• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Įvairialyčių AIIIBV darinių tyrimas mikrobangose / Investigation of AIIIBIV heterostructures under the action of microwave radiation

Kozič, Antoni 07 October 2008 (has links)
Disertacijoje nagrinėjama, kaip padidinti susiaurintų spinduliuotės jutiklių jautrį. Taip pat disertacijoje siekiama ištirti mikrobangų spinduliuotės poveikį susiaurintiems puslaidininkiniams dariniams ir atskleisti stebimų efektų fizinę prigimtį bei nustatyti bandinių struktūros įtaką detektuojamo signalo dydžiui. Darbe sprendžiami tokie pagrindiniai uždaviniai: tiriamos įvairialyčių susiaurintų puslaidininkinių darinių savybės, priklausančios nuo darinių sluoksnių kokybės ir puslaidininkinių medžiagų parametrų bei analizuojamos savybės, priklausančios nuo stipriai legiruoto puslaidininkinio sluoksnio laidumo, nuo skiriamojo sluoksnio storio ir nuo sklendės pobūdžio metalizacijos. Siekiant užsibrėžto tikslo, buvo gaminami ir tiriami susiaurinti skirtingi įvairialyčiai dariniai (AlGaAs/GaAs, AlGaAs/InGaAs/GaAs) ir n-GaAs dariniai. Disertaciją sudaro penki skyriai, kurių paskutinis – rezultatų apibendrinimas. Pirmajame (įvadiniame) skyriuje nagrinėjamas problemos aktualumas, formuluojamas darbo tikslas bei uždaviniai, aprašomas mokslinis darbo naujumas, pristatomi autoriaus pranešimai, disertacijos struktūra. Antrasis skyrius skirtas literatūros apžvalgai. Jame apžvelgiami elektromagnetinės spinduliuotės detektavimo principai, aptariamos šiluminės ir bigradientinės elektrovaros susidarymo priežastys, AlGaAs/GaAs įvairialytė sandūra, selektyvusis legiravimas bei puslaidininkinių prietaisų fizikinės galimybės. Trečiajame skyriuje pateikta eksperimento tyrimo metodika. Išsamiai... [toliau žr. visą tekstą] / The thesis presents the investigation on how to increase the sensitivity of the narrowed sensors of radiation. Also the thesis also deals with the attempts to analyze the influence of the microwave radiation on to the narrowed semiconductor formations and to reveal the physical nature of the observed effects as well as to determine the influence of structure of the samples on the detected signal magnitude. The work solves the following major tasks: the characteristics of the narrowed semiconductor heterostructures depending on the quality of the modulation layers and on the parameters of the semiconductor materials as well as the characteristics, depending on the selectively doped structure, on the conductivity of the highly doped semiconductor layer, and on the thickness of the separating layer, and the type of metallization of the gate. In order to achieve the goal there were produced and investigated narrowed different heterostructures (AlGaAs/GaAs, AlGaAs/InGaAs/GaAs) and n-GaAs structures. The thesis consists of four chapters, the final one is the generalization of the results. The first chapter (introductory) deals with the actuality of the problem, the aim and the tasks are stated, the novelty of the scientific research is described, the reports of the author are presented together with the publications, and the structure of the thesis. The second chapter is assigned to the review of the literature. It presents the principals of electromagnetic radiation detection... [to full text]
2

