Spelling suggestions: "subject:"mic"" "subject:"emic""
61 |
Design of microwave low-noise amplifiers in a SiGe BiCMOS process / Design av mikrovågs lågbrusförstärkare i en SiGe BiCMOS processHansson, Martin January 2003 (has links)
<p>In this thesis, three different types of low-noise amplifiers (LNA’s) have been designed using a 0.25 mm SiGe BiCMOS process. Firstly, a single-stage amplifier has been designed with 11 dB gain and 3.7 dB noise figure at 8 GHz. Secondly, a cascode two-stage LNA with 16 dB gain and 3.8 dB noise figure at 8 GHz is also described. Finally, a cascade two-stage LNA with a wide-band RF performance (a gain larger than unity between 2-17 GHz and a noise figure below 5 dB between 1.7 GHz and 12 GHz) is presented. </p><p>These SiGe BiCMOS LNA’s could for example be used in the microwave receivers modules of advanced phased array antennas, potentially making those more cost- effective and also more compact in size in the future. </p><p>All LNA designs presented in this report have been implemented with circuit layouts and validated through simulations using Cadence RF Spectre.</p>
|
62 |
Low-Noise Mixing Circuits in CMOS Microwave Integrated CircuitsHO, STANLEY 25 August 2009 (has links)
In this thesis, three low-noise active mixing circuits are presented in CMOS technology. Mixers can be found at the front-end of almost every communication systems. However, despite many advantages the active mixers have, one drawback is their poor noise performance. One mixer that has been widely used in integrated circuit is the Gilbert cell. This thesis demonstrated that by merging the low-noise amplifier (LNA) with the Gilbert cell, a low-noise active mixer can be realized. This kind of mixer relaxes the front-end design, allows higher circuit integration, and reduces power consumption.
The first circuit is a narrowband low-noise mixer that operates at 5.4 GHz in 0.18 um CMOS. An inductive degenerated LNA is used as the transconductor. Together with a current bleeding circuit, a gain of 13.1 dB and a low 7.8 dB single-sideband noise figure are achieved. The circuit was fabricated and measured. Simulation and measurement results are compared and discussed.
The second circuit is a broadband low-noise mixer that operates between 1 and 5.5 GHz in 0.13 um CMOS. The noise-cancelling technique is used to design the transconductors. This technique does not require the use of inductors while able to achieve a sub 3 dB noise figure and input matching over a large bandwidth. To further extend the mixer bandwidth, the series inductive peaking was used. Measured and simulated results showed great agreement. It has a high gain of 17.5 dB, a bandwidth of 4.5 GHz, and a low average double-sideband noise figure of 3.9 dB. This mixer has the best broadband noise performance ever reported in CMOS.
Finally, a double-balanced low-noise self-oscillating mixer (SOM) in 0.13 um CMOS is presented. This is a current-reuse, highly integrated circuit that combines an LNA, mixer, and oscillator seamlessly into a single component. The oscillator generates the required LO while serving as the mixer load simultaneously. Measured and simulated results showed excellent agreement. A low double-sideband noise figure of 4.4 dB and a gain of 11.6 dB were measured. This type of SOM and loading structure are the first ever reported. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2009-08-23 12:41:20.445
|
63 |
K-band Phased Array Feed (KPAF) Receiver Imaging SystemLocke, Lisa Shannon 29 September 2014 (has links)
Astronomy large-scale surveys require instrumentation to minimize the time required to complete observations of large sections of the sky. Optimizing receiver systems has been achieved through reducing the system temperature primarily by advances in low-noise amplifier technology to a point that the internally generated noise is now fast approaching the quantum limit. Instead, reflector-coupled focal plane arrays are now used to increase the field of view (FoV) by employing either multi-element horn feeds or phased array feeds. Widely spaced (2-3 wavelengths diameter) horn feeds inefficiently sample the available focal plane radiation, thus requiring multiple imaging passes. Alternatively, a more efficient method is to use a narrow element (0.5 wavelengths diameter) phased array feed with a beamformer to produce overlapping beams on the sky, fully Nyquist sampling the focal plane with a single pass. The FoV can be further increased with additional phased array feed (PAF) antenna-receiver modules adding to the contiguous fully sampled region.
A 5 x 5 K-band (18 - 26 GHz) single polarization modular PAF incorporating an antenna array of planar axially symmetric elements is designed, simulated, manufactured and tested. Each narrow width tapered slot antenna element has an independent receiver chain consisting of a cryogenic packaged monolithic microwave integrated circuit (MMIC) GaAs amplifier and a packaged MMIC down converting mixer. Synthesized beams and beamformer characteristics are presented. The PAF imaging system performance is evaluated by survey speed and compared to the industry standard, the single pixel feed (SPF). Scientifically, K-band is attractive because it contains numerous molecular transitions, in particular the rotation-inversion lines of ammonia. These transitions are excited in dense gas, and can be used to directly measure kinetic temperatures and velocities of protostars throughout the Galaxy. Depending on the line detected, gas of different temperatures can be probed. It is concluded that even with a higher system temperature, a PAF with sufficient number of synthesized beams can outperform a SPF in imaging speed by more than an order of magnitude. / Graduate
|
64 |
Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna ArraysAbdalla, Mohamed 23 September 2009 (has links)
This thesis presents the design of radio-frequency (RF) tunable active inductors (TAIs) with independent inductance (L) and quality factor (Q) tuning capability, and their application in the design of RF tunable phase shifters and directional couplers for wireless transceivers.
The independent L and Q tuning is achieved using a modided gyrator-C architecture
with an additional feedback element. A general framework is developed for this Q-
enhancement technique making it applicable to any gyrator-C based TAI. The design
of a 1.5V, grounded, 0.13um CMOS TAI is presented. The proposed circuit achieves a
0.8nH-11.7nH tuning range at 2GHz, with a peak-Q in excess of 100.
Furthermore, printed and integrated versions of tunable positive/negative refractive
index (PRI /NRI) phase shifters, are presented in this thesis. The printed phase shifters are comprised of a microstrip transmission-line (TL) loaded with varactors and TAIs, which, when tuned together, extends the phase tuning range and produces a low return loss. In contrast, the integrated phase shifters utilize lumped L-C sections in place of the TLs, which allows for a single MMIC implementation. Detailed experimental results are presented in the thesis. As an example, the printed design achieves a phase of -40 to +34 degrees at 2.5GHz.
As another application for the TAI, a reconfigurable CMOS directional coupler is presented in this thesis. The proposed coupler allows electronic control over the coupling coefficient, and the operating frequency while insuring a low return loss and high isolation. Moreover, it allows switching between forward and backward operation. These features, combined together, would allow using the coupler as a duplexer to connect a transmitter and a receiver to a single antenna.
Finally, a planar electronically steerable patch array is presented. The 4-element
array uses the tunable PRI/NRI phase shifters to center its radiation about the broadside direction. This also minimizes the main beam squinting across the operating
bandwidth. The feed network of the array uses impedance transformers, which allow
identical interstage phase shifters. The proposed antenna array is capable of continuously steering its main beam from -27 to +22 degrees of the broadside direction with a gain of 8.4dBi at 2.4GHz.
|
65 |
Mmic Vector Modulator DesignAltuntas, Mehmet 01 December 2004 (has links) (PDF)
In this thesis the design of a MMIC vector modulator operating in 9GHz-10GHz band is investigated and performed. Sub-sections of the vector modulator are 4-port (4.8dB) 1200 phase shift relative to the dedicated port power splitter, digitally controlled variable gain amplifier and the in phase power combiner.
Alternative methods are searched in order to implement the structure properly in the given frequency band. The final design is appropriate for MMIC structure.
4-port (4.8dB) 1200 phase shift relative to the dedicated port power splitter is studied. The performance is simulated and optimized first on Microwave Office, then on Advanced Design System (ADS) tools.
Various methods to design a digitally controlled variable gain amplifier are studied. The final topology is simulated and optimized on ADS tool.
