• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 20
  • 7
  • 7
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 172
  • 172
  • 66
  • 60
  • 42
  • 41
  • 30
  • 29
  • 26
  • 20
  • 20
  • 20
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Submicron CMOS Programmable Analog Floating-Gate Circuits and Arrays using DC-DC Converters

Hooper, Mark S. 15 April 2005 (has links)
A relatively new area of analog integrated circuits is emerging which is likely to have an impact on the signal processing area --analog floating-gate circuits. Analog floating- gate circuits have the potential to deliver more sophisticated signal processing at less power in a smaller space. This is the result of a novel application of digital memory technology -- the floating-gate MOSFET, that is used as an analog memory and computational device. Critical to the success of analog floating-gate circuits is on-chip programming. After investigating integrated schemes for DC-DC converters to generate the necessary voltages on chip, this research focuses on charge pumps that are integrated into the programming structure of floating-gate circuits. The impact of this research is far reaching since programmability is an indispensable feature of analog floating-gate circuits. This research lays the foundation for meeting the requirement of on-chip programming. Charge pumps will eliminate the need for high voltages to be externally supplied or regulated for analog floating-gate circuits. To the design engineer, the utilization of floating-gate circuits will look identical to their non floating-gate counterparts in terms of the value and number of supply voltages. In addition, the integration of on-chip DC-DC converters will reduce pin count, reduce board space for the implementation of the chip and facilitate distributed on chip power supplies for mixed signal integrated circuits.
82

Efficient Testing of High-Performance Data Converters Using Low-Cost Test Instrumentation.

Goyal, Shalabh 31 January 2007 (has links)
Test strategies were developed to reduce the overall production testing cost of high-performance data converters. A static linearity testing methodology, aimed at reducing the test time of A/D converters, was developed. The architectural information of A/D converters was used, and specific codes were measured. To test a high-performance A/D converters using low-performance and low-cost test equipment a dynamic testing methodology was developed. This involved post processing of measurement data. The effect of ground bounce on accuracy of specification measurement was analyzed, and a test strategy to estimate the A/D converter specifications more accurately in presence of ground bounce noise was developed. The proposed test strategies were simulated using behavioral modeling techniques and were implemented on commercially available A/D converter devices. The hardware experiments validated the proposed test strategies. The test cost analysis was done. It suggest that a significant reduction in cost can be obtained by using the proposed test methodologies for data converter production testing.
83

Digitally-Assisted Mixed-Signal Wideband Compressive Sensing

Yu, Zhuizhuan 2011 May 1900 (has links)
Digitizing wideband signals requires very demanding analog-to-digital conversion (ADC) speed and resolution specifications. In this dissertation, a mixed-signal parallel compressive sensing system is proposed to realize the sensing of wideband sparse signals at sub-Nqyuist rate by exploiting the signal sparsity. The mixed-signal compressive sensing is realized with a parallel segmented compressive sensing (PSCS) front-end, which not only can filter out the harmonic spurs that leak from the local random generator, but also provides a tradeoff between the sampling rate and the system complexity such that a practical hardware implementation is possible. Moreover, the signal randomization in the system is able to spread the spurious energy due to ADC nonlinearity along the signal bandwidth rather than concentrate on a few frequencies as it is the case for a conventional ADC. This important new property relaxes the ADC SFDR requirement when sensing frequency-domain sparse signals. The mixed-signal compressive sensing system performance is greatly impacted by the accuracy of analog circuit components, especially with the scaling of CMOS technology. In this dissertation, the effect of the circuit imperfection in the mixed-signal compressive sensing system based on the PSCS front-end is investigated in detail, such as the finite settling time, the timing uncertainty and so on. An iterative background calibration algorithm based on LMS (Least Mean Square) is proposed, which is shown to be able to effectively calibrate the error due to the circuit nonideal factors. A low-speed prototype built with off-the-shelf components is presented. The prototype is able to sense sparse analog signals with up to 4 percent sparsity at 32 percent of the Nqyuist rate. Many practical constraints that arose during building the prototype such as circuit nonidealities are addressed in detail, which provides good insights for a future high-frequency integrated circuit implementation. Based on that, a high-frequency sub-Nyquist rate receiver exploiting the parallel compressive sensing is designed and fabricated with IBM90nm CMOS technology, and measurement results are presented to show the capability of wideband compressive sensing at sub-Nyquist rate. To the best of our knowledge, this prototype is the first reported integrated chip for wideband mixed-signal compressive sensing. The proposed prototype achieves 7 bits ENOB and 3 GS/s equivalent sampling rate in simulation assuming a 0.5 ps state-of-art jitter variance, whose FOM beats the FOM of the high speed state-of-the-art Nyquist ADCs by 2-3 times. The proposed mixed-signal compressive sensing system can be applied in various fields. In particular, its applications for wideband spectrum sensing for cognitive radios and spectrum analysis in RF tests are discussed in this work.
84

The Fractional-N Nonlinearity Study and Mixed-Signal IC Implementation of Frequency Synthesizers

Lou, Zheng-Bin 15 July 2006 (has links)
Abstract¡G For the fractional-N frequency synthesizers using delta-sigma modulation techniques, the noise source dominant to degrade the spectral purity comes from phase intermodulation of quantization noise due to the PLL nonlinearity. To study and improve the PLL nonlinearity effect, this thesis applies the theory of white quantization noise and nonlinear analysis method to simulate the frequency responses of quantization noises in delta-sigma modulators (DSM) with different order and in various architecture. With the help of Agilent EEsof¡¦s ADS tool, the phase noise performance of the studied fractional-N frequency synthesizers can be well predicted. For demonstration, this thesis work implements a 2.4 GHz fractional-N frequency synthesizer hybrid module, and measures the phase noise under considering various combinations of DSM order and architecture, PLL bandwidth and reference frequency. Another demonstration of this thesis is to implement a PLL IC using 0.18 £gm CMOS process. The implemented PLL IC operates in the frequency range from 2120 to 2380 MHz with a supply voltage of 1.8 V and a current consumption of 27 mA. Under the test condition of reference frequency and PLL bandwidth equal to 20 MHz and 50 kHz, respectively, the measured phase noise is 90 dBc/Hz at an offset frequency of 100 kHz and the measured stable time is about 40 £gs for a frequency jump of 80MHz.
85