Compact Low-Cost Ultra-Wideband Pulsed-Radar System

Pitcher, Aaron D. January 2019 (has links)
Recently, the advent of the integrated circuits (ICs), the monolithic microwave integrated circuits (MMICs) and the multiprocessing computer technology have provided numerous opportunities to make the radar technology compact and affordable. The ultra-wideband (UWB) technology gives many advantages over the traditional narrowband radar systems due to its high spatial resolution, low susceptibility to interference, superior penetration depths, and increased peak power. However, the ability to digitize and reconstruct the full UWB signal spectrum comes at a considerable cost and size. Ultimately, high-speed sampling rates above 10 giga-samples per second (GSPS) are beyond the abilities of conventional analog-to-digital converters (ADCs). The UWB technology is inaccessible to the end-user for various advanced applications in microwave imaging and detection. The purpose of this work is to provide a low-cost, dual-channel UWB pulsed-radar system that is readily available with a 1:10 system bandwidth. The advancements in low-cost alternatives for compact and portable designs empower many promising UWB applications. Here, the desired bandwidth is from 500 MHz to 5 GHz, which utilizes a fast pulse repetition frequency (PRF) in short-range applications. The preliminary results from the novel Equivalent-Time Sampling Receiver are promising with an equivalent-time sampling rate up to 20 GSPS. Nevertheless, the system design is versatile for bandwidth tuning in order to meet the needs of different applications. This versatility is enabled by: i) selection of the effective sampling rate through the field-programmable gate array (FPGA) programming environment, ii) choice of the receivers' front-end track and hold (T & H) amplifier bandwidth, iii) a collection of different PRFs from the low kilohertz up to 20 MHz, iv) tuning of the pulse generator bandwidth, and v) simultaneous multi-channel capabilities enabling antenna beam-forming, polarization diversity and spatial diversity. The result is a fully functional prototype that costs a fraction of traditional bench-top solutions. / Thesis / Master of Applied Science (MASc)
3

Compact and Highly Sensitive Bended Microwave Liquid Sensor Based on a Metamaterial Complementary Split-Ring Resonator

Mosbah, S., Zebiri, C., Sayad, D., Elfergani, Issa T., Bouknia, M.L., Mekki, S., Zegadi, R., Palandoken, M., Rodriguez, J., Abd-Alhameed, Raed 27 March 2022 (has links)
Yes / In this paper, we present the design of a compact and highly sensitive microwave sensor based on a metamaterial complementary split-ring resonator (CSRR), for liquid characterization at microwave frequencies. The design consists of a two-port microstrip-fed rectangular patch resonating structure printed on a 20 × 28 mm2 Roger RO3035 substrate with a thickness of 0.75 mm, a relative permittivity of 3.5, and a loss tangent of 0.0015. A CSRR is etched on the ground plane for the purpose of sensor miniaturization. The investigated liquid sample is put in a capillary glass tube lying parallel to the surface of the sensor. The parallel placement of the liquid test tube makes the design twice as efficient as a normal one in terms of sensitivity and Q factor. By bending the proposed structure, further enhancements of the sensor design can be obtained. These changes result in a shift in the resonant frequency and Q factor of the sensor. Hence, we could improve the sensitivity 10-fold compared to the flat structure. Subsequently, two configurations of sensors were designed and tested using CST simulation software, validated using HFSS simulation software, and compared to structures available in the literature, obtaining good agreement. A prototype of the flat configuration was fabricated and experimentally tested. Simulation results were found to be in good agreement with the experiments. The proposed devices exhibit the advantage of exploring multiple rapid and easy measurements using different test tubes, making the measurement faster, easier, and more cost-effective; therefore, the proposed high-sensitivity sensors are ideal candidates for various sensing applications. / This work was supported by the Moore4Medical project, funded within ECSEL JU in collaboration with the EU H2020 Framework Programme (H2020/2014–2020) under grant agreement H2020-ECSEL-2019-IA-876190, and the Fundação para a Ciência e Tecnologia (ECSEL/0006/2019). This project received funding in part from the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique), MESRS (Ministry of Higher Education and Scientific Research), Algeria. This work was also supported by the General Directorate of Scientific Research and Technological Development (DGRSDT)–Ministry of Higher Education and Scientific Research (MESRS), Algeria, and funded by the FCT/MEC through national funds and, when applicable, co-financed by the ERDF, under the PT2020 Partnership Agreement under the UID/EEA/50008/2020 project.
4

Desenvolvimento de sensores em frequências de micro-ondas para caracterização de etanol combustível. / Microwave-based sensors for ethanol fuel characterization.