An in phase power combiner is designed. The performance of the combiner is simulated and optimized on ADS tool.
Lumped element models are replaced with CASWELL H-40 models to achieve a MMIC structure and a layout is drawn. The finalized vector modulator is simulated and optimized on ADS tool.
Key words: MMIC, Vector Modulator, Digitally Controlled Variable Gain Amplifier, Layout
|
66 |
CMOS low noise amplifier design for reconfigurable mobile terminalsPienkowski, Dariusz Zbigniew. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Berlin.
|
67 |
Design of Broadband GaN 0.15μm RF Switches and X-band Reconfigurable Impedance TunerKhan, Iftekhar January 2016 (has links)
Radio-frequency (RF) switches are widely used in electrical systems, telecommunications, and wireless applications. In RF systems, it is often desirable to change the signal path effectively, by us-ing couplers, duplexers, and RF switches for signal division and combining. Typically, in modern RF systems, the RF switch is mostly capitalized in order to reduce the RF footprint but with efficient switch characteristics. A simple method to reduce transceiver space requirement is to integrate RF switches with the frontend module on a single chip.
Recent advances in Gallium Nitride (GaN) technology allows RF designers to design faster, smaller, and efficient components using this technology. With high data rates in demand for wireless communication systems, wideband characteristics are needed in modern systems [1]. Therefore, it is desirable to design wideband circuits; such as, mixers, amplifiers, and switches. In this work, a comprehensive study of NRC GaN150 HEMT is conducted to design broadband RF switches. Single pole and double pole switch topologies operating at 1-12 GHz are designed to evaluate GaN 0.15μm RF switches. The main objectives were to design compact sized switches, while having high power handling, low insertion loss, high isolation and high return loss. Additionally, a transmit-receive switch is designed for integration into a frontend module and further fabricated to operate at 10 GHz.
There are many applications of RF switches in an RF transceiver, one of which is an impedance tuner. Impedance tuner are attractive for many applications where mobile devices are used for wireless communications. As mobile technology continues to evolve, they are designed to be com-pact, leaving minimal space for the antenna. Consequently, the radiating element is often electrically small and sensitive to near-field coupling requiring tuning. Matching networks aim to tune matching conditions; for example, loading effects due to human hand [2]. For such situations, specialized matching networks can be designed to account for specific loading environmental effects. However, for mobile systems, the environment is unknown; thereby, yielding unpredictable antenna loading, especially for electrically small antennas that have rapidly changing real and imaginary impedance. As a result, it is necessary to design a reconfigurable impedance-matching network to account for possible load impedances. In this work, a 16-bit reconfigurable impedance tuner design comprising of passive microwave components and NRC GaN 0.15μm FET operating at X-band is presented to evaluate its performance for integration with the frontend module on a single chip to reduce cost and increase efficiency of the system.