Design of power delivery networks for noise suppression and isolation using power transmission lines

Huh, Suzanne Lynn 10 November 2011 (has links)
In conventional design of power delivery networks (PDNs), the PDN impedance is required to be less than the target impedance over the frequency range of interest to minimize the IR drop and to suppress the inductive noise during data transitions. As a result, most PDNs in high-speed systems consist of power and ground planes to provide a low-impedance path between the voltage regulator module (VRM) and the integrated circuit (IC) on the printed circuit board (PCB). For off-chip signaling, charging and discharging signal transmission lines induce return currents on the power and ground planes. The return current always follows the path of least impedance on the reference plane closest to the signal transmission line. The return current path plays a critical role in maintaining the signal integrity of the bits propagating on the signal transmission lines. The problem is that the disruption between the power and ground planes induces return path discontinuities (RPDs), which create displacement current sources between the power and ground planes. The current sources excite the plane cavity and cause voltage fluctuations. These fluctuations are proportional to the plane impedance since the current is drawn through the PDN by the driver. Therefore, low PDN impedance is required for power supply noise reduction. Alternatively, methods of preventing RPDs can be used to suppress power supply noise. Using a power transmission line (PTL) eliminates the discontinuity between the power and ground planes, thereby preventing the RPD effects. In this approach, transmission lines replace the power plane for conveying power from the VRM to each IC on the PCB. The PTL-based PDN enables both power and signal transmission lines to be referenced to the same ground plane so that a continuous current path can be formed, unlike the power-plane-based PDN. As a result, a closed current loop is achieved, and the voltage fluctuation caused by RPDs is removed in idealistic situations. Without the RPD-related voltage fluctuation, reducing the PDN impedance is not as critical as in the power-plane-based approach. Instead, the impedance of the PTL is determined by the impedance of the signaling circuits. To use the PTL-based PDN in a practical signaling environment, several issues need to be solved. First, the dc drop coming from the source termination of the PTL needs to be addressed. The driver being turned on and off dictates the current flow through the PTL, causing the dc drop to be dynamic, which depends on the data pattern. Second, impedance mismatch between the PTL and termination can occur due to manufacturing variations. Third, an increase in the number of PCB traces should be addressed by devising a method to feed more than one driver with one PTL. Lastly, the power required to transmit 1 bit of data should be optimized for the PTL by using a new signaling scheme and adjusting the impedance of the signaling circuit. Constant flow of current through the PDN is one solution proposed to address the first two issues. Constant current removes the dynamic characteristics of the dc drop by inducing a fixed amount of dc drop over the PTL. Moreover, constant current keeps the PTL fully charged at all times, and thereby eliminates the process of repeatedly charging and discharging the power transmission line. The constant current PTL (CCPTL) scheme maintains constant current flow regardless of the input data pattern. Early results on the CCPTL scheme have been discussed along with the measurements. The CCPTL scheme severs the link between the current flowing through the PTL and the output data of the I/O driver connected to it. Also, it eliminates the charging and discharging process of the PTL, thereby completely eliminating power supply noise in idealistic situations. To reduce any associated power penalty, a pseudo-balanced PTL (PBPTL) scheme is also proposed using the PTL concept. A pseudo-balanced (PB) signaling scheme, which uses an encoding technique to map N-bit data onto M-bit encoded data with fixed number of 1s and 0s, is applied. When the PB signaling scheme is combined with the PTL, the jitter performance improves significantly as compared to currently practiced design approach.
86

Frequency syntheses with delta-sigma modulations and their applications for mixed signal testing

Yang, Dayu, Dai, Foster. January 2006 (has links)
Dissertation (Ph.D.)--Auburn University,2006. / Abstract. Vita. Includes bibliographic references (p.110-113).
87

Mixed-signal signature analysis for systems-on-a-chip

Roh, Jeongjin, January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references. Available also from UMI Company.
88

Mixed-signal signature analysis for systems-on-a-chip

Roh, Jeongjin, 1966- 04 April 2011 (has links)
Not available / text
89

BIST-based performance characterization of mixed-signal circuits

Yu, Hak-soo, 1966- 01 August 2011 (has links)
Not available / text
90

Energy Monitoring System for Security and Energy Management Applications

Shariati, Sepideh 16 January 2013 (has links)
This thesis presents an energy monitoring system to measure energy consumption of software applications to support security and power management for embedded devices. The proposed system is composed of an Actel Fusion device and a custom designed energy measurement circuit. The Fusion device measures the voltage and the current of the target device at a defined sampling rate. The energy measurement circuit is designed as a current integrator over fixed intervals using the switched-capacitor integrator technique to store energy information of the target device within Fusion’s sampling intervals. This circuit is designed to accommodate the low sampling rate of the Fusion device. Experimental results showed that the Fusion device allows the measurement of the energy of the target device at a minimum rate of 15 µs. The energy measurement circuit is implemented using the 65 nm CMOS technology. Simulation results showed that this circuit provides 91%~97% average energy measurement accuracy.

Page generated in 0.0452 seconds