• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 17
  • 15
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 104
  • 24
  • 19
  • 18
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Energy Efficient RF for UDNs

Abdulkhaleq, Ahmed M., Sajedin, M., Al-Yasir, Yasir I.A., Mejillones, S.C., Ojaroudi Parchin, Naser, Rayit, A., Elfergani, Issa T., Rodriguez, J., Abd-Alhameed, Raed, Oldoni, M., D’Amico, M. 12 November 2021 (has links)
Multi-standard RF front-end is a critical part of legacy and future emerging mobile architectures, where the size, the efficiency, and the integration of the elements in the RF front-end will affect the network key performance indicators (KPIs). This chapter discusses power amplifier design for both handset and base station applications for 5G and beyond. Also, this chapter deals with filter-antenna design for 5G applications that include a synthesis-based approach, differentially driven reconfigurable planar filter-antenna, and an insensitive phased array antenna with air-filled slot-loop resonators.
102

Amplificadores de banda ancha y bajo ruido basados en tecnología de GaAs para aplicaciones de radiometría

Aja Abelán, Beatriz 19 January 2007 (has links)
En esta Tesis se ha realizado análisis, diseño y caracterización de los amplificadores de bajoruido y banda ancha en tecnología de GaAs PHEMT con aplicación a los módulos posteriores delradiómetro del instrumento de baja frecuencia del satélite Planck. La Tesis se compone de las siguientes partes:- Introducción y estudio del funcionamiento del radiómetro del instrumento de baja frecuencia de Planck.- Diseño y caracterización de amplificadores de bajo ruido utilizando tecnología de GaAs. Se presentan diseños MMIC en la banda Ka y en la banda Q, y un diseño MIC en la banda Q.- Diseño y construcción de los módulos posteriores en las bandas de 30 y 44 GHz. Se presentan varios prototipos fabricados en ambas bandas, así como medidas de cada uno de los subsistemas que los forman.- Desarrollo de técnicas de medida para receptores de banda ancha con detección directa y su aplicación a la caracterización de los módulos posteriores, mostrando el funcionamiento de los prototipos representativos para las dos bandas de frecuencia.- Integración de los módulos posteriores con los módulos frontales y presentación de algunos de los resultados de medida de los radiómetros completos. / This Thesis deals with the analysis, design and characterization of broadband low noise amplifiersin GaAs PHEMT technology with application to the radiometer Back-End Modules for the Planck Low Frequency Instrument (LFI). The Thesis is composed of the next parts:- Introduction and study about the radiometer of the Planck low frequency instrument.- Design and characterization of low noise amplifiers using GaAs technology. Ka-band MMIC designs and Q-band MMIC and a MIC design are presented.- Design and assembly of the 30 and 44 GHz back-end modules. Several prototypes have been manufactured in both frequency bands and the most representative test results of each subsystem are presented.- Development of measurement techniques for broadband direct detection receivers and their application to the characterization of the back-end modules. Performance of representative prototypes in both frequency bands is included.- Integration of the back end modules and front end modules and significant results of the tests for a radiometer in each frequency band.
103

Design of a low-power 60 GHz transceiver front-end and behavioral modeling and implementation of its key building blocks in 65 nm CMOS

Kraemer, Michael 03 December 2010 (has links) (PDF)
Worldwide regulations for short range communication devices allow the unlicensed use of several Gigahertz of bandwidth in the frequency band around 60 GHz. This 60GHz band is ideally suited for applications like very high data rate, energy-autonomous wireless sensor networks or Gbit/s multimedia links with low power constraints. Not long ago, radio interfaces that operate in the millimeter-wave frequency range could only be realized using expensive compound semiconductor technologies. Today, the latest sub-micron CMOS technologies can be used to design 60GHz radio frequency integrated circuits (RFICs) at very low cost in mass production. This thesis is part of an effort to realize a low power System in Package (SiP) including both the radio interface (with baseband and RF circuitry) and an antenna array to directly transmit and receive a 60GHz signal. The first part of this thesis deals with the design of the low power RF transceiver front-end for the radio interface. The key building blocks of this RF front-end (amplifiers, mixers and a voltage controlled oscillator (VCO)) are designed, realized and measured using the 65nm CMOS technology of ST Microelectronics. Full custom active and passive devices are developed and characterized for the use within these building blocks. An important step towards the full integration of the RF transceiver front-end is the assembly of these building blocks to form a basic receiver chip. Circuits with small chip size and low power consumption compared to the state of the art have been accomplished. The second part of this thesis concerns the development of behavioral models for the designed building blocks. These system level models are necessary to simulate the behavior of the entire SiP, which becomes too complex when using detailed circuit level models. In particular, a novel technique to model the transient, steady state and phase noise behavior of the VCO in the hardware description language VHDL-AMS is proposed and implemente d. The model uses a state space description to describe the dynamic behavior of the VCO. Its nonlinearity is approximated by artificial neural networks. A drastic reduction of simulation time with respect to the circuit level model has been achieved, while at the same time maintaining a very high level of accuracy.
104

Low-cost SiGe circuits for frequency synthesis in millimeter-wave devices

Lauterbach, Adam Peter January 2010 (has links)
"2009" / Thesis (MSc (Hons))--Macquarie University, Faculty of Science, Dept. of Physics and Engineering, 2010. / Bibliography: p. 163-166. / Introduction -- Design theory and process technology -- 15GHz oscillator implementations -- 24GHz oscillator implementation -- Frequency prescaler implementation -- MMIC fabrication and measurement -- Conclusion. / Advances in Silicon Germanium (SiGe) Bipolar Complementary Metal Oxide Semiconductor (BiCMOS) technology has caused a recent revolution in low-cost Monolithic Microwave Integrated Circuit (MMIC) design. -- This thesis presents the design, fabrication and measurement of four MMICs for frequency synthesis, manufactured in a commercially available IBM 0.18μm SiGe BiCMOS technology with ft = 60GHz. The high speed and low-cost features of SiGe Heterojunction Bipolar Transistors (HBTs) were exploited to successfully develop two single-ended injection-lockable 15GHz Voltage Controlled Oscillators (VCOs) for application in an active Ka-Band antenna beam-forming network, and a 24GHz differential cross-coupled VCO and 1/6 synchronous static frequency prescaler for emerging Ultra Wideband (UWB) automotive Short Range Radar (SRR) applications. -- On-wafer measurement techniques were used to precisely characterise the performance of each circuit and compare against expected simulation results and state-of-the-art performance reported in the literature. -- The original contributions of this thesis include the application of negative resistance theory to single-ended and differential SiGe VCO design at 15-24GHz, consideration of manufacturing process variation on 24GHz VCO and prescaler performance, implementation of a fully static multi-stage synchronous divider topology at 24GHz and the use of differential on-wafer measurement techniques. -- Finally, this thesis has llustrated the excellent practicability of SiGe BiCMOS technology in the engineering of high performance, low-cost MMICs for frequency synthesis in millimeterwave (mm-wave) devices. / Mode of access: World Wide Web. / xxii, 166 p. : ill (some col.)

Page generated in 0.0232 seconds