• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topological effects in coupled microcavity systems

Roszeitis, Karla 06 December 2022 (has links)
Topologische optische Systeme ziehen als Gegenstand aktueller Forschung große Aufmerksamkeit auf sich. Bemerkenswert sind dabei Phänomene wie die streu- und verlustfreie Lichtausbreitung mit Unempfindlichkeit gegenüber Defekten oder die einseitig gerichtete Lichtausbreitung. Das wissenschaftliche Verständnis topologischer Systeme ist jedoch noch nicht vollständig. Ziel dieser Doktorarbeit ist es, topologische Systeme in einer Dimension sowohl aus experimenteller wie auch aus theoretischer Sicht besser zu verstehen. Grundlage für alle Untersuchungen sind Mikrokavitäten mit einer optischen Dicke von der Hälfte der Designwellenlänge 1/2·λ_D = 1/2·620 nm. Diese werden umschlossen von Braggreflektoren und erreichen Qualitätsfaktoren in der Größenordnung von 10^3. Aufgrund der starken Lokalisierung des elektrischen Feldes in Kombination mit zahlreichen Möglichkeiten zur Durchführung optischer Messungen bieten Mikrokavitäten sowohl ein System zur Realisierung topologischer Zustände als auch Nachweismethoden für diese Zustände. Die Kavitäten sind mit der organischen Matrix tris-(8-hydroxy quinoline) aluminum (Alq_3) und darin eingebetteten kleinen organischen Farbstoffmolekülen gefüllt. In einem ansonsten symmetrischen Probenaufbau wechseln sich Kavitäten mit 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) als optisch aktivem Medium (Gewinn) und zinc phthalocyanine (ZnPc) als Absorber (Verlust) ab. Bei sorgfältig austariertem Gewinn und Verlust ermöglicht eine Kombination aus Raumspiegelungs- und Zeitumkehrsymmetrie (PT-Symmetrie) eine spontane Symmetriebrechung, die für das Auftreten nicht-trivialer topologischer Eigenschaften erforderlich ist. Auf theoretischer Seite wird ein Tight-Binding-Modell für optische Mikrokavitäten hergeleitet. Das elektrische Feld ist stark in den Kavitäten lokalisiert und gebunden; die Transmission durch die Spiegel, welche die Kavitäten trennen, wird mittels eines Hüpfterms im Hamiltonoperator beschrieben. Mit dem entwickelten Modell wird ein Probenaufbau mit gekoppelten Kavitäten, die in einer PT -symmetrischen Su-Schrieffer-Heeger-Kette (SSH-Kette) angeordnet sind, betrachtet. Die Auswertung des Hamiltonoperators sagt die Ausbildung topologisch nicht-trivialer Randzustände ab sechs gekoppelten Kavitäten voraus. Die Analyse einer nicht-trivialen topologischen Kette mit zehn gekoppelten Kavitäten zeigt das Auftreten von Randzuständen und simuliert die daraus resultierenden Eigenschaften der Reflexionsmessungen. Im Experiment werden Proben mit zwei gekoppelten Kavitäten (eine Einheitszelle der SSH-Kette) hergestellt und das Transmissions- und Laserverhalten analysiert. Sowohl die symmetrischen als auch die antisymmetrischen Moden des gekoppelten Systems zeigen Lasing. Oberhalb der Laserschwelle zeigt das gekoppelte System mit austariertem Gewinn und Verlust nicht-reziprokes Verhalten. Die Messungen unterscheiden sich in Abhängigkeit von der Pump- und Detektionsrichtung in der Intensität, was auf eine gebrochene PT -Symmetrie hinweist.:1 Introduction 2 Principles of microcavity lasers 3 Physical models of light as particle and wave 4 Sample preparation and measurement setups 5 Theoretical modeling with the tight-binding approximation 6 Experimental results 7 Summary and Outlook Bibliography / Topological photonics has attracted tremendous research interest in recent years due to remarkable phenomena, like scatter-free and lossless light propagation with immunity to defects or directional light propagation. However, many questions regarding non-trivial topological systems are still open. This thesis aims to deepen the understanding of non-trivial topological systems in one dimension from both the experimental and theoretical points of view. The basis for all investigations are microcavities with an optical thickness of half of the design wavelength 1/2·λ_D = 1/2·620 nm. These are enclosed by Bragg reflectors and achieve quality factors in the order of 10^3. Due to the strong confinement of the electric field in combination with numerous possibilities to conduct optical measurements, microcavities offer a system for both realizing topological states as well as detection methods for these states. The cavities are filled with the organic matrix tris-(8-hydroxy quinoline) aluminum (Alq_3) and therein embedded small organic dye molecules. In an otherwise symmetric sample design, coupled cavities are doped alternating with 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl\-amino\-styryl)-4H-pyran (DCM) as optically active medium (gain) and zinc phthalocyanine (ZnPc) as absorber (loss). With balanced gain and loss, parity-time (PT) symmetry provides the spontaneous breaking of symmetry necessary for the emergence of non-trivial topological signatures. From the theoretical side, a tight-binding model for optical microcavities is developed. The electric field is strongly confined in the cavities; transmission of the electric field through the mirrors separating the cavities is explained with the help of a hopping mechanism. This model is then applied to a sample design with coupled cavities arranged in a PT-symmetric Su-Schrieffer-Heeger (SSH) chain. The evaluation of the Hamiltonian predicts topological non-trivial edge states starting from a minimum of six coupled cavities. The analysis of a non-trivial topological chain with ten coupled cavities shows the emergence of edge states and predicts the implications on reflection measurements. In the experiment, samples with two coupled cavities (one unit cell in the SSH chain) are fabricated, and transmission and lasing behavior are analyzed. Both the symmetric and antisymmetric modes of the coupled system show lasing. Above the lasing threshold, the coupled system with balanced gain and loss shows non-reciprocal behavior. The measurements differ in intensity as a function of the pump and detection directions, pointing to the achieved broken PT-symmetric phase.:1 Introduction 2 Principles of microcavity lasers 3 Physical models of light as particle and wave 4 Sample preparation and measurement setups 5 Theoretical modeling with the tight-binding approximation 6 Experimental results 7 Summary and Outlook Bibliography
2

