• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 13
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 19
  • 17
  • 16
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Estudos conformacionais de peptídeos correspondentes à região N-terminal das toxinas protéicas esticolisinas I e II / Conformational Studies of Peptides Corresponding to the N-terminal Region of the Proteinaceous Toxins Sticholysin I and II

Joana Paulino 26 July 2010 (has links)
Esticolisinas I e II (S tI e St II), citolisinas pertencentes à família das actinoporinas, da anêmona Stichodactila heliantus, formam poros em membranas biológicas e modelo onde seu receptor putativo é esfingomielina (SM). A ligação das actinoporinas a membranas ocorre pelo ancoramento da proteína à interface lipídio-água, por uma região rica em resíduos aromáticos. Evidências apontam para o papel fundamental da região N-terminal para formação do poro. O mecanismo proposto para a formação do poro consiste na ligação da toxina à interface membrana-água, oligomerização, e dissociação da região N-terminal do corpo da proteína, cuja α-hélice anfipática interaje com a bