (CVD) grown graphene was transferred onto MAPbI3 and reduced the MAPbI3 degradation rate by over 400%. The PMMA transfer method in this study is scalable for roll-to- roll manufacturing with fewer cracks, impurites, and folds improving upon dry transfer methods. To characterize degradation a fluorescent microscope was used to capture photoluminescence data at initial creation of the samples up to 528 hours of 80% humidity exposure. Atomic force microscopy was used to characterize topographical changes during degradation. The study proves that CVD graphene is an effective encapsulation method for reducing degradation of MAPbI3 due to humidity and retained 95.3% of its initial PL intensity after 384 hours of 80% humidity exposure. Furthermore, after 216 hours of 80% humidity exposure CVD graphene encapsulated MAPbI3 retained 80.2% of its initial number of peaks, and only saw a 35.1% increase in surface height. Comparatively, pristine MAPbI3 only retained 16% of its initial number of peaks and saw a 159% increase in surface height. </p> </div> </div> </div>
58

Numerical modeling of the surface and the bulk deformation in a small scale contact: application to the nanoindentation interpretation and to the micro-manipulation

Berke, Peter 19 December 2008 (has links)
<p align='justify'>L’adaptation des surfaces pour des fonctions prédéterminées par le choix des matériaux métalliques ou des couches minces ayant des propriétés mécaniques avancées peut potentiellement permettre de réaliser des nouvelles applications à petites échelles. Concevoir de telles applications utilisant des nouveaux matériaux nécessite en premier lieu la connaissance des propriétés mécaniques des matériaux ciblés à l’échelle microscopique et nanoscopique. Une méthode souvent appliquée pour caractériser les matériaux à petites échelles est la nanoindentation, qui peut être vue comme une mesure de dureté à l’échelle nanoscopique.</p><p><p align='justify'>Ce travail présente une contribution relative à l'interprétation des résultats de la nanoindentation, qui fait intervenir un grand nombre de phénomènes physiques couplés à l'aide de simulations numériques. A cette fin une approche interdisciplinaire, adaptée aux phénomènes apparaissant à petites échelles, et située à l’intersection entre la physique, la mécanique et la science des matériaux a été utilisée. Des modèles numériques de la nanoindentation ont été conçus à l'échelle atomique (modèle discret) et à l'échelle des milieux continus (méthode des éléments finis), pour étudier le comportement du nickel pur. Ce matériau a été choisi pour ses propriétés mécaniques avancées, sa résistance à l'usure et sa bio-compatibilité, qui peuvent permettre des applications futures intéressantes à l'échelle nanoscopique, particulièrement dans le domaine biomédical. Des méthodes avancées de mécanique du solide ont été utilisées pour prendre en compte les grandes déformations locales du matériau (par la formulation corotationelle), et pour décrire les conditions de contact qui évoluent au cours de l'analyse dans le modèle à l'échelle des milieux continus (traitement des conditions de contact unilatérales et tangentielles par une forme de Lagrangien augmenté).</p><p><p align='justify'>L’application des modèles numériques a permis de contribuer à l’identification des phénomènes qui gouvernent la nanoindentation du nickel pur. Le comportement viscoplastique du nickel pur pendant nanoindentation a été identifié dans une étude expérimentale-numérique couplée, et l'effet cumulatif de la rugosité et du frottement sur la dispersion des résultats de la nanoindentation a été montré par une étude numérique (dont les résultats sont en accord avec des tendances expérimentales).</p> <p><p align='justify'>Par ailleurs, l’utilisation de l’outil numérique pour une autre application à petites échelles, la manipulation des objets par contact, a contribué à la compréhension de la variation de l’adhésion électrostatique pendant micromanipulation. La déformation plastique des aspérités de surface sur le bras de manipulateur (en nickel pur) a été identifiée comme une source potentielle d’augmentation importante de l'adhésion pendant la micromanipulation, qui peut potentiellement causer des problèmes de relâche et de précision de positionnement, observés expérimentalement.</p><p><p align='justify'>Les résultats présentés dans cette thèse montrent que des simulations numériques basées sur la physique du problème traité peuvent expliquer des tendances expérimentales et contribuer à la compréhension et l'interprétation d'essais couramment utilisé pour la caractérisation aux petites échelles. Le travail réalisé dans cette thèse s’inscrit dans un projet de recherche appelé "mini-micro-nano" (mµn), financé par la Communauté Française de Belgique dans le cadre de "l'Action de Recherche Concertée", convention 04/09-310.</p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
59