Ultraviolet and visible semiconductor lasers based on ZnO heterostructures

Kalusniak, Sascha 03 February 2014 (has links)
Im Rahmen dieser Arbeit wurden die optischen Eigenschaften von auf ZnO-basierenden Heterostrukturen untersucht. Besonderes Augenmerk lag hierbei auf ihrer Eignung als aktives Material in Laserdioden für den ultravioletten und sichtbaren Spektralbereich. Es wurde gezeigt, dass ZnO und seine ternären Mischkristalle ZnCdO und ZnMgO erstaunlich vielfältige Anwendungen ermöglichen. Mit diesem Materialsystem lässt sich sowohl ein sehr großer Spektralbereich für Lasertätigkeit abdecken als auch eine Vielzahl von Laseranordnungen realisieren. Im Detail wurde demonstriert, dass sich die Lasertätigkeit von ZnCdO/ZnO Quantengraben-Strukturen vom violetten bis in den grünen Spektralbereich verschieben lässt. Obwohl diese Strukturen starke interne elektrische Felder aufweisen, konnte optisch gepumpte Lasertätigkeit bei Zimmertemperatur bis zu einer Wellenlänge von 510 nm gezeigt werden. Die für die Lasertätigkeit nötige optische Rückkopplung wird durch makroskopische Defekte der Probe verursacht und die Proben fungieren somit als Zufallslaser. Die Herstellung von Mikroresonatoren ermöglichte die Untersuchung des Zusammenspiels von Fabry-Perot- und Zufalls-Rückkopplung. Die experimentellen und theoretischen Ergebnisse zeigen, dass der Schwellengewinn eines Zufallslasers in der Regel größer ist als der des Fabry-Perot-Lasers. Des Weiteren wurde gezeigt, dass hoch reflektierende Braggreflektoren für den ultravioletten und blau/grünen Spektralbereich aus ZnO- und ZnMgO-Schichten hergestellt werden können. Ferner wurden die teils unbekannten Brechungsindexverläufe der verwendeten ternären Materialen erarbeitet und Mikrokavitäten mit ZnO/ZnMgO Quantengraben Strukturen als aktive Schichten realisiert. An diesen Kavitäten konnte bei Temperaturen bis zu 150 K starke Kopplung zwischen Exzitonen und Photonen nachgewiesen werden. Bei Zimmertemperatur konnte vertikal-emittierende Lasertätigkeit im nahen ultravioletten Spektralbereich demonstriert werden. / In the framework of this thesis, the optical properties of ZnO-based heterostructures fabricated by molecular beam epitaxy have been investigated, particularly with regard to their suitability for semiconductor laser devices operating in the ultraviolet and visible spectral range. It turned out that ZnO and its ternary alloys ZnMgO and ZnCdO are extremely versatile. They allow to tune the laser emission in a wide spectral range as well as to realize various laser geometries. In detail, it was shown that the laser emission of ZnCdO/ZnO multiple quantum wells can cover a spectral range from violet to green wavelengths. Although these structures suffer from large built-in electric fields, room temperature laser action under optical pumping was demonstrated up to a wavelength of 510. The optical feedback for lasing is provided by growth imperfections on a macroscopic length scale turning these structures into random lasers. The fabrication of micro-resonators allowed to study the interplay between random and Fabry-Perot feedback. The experimental and theoretical analysis shows that random feedback generally requires a larger gain than under Fabry-Perot feedback. Further, this work demonstrates that ZnO- and ZnMgO-layers can be used to fabricate highly reflective distributed Bragg reflectors for applications in the ultraviolet and blue/green spectral range. The partly unknown dispersion curves of the index of refraction of the employed ternary alloys have been elaborated. This enabled the realization of all monolithic microcavities with ZnO/ZnMgO quantum wells as active zone. For temperatures below 150 K strong exciton-photon coupling is observed in such microcavities. At room temperature, vertical cavity surface emitting laser action in the near UV spectral range is demonstrated for appropriately designed microcavities.
3