Becari, Wesley 06 March 2017 (has links)
Etanol é um dos principais combustíveis na matriz energética brasileira. Embora tenha uma fiscalização rigorosa, é comum sua adulteração com água. Este trabalho propõe o desenvolvimento de sensores planares de micro-ondas para a qualificação de etanol combustível. São apresentados dois conjuntos de sensores, sendo um voltado para a análise da fase vapor e outro para a fase líquida do etanol combustível. Foram projetados dois sensores para a fase vapor, sendo um deles uma antena de microfita e o outro uma antena de fenda em cavidade de guia de ondas integrada ao substrato, ambos recobertos com nanotubos de carbono e operando em 5,8 GHz. As antenas foram utilizadas como ressoadores e não como elementos radiantes. Os dois sensores para a fase líquida foram projetados em tecnologia de guia de ondas integrado ao substrato, sendo um deles a antena de fenda em cavidade, sem cobertura de nanotubos de carbono, e o outro um guia de ondas operando na faixa de 3,95 a 6 GHz contendo uma seção no substrato. Foram implementadas as técnicas de perturbação da cavidade ressonante e de transmissão/reflexão para a extração dos valores de permissividade elétrica complexa dos materiais sob teste, a partir da resposta em frequência dos sensores propostos. Foram caracterizadas amostras de álcool etílico absoluto 99,5%, água deionizada e misturas desses materiais em diferentes frações. Todos os sensores propostos demonstraram capacidade de discriminação de frações volumétricas de etanol em água de 2% (v/v) na faixa especificada pela legislação. Os nanotubos de carbono viabilizaram o desenvolvimento dos sensores de fase vapor, sendo que o sensor empregando a antena com fenda apresentou sensibilidade 5,1 vezes maior comparado ao sensor com antena de microfita. O sensor de fase líquida usando a antena com fenda apresentou a maior sensibilidade entre os sensores ressonantes -- 30,9 vezes maior do que o obtido com a antena de microfita com nanotubos de carbono. O sensor com guia de ondas integrado ao substrato apresentou incerteza máxima de 3,4% para medidas de etanol em água nas frações permitidas pela legislação. Dessa forma, este trabalho contribui de forma original no desenvolvimento de sensores para caracterização eletromagnética de materiais e para qualificação de etanol combustível. / Ethanol is one of the main fuels in the Brazilian energy matrix. Despite going through rigorous inspection, it is usually altered with water. This work proposes different planar microwave sensors for qualifying ethanol fuel. Two sets of sensors are presented: one for analyzing the vapor phase of ethanol and the other for the liquid phase of ethanol. Two sensors were designed for the vapor phase: a microstrip antenna and a cavity-backed slot antenna based on the substrate integrated waveguide technology, both coated with carbon nanotubes and operating at 5.8 GHz. The antennas were used as resonators and not as radiation elements. The sensors for the liquid phase were also designed based on the substrate integrated waveguide technology. The first sensor is a cavity-backed slot antenna, without carbon nanotubes, and the second sensor is a waveguide containing a section in the substrate, which operates at frequencies from 3.95 to 6 GHz. The cavity perturbation technique and the transmission/reflection method were implemented to extract the complex permittivity values from the materials under test, from the frequency response of the sensors. Samples of ethanol 99,5% pure, deionized water, and mixture with different proportions of these two materials were characterized. All the proposed sensors demonstrated capacity to differentiate 2% (v/v) of volumetric fraction of ethanol in water within the range specified by the legislation. Carbon nanotubes allowed the development of the vapor phase sensors. The vapor phase sensor using the cavitybacked slot antenna presented 5.1 times higher sensitivity compared to the sensor employing the microstrip antenna. The liquid phase sensor using the cavity-backed slot antenna presented the highest sensitivity among the resonant sensors -- 30.9 times higher than the microstrip antenna with carbon nanotubes. The sensor with substrate integrated waveguide presented uncertainty 3.4% for fractions of ethanol in water allowed by the legislation. Thus, this work provides an original contribution to the development of electromagnetic sensors for the characterization of materials and for qualifying ethanol fuel.
5

Desenvolvimento de sensores em frequências de micro-ondas para caracterização de etanol combustível. / Microwave-based sensors for ethanol fuel characterization.

Wesley Becari 06 March 2017 (has links)
Etanol é um dos principais combustíveis na matriz energética brasileira. Embora tenha uma fiscalização rigorosa, é comum sua adulteração com água. Este trabalho propõe o desenvolvimento de sensores planares de micro-ondas para a qualificação de etanol combustível. São apresentados dois conjuntos de sensores, sendo um voltado para a análise da fase vapor e outro para a fase líquida do etanol combustível. Foram projetados dois sensores para a fase vapor, sendo um deles uma antena de microfita e o outro uma antena de fenda em cavidade de guia de ondas integrada ao substrato, ambos recobertos com nanotubos de carbono e operando em 5,8 GHz. As antenas foram utilizadas como ressoadores e não como elementos radiantes. Os dois sensores para a fase líquida foram projetados em tecnologia de guia de ondas integrado ao substrato, sendo um deles a antena de fenda em cavidade, sem cobertura de nanotubos de carbono, e o outro um guia de ondas operando na faixa de 3,95 a 6 GHz contendo uma seção no substrato. Foram implementadas as técnicas de perturbação da cavidade ressonante e de transmissão/reflexão para a extração dos valores de permissividade elétrica complexa dos materiais sob teste, a partir da resposta em frequência dos sensores propostos. Foram caracterizadas amostras de álcool etílico absoluto 99,5%, água deionizada e misturas desses materiais em diferentes frações. Todos os sensores propostos demonstraram capacidade de discriminação de frações volumétricas de etanol em água de 2% (v/v) na faixa especificada pela legislação. Os nanotubos de carbono viabilizaram o desenvolvimento dos sensores de fase vapor, sendo que o sensor empregando a antena com fenda apresentou sensibilidade 5,1 vezes maior comparado ao sensor com antena de microfita. O sensor de fase líquida usando a antena com fenda apresentou a maior sensibilidade entre os sensores ressonantes -- 30,9 vezes maior do que o obtido com a antena de microfita com nanotubos de carbono. O sensor com guia de ondas integrado ao substrato apresentou incerteza máxima de 3,4% para medidas de etanol em água nas frações permitidas pela legislação. Dessa forma, este trabalho contribui de forma original no desenvolvimento de sensores para caracterização eletromagnética de materiais e para qualificação de etanol combustível. / Ethanol is one of the main fuels in the Brazilian energy matrix. Despite going through rigorous inspection, it is usually altered with water. This work proposes different planar microwave sensors for qualifying ethanol fuel. Two sets of sensors are presented: one for analyzing the vapor phase of ethanol and the other for the liquid phase of ethanol. Two sensors were designed for the vapor phase: a microstrip antenna and a cavity-backed slot antenna based on the substrate integrated waveguide technology, both coated with carbon nanotubes and operating at 5.8 GHz. The antennas were used as resonators and not as radiation elements. The sensors for the liquid phase were also designed based on the substrate integrated waveguide technology. The first sensor is a cavity-backed slot antenna, without carbon nanotubes, and the second sensor is a waveguide containing a section in the substrate, which operates at frequencies from 3.95 to 6 GHz. The cavity perturbation technique and the transmission/reflection method were implemented to extract the complex permittivity values from the materials under test, from the frequency response of the sensors. Samples of ethanol 99,5% pure, deionized water, and mixture with different proportions of these two materials were characterized. All the proposed sensors demonstrated capacity to differentiate 2% (v/v) of volumetric fraction of ethanol in water within the range specified by the legislation. Carbon nanotubes allowed the development of the vapor phase sensors. The vapor phase sensor using the cavitybacked slot antenna presented 5.1 times higher sensitivity compared to the sensor employing the microstrip antenna. The liquid phase sensor using the cavity-backed slot antenna presented the highest sensitivity among the resonant sensors -- 30.9 times higher than the microstrip antenna with carbon nanotubes. The sensor with substrate integrated waveguide presented uncertainty 3.4% for fractions of ethanol in water allowed by the legislation. Thus, this work provides an original contribution to the development of electromagnetic sensors for the characterization of materials and for qualifying ethanol fuel.
6

Novel RF/Microwave Circuits And Systems for Lab on-Chip/on-Board Chemical Sensors

Abbas Mohamed Helmy, Ahmed M 16 December 2013 (has links)
Recent research focuses on expanding the use of RF/Microwave circuits and systems to include multi-disciplinary applications. One example is the detection of the dielectric properties of chemicals and bio-chemicals at microwave frequencies, which is useful for pharmaceutical applications, food and drug safety, medical diagnosis and material characterization. Dielectric spectroscopy is also quite relevant to detect the frequency dispersive characteristics of materials over a wide frequency range for more accurate detection. In this dissertation, on-chip and on-board solutions for microwave chemical sensing are proposed. An example of an on-chip dielectric detection technique for chemical sensing is presented. An on-chip sensing capacitor, whose capacitance changes when exposed to material under test (MUT), is a part of an LC voltage-controlled oscillator (VCO). The VCO is embedded inside a frequency synthesizer to convert the change in the free runing frequency frequency of the VCO into a change of its input voltage. The system is implemented using 90 nm CMOS technology and the permittivities of MUTs are evaluated using a unique detection procedure in the 7-9 GHz frequency range with an accuracy of 3.7% in an area of 2.5 × 2.5 mm^2 with a power consumption of 16.5 mW. The system is also used for binary mixture detection with a fractional volume accuracy of 1-2%. An on-board miniaturized dielectric spectroscopy system for permittivity detec- tion is also presented. The sensor is based on the detection of the phase difference be- tween the input and output signals of cascaded broadband True-Time-Delay (TTD) cells. The sensing capacitor exposed to MUTs is a part of the TTD cell. The change of the permittivity results in a change of the phase of the microwave signal passing through the TTD cell. The system is fabricated on Rogers Duroid substrates with a total area of 8 × 7.2 cm2. The permittivities of MUTs are detected in the 1-8 GHz frequency range with a detection accuracy of 2%. Also, the sensor is used to extract the fractional volumes of mixtures with accuracy down to 1%. Additionally, multi-band and multi-standard communication systems motivate the trend to develop broadband front-ends covering all the standards for low cost and reduced chip area. Broadband amplifiers are key building blocks in wideband front-ends. A broadband resistive feedback low-noise amplifier (LNA) is presented using a composite cross-coupled CMOS pair for a higher gain and reduced noise figure. The LNA is implemented using 90 nm CMOS technology consuming 18 mW in an area of 0.06 mm2. The LNA shows a gain of 21 dB in the 2-2300 MHz frequency range, a minimum noise figure of 1.4 dB with an IIP3 of -1.5 dBm. Also, a four-stage distributed amplifier is presented providing bandwidth extension with 1-dB flat gain response up to 16 GHz. The flat extended bandwidth is provided using coupled inductors in the gate line with series peaking inductors in the cascode gain stages. The amplifier is fabricated using 180 nm CMOS technology in an area of 1.19 mm2 achieving a power gain of 10 dB, return losses better than 16 dB, noise figure of 3.6-4.9 dB and IIP3 of 0 dBm with 21 mW power consumption. All the implemented circuits and systems in this dissertation are validated, demonstrated and published in several IEEE Journals and Conferences.
7

Utvärdering av individuella skillnader hos mikrovågssensorer / Evaluation of individual differences in microwave sensors

Svensson, Andreas, Jangren, William January 2020 (has links)
The purpose of this study is to investigate if individual differences exists between microwave sensors from the same manufacturer and to find which variables of the microwave sensors that can be the reason for those individual differences. To investigate this, an experiment environment was made to gather data from microwave sensors in a repetitive way. This experiment environment was used in three different experiments where individual differences, radiation pattern and noise were measured. As a base for the experiments a literature review was made to find variables that could affect the individual differences. The study shows that individual differences on signal strength can be found on microwave sensors of the type MDU2000 from Microwave solutions. Also, the radiation pattern at higher angles can differentiate. The frequency from the microwave sensors at lower speeds shows no significant difference individually. This study contributes to increased knowledge about individual differences on microwave sensors of the type MDU2000. Results from this study can be used as a recommendation to suitable applications. As both resources and time have been limited during this thesis, the study was limited to only perform tests on microwave sensors of the type doppler radar. Another limit to the study is to only do tests at lower speeds i.e. a maximum speed of 5km/h. / Syftet med denna studie är utreda om individuella skillnader finns mellan mikrovågssensorer från samma tillverkare samt att ta reda på vilka variabler hos mikrovågssensorerna som kan bidra till dessa individuella skillnader. För att ta reda på detta konstruerades en experimentmiljö för att samla in data från mikrovågssensorer på ett repetitivt sätt. Denna experimentmiljö användes i tre olika experiment där individuell skillnad, strålningsmönstret samt brus uppmättes. Som grund till experimenten utfördes en litteraturundersökning för att hitta variabler som kan påverka den individuella skillnaden. Studien visar att individuella skillnader på signalstyrka finns bland mikrovågssensorer av typen MDU2000 från Microwave solutions. Även antennens strålningsmönster vid större vinklar kan skilja. Frekvensen från mikrovågssensorn vid lägre hastigheter visar ingen signifikant skillnad individuellt. Denna studie bidrar till ökad kunskap kring individuella skillnader på mikrovågssensorer av typen MDU2000. Resultat från studien kan användas som rekommendation till lämpliga användningsområden. Då både resurser och tid har varit begränsade under examensarbetet sattes en begränsning till att endast utföra tester på mikrovågssensorer av typen dopplerradar. En till begränsning är att endast göra tester på låga hastigheter d.v.s. maximalt 5km/h.
8

Evaluation of biomedical microwave sensors : Microwave sensors as muscle quality discriminators in laboratory and pilot clinical trial settings

Mattsson, Viktor January 2022 (has links)
In this thesis the primary focus is on the evaluation of biomedical microwave sensor to be used in the muscle analyzer system. Lower muscle quality is one indicator that a patient can have sarcopenia. Therefore the muscle analyzer system can be a tool used in screening for sarcopenia. Sarcopenia is a progressive skeletal muscle disorder that typically affects elderly people. It is characterized by several different things, one of them is that there is an infiltration of fat into the muscle. At microwave frequencies the dielectric properties of fat are vastly different than the muscles. So, this fat infiltration creates a dielectric contrast compared to muscle without this fat infiltration that the sensors aim to detect. The muscle analyzer system is proposed to be a portable device that can be employed in clinics to assess muscle quality. The sensors are evaluated on their ability to distinguish between normal muscle tissue and muscle of lower quality. This is achieved via electromagnetic simulations, clinical trials, where the system is compared against established techniques, and phantom experiments, where artificial tissue emulating materials is used in a laboratory setting to mimick the properties of human tissues. In a initial clinical pilot study the split ring resonator sensor was used, but the results raised concerns over the penetration depth of the sensor. Therefore, three new alternative sensors were designed and evaluated via simulations. Two of the new sensors showed encouraging results, one of which has been fabricated. This sensor was used in a another clinical study.This study only had data from 4 patients, 8 measurements in total, meaning it was hard to draw any conclusions from it. The sensors used in the clinical setting as well as another were evaluated in the phantom experiments. Those experiments were exploratory because a wider frequency range was used, although some problems in the experiments were found. A secondary approach in this thesis is devoted to a data-driven approach, where a microwave sensor is simulated. The data from it is simulated and used to train a neural network to predict the dielectric properties of materials. The network predicts these properties with relatively high accuracy. However, this approach is currently limited to simulations only. Several ideas on how to improve this approach and extend it to measurements is given.
9

Systém pro zabezpečení a střežení objektů a prostor / System for Guarding and Securing Objects and Areas

Kuchařík, David January 2008 (has links)
This project deals with given safeguard possibilities, both mechanical and electronic. A row house with garden was chosen for being secured. Subsequently, were elaborated two`s proposals of securing and guarding of this object. First, was based on camera`s system and second on common system ESS. Later on they were evaluated and the most considerable benefits were emphasized. A system based on control panel with connected detectors was selected upon specification. Subsequently was created a model of the chosen system, at which the required behaviour was simulated and verified. An outline of an implementation was created in the C language.

Page generated in 0.0879 seconds