|
68 |
Metamaterial stepped impedance resonator filters for wireless communication systemsKarimian, Shokrollah January 2011 (has links)
This thesis introduces, for the first time, Stepped Impedance Resonator (SIR) bandpass filters (BPF) based on Composite Right/Left-Handed (CRLH) transmission lines. In other words, a novel approach in design of BPFs for RF and microwave applications is successfully proposed and examined, which can serve both miniaturisation and performance enhancement purposes. In conducting this research, design, development and optimisation procedures and techniques for the proposed BPFs have been presented. Theoretical, numerical and experimental results have confirmed that these filters are capable of significantly reducing the size while maintaining the integrity of the filter performance; and in some cases, extensively enhancing the performance.Two λg/4-type CRLH SIRs are designed and characterised based on the available equations. ADS lumped-element equivalent circuit model and HFSS full-wave electromagnetic simulation, and measurement results prove that both CRLH SIRs surpassed their RH counterparts, in terms of both size and performance. Indeed, comparison of the first CRLH SIR with its RH counterpart revealed a 35% size (length) reduction. The second CRLH SIR design is measured to be 66% smaller than its RH counterpart and 14% smaller than the initial CRLH SIR. In addition, simulation and measurement results reveal that an intelligently designed CRLH SIR shows a better quality factor Q and input impedance |Zin| response, and provides higher design flexibility. Phase unwrapping and energy (current) flow analysis have been used to prove left-handedness of the CRLH SIRs. The concept is extended to propose multi-section (λg/2-type and tri-section SIRs) and tunable CRLH SIRs. Numerical analysis and obtained results show that the λg/2-type CRLH SIR benefits from a 45% size (length) reduction compared to its RH counterpart, and a better |Zin| response. The results obtained from the tri-section CRLH SIR (TSSIR), clearly show that the TSSIR is capable of relocating (and minimising) the multiple spurious resonance frequencies, while maintaining the same fundamental frequency f0. As such, no spurious frequency is observed before 8 GHz. Also, measurements indicated that the CRLH TSSIR is not only 30% smaller in length compared to its RH counterpart, it was even 28% smaller than a two-section RH SIR resonating at the same frequency of 2.5 GHz. In addition, the tuning capability of the ferrite CRLH SIR is illustrated when the operating frequency of the resonator is tuned from 5.1 GHz to 5.4 GHz, and 5.65 GHz for H0 = 2000, 2250, and 2500 Oe, respectively.These SIRs are then combined and configured to form two main categories of CRLH SIR bandpass filters: PCB filters based on RT Duroid and MMIC filters based on GaAs. In both filters, the homogeneity condition has been satisfied by ensuring that the longest length is much less than λg (in this case l = λg/12) for PCB-based filters and l = λg/14 for MMIC filters at the centre frequency of the filters. The first PCB-based CRLH SIR filter, which has been designed to operate at 2.75 GHz, is measured 24mm × 28mm. HFSS 3-D full-wave simulations and measurement results of this filter reveal that, with an insertion loss of -2.6dB and return loss of -21.5dB, the filter not only has a very good selectivity, but also is extremely efficient in extending the free-spurious stop-band, pushing the first spurious response to around 11 GHz (about 4×f0). The second PCB-based CRLH SIR filter has much smaller size, measuring overall filter dimensions of 6mm × 5.14mm. This filter also benefits from a smaller resonator size, improved overall coupling and a more controllable circuit. Theory, full-wave simulation and measurement results demonstrate that, with an insertion loss of -1dB and return loss of -34dB, the miniaturised CRLH SIR filter proves very successful as it was about 80% smaller in size compared to its RH counterpart with the same centre frequency, while maintaining the integrity of the filter performance. Moreover, the miniaturised CRLH SIR BPF is significantly more controllable in its dimensions and response due to the fact that more elementary parameters are available in the CRLH configuration.The MMIC CRLH SIR bandpass filters are then proposed with an emphasis on further size reduction with maintenance (or enhancement) of their transmission responses. As such, two classes of MMIC filters were designed: the first one is very small measuring 3.2mm × 3.4mm, with an insertion loss of -5.3dB at the centre frequency 3.1 GHz. The filter also shows good attenuation both before and after the passband with its first spurious frequency occurring at 13.52 GHz (i.e. > 4×f0). The second set of MMIC filters employed multilayer topology to reduce the filter size. It has been clearly shown that with an intelligent design, the size (dimension) limitations of the PCB-based filters have been overcome by using the MMIC technology, resulting in filters with significantly reduced sizes - design I: 1.32mm×3.35mm, and design II: 1.4mm × 1.5mm. It has also been observed that MMIC structures are generally exposed to inevitable losses, though steps can be taken to reduce such losses.
|
69 |
HYBRID X-BAND POWER AMPLIFIER DEVELOPMENT FOR 3D-IC PHASED ARRAY MODULEXU, PENG 17 April 2003 (has links)
No description available.
|
70 |
Characterization of Vertical Interconnects in 3-D Monolithic Microwave Integrated Circuits (3-D MMIC)Kang, Qinghua (George) 01 July 2003 (has links)
No description available.
|
Page generated in 0.0252 seconds