Rolled-up Microtubular Cavities Towards Three-Dimensional Optical Confinement for Optofluidic Microsystems

Bolaños Quiñones, Vladimir Andres 15 September 2015 (has links) (PDF)
This work is devoted to investigate light confinement in rolled-up microtubular cavities and their optofluidic applications. The microcavities are fabricated by a roll-up mechanism based on releasing pre-strained silicon-oxide nanomembranes. By defining the shape and thickness of the nanomembranes, the geometrical tube structure is well controlled. Micro-photoluminescence spectroscopy at room temperature is employed to study the optical modes and their dependence on the structural characteristics of the microtubes. Finite-difference-time-domain simulations are performed to elucidate the experimental results. In addition, a theoretical model (based on a wave description) is applied to describe the optical modes in the tubular microcavities, supporting quantitatively and qualitatively the experimental findings. Precise spectral tuning of the optical modes is achieved by two post-fabrication methods. One method employs conformal coating of the tube wall with Al2O3 monolayers by atomic-layer-deposition, which permits a mode tuning over a wide spectral range (larger than one free-spectral-range). An average mode tuning to longer wavelengths of 0.11nm/ Al2O3-monolayer is obtained. The other method consists in asymmetric material deposition onto the tube surface. Besides the possibility of mode tuning, this method permits to detect small shape deformations (at the nanometer scale) of an optical microcavity. Controlled confinement of resonant light is demonstrated by using an asymmetric cone-like microtube, which is fabricated by unevenly rolling-up circular-shaped nanomembranes. Localized three-dimensional optical modes are obtained due to an axial confinement mechanism that is defined by the variation of the tube radius and wall windings along the tube axis. Optofluidic functions of the rolled-up microtubes are explored by immersing the tubes or filling their core with a liquid medium. Refractive index sensing of liquids is demonstrated by correlating spectral shift of the optical modes when a liquid interacts with the resonant light of the microtube. In addition, a novel sensing methodology is proposed by monitoring axial mode spacing changes. Lab-on-a-chip methods are employed to fabricate an optofluidic chip device, allowing a high degree of liquid handling. A maximum sensitivity of 880 nm/refractive-index-unit is achieved. The developed optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bio/chemical analytic systems.
4

Rolled-up Microtubular Cavities Towards Three-Dimensional Optical Confinement for Optofluidic Microsystems

Bolaños Quiñones, Vladimir Andres 12 August 2015 (has links)
This work is devoted to investigate light confinement in rolled-up microtubular cavities and their optofluidic applications. The microcavities are fabricated by a roll-up mechanism based on releasing pre-strained silicon-oxide nanomembranes. By defining the shape and thickness of the nanomembranes, the geometrical tube structure is well controlled. Micro-photoluminescence spectroscopy at room temperature is employed to study the optical modes and their dependence on the structural characteristics of the microtubes. Finite-difference-time-domain simulations are performed to elucidate the experimental results. In addition, a theoretical model (based on a wave description) is applied to describe the optical modes in the tubular microcavities, supporting quantitatively and qualitatively the experimental findings. Precise spectral tuning of the optical modes is achieved by two post-fabrication methods. One method employs conformal coating of the tube wall with Al2O3 monolayers by atomic-layer-deposition, which permits a mode tuning over a wide spectral range (larger than one free-spectral-range). An average mode tuning to longer wavelengths of 0.11nm/ Al2O3-monolayer is obtained. The other method consists in asymmetric material deposition onto the tube surface. Besides the possibility of mode tuning, this method permits to detect small shape deformations (at the nanometer scale) of an optical microcavity. Controlled confinement of resonant light is demonstrated by using an asymmetric cone-like microtube, which is fabricated by unevenly rolling-up circular-shaped nanomembranes. Localized three-dimensional optical modes are obtained due to an axial confinement mechanism that is defined by the variation of the tube radius and wall windings along the tube axis. Optofluidic functions of the rolled-up microtubes are explored by immersing the tubes or filling their core with a liquid medium. Refractive index sensing of liquids is demonstrated by correlating spectral shift of the optical modes when a liquid interacts with the resonant light of the microtube. In addition, a novel sensing methodology is proposed by monitoring axial mode spacing changes. Lab-on-a-chip methods are employed to fabricate an optofluidic chip device, allowing a high degree of liquid handling. A maximum sensitivity of 880 nm/refractive-index-unit is achieved. The developed optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bio/chemical analytic systems.

Page generated in 0.054 seconds