APPLICATIONS OF MICROHEATER/RESISTANCE TEMPERATURE DETECTOR AND ELECTRICAL/OPTICAL CHARACTERIZATION OF METALLIC NANOWIRES WITH GRAPHENE HYBRID NETWORKS

Doosan Back (6872132) 16 December 2020 (has links)
<div>A microheater and resistance temperature detector (RTD) are designed and fabricated for various applications. First, a hierarchical manifold microchannel heatsink with an integrated microheater and RTDs is demonstrated. Microfluidic cooling within the embedded heat sink improves heat dissipation, with two-phase operation offering the potential for dissipation of very high heat fluxes while maintaining moderate chip temperatures. To enable multi-chip stacking and other heterogeneous packaging approaches, it is important to densely integrate all fluid flow paths into the device. Therefore, the details of heatsink layouts and fabrication processes are introduced. Characterization of two-phase cooling as well as reliability of the microheater/RTDs are discussed. In addition, another application of microheater for mining particle detection using interdigitated capacitive sensor. While current personal monitoring devices are optimized for monitoring microscale particles, a higher resolution technique is required to detect sub-micron and nanoscale particulate matters (PM) due to smaller volume and mass of the particles. The detection capability of the capacitive sensor for sub-micron and nanoparticles are presented, and an incorporated microheater improved stable capacitive sensor reading under air flow and various humidity. </div><div>This paper also introduces the characterization of nanomaterials such as metallic nanowires (NWs) and single layer graphene. First, the copper nanowire (CuNW)/graphene hybrid networks for transparent conductors (TC) is investigated. Though indium tin oxide (ITO) has been widely used, demands for the next generation of TC is increasing due to a limited supply of indium. Thus, the optical and electrical properties of CuNW/graphene hybrid network are compared with other transparent conductive materials including ITO. Secondly, silver nanowire (AgNW) growth technique using electrodeposition is introduced. A vertically aligned branched AgNW arrays is made using a porous anodic alumina template and the optical properties of the structure are discussed.</div><div><br></div>
60

Electronic Application of Two Dimensional Materials

Suki N Zhang (10723164) 29 April 2021 (has links)
Recent advances in atomically thin two-dimensional materials have led to various promising technologies such as nanoelectronics, sensing, energy storage, and optoelectronics applications. Graphene with sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice has attracted tremendous interest with excellent electrical, optical, mechanical, and chemical properties. In this work, graphene’s mechanical properties, chemical properties, and piezoelectric properties are explored as graphene is implemented in the automotive electrical distribution system. Graphene is useful in friction reduction, corrosion protection, and piezoelectric energy harvesting cell improvement. Besides graphene, transition metal dichalcogenides (TMDs), which are the metal atoms sandwiched between two chalcogen atoms, have also attracted much attention. Unlike graphene, many TMDs are semiconductors in nature and possess enormous potential to be used as a potential channel material in ultra-scaled field-effect transistors (FETs). In this work, chemical doping strategies are explored for the tunnel FETs applications using different metal phthalocyanines and polyethyleneimines as dopants. TMDs FETs can also be used as a selective NO<sub>2</sub> gas sensor with a polydimethylsiloxane filter and a highly sensitive photo-interfacial gated photodetector application.

Page generated in 0.3804 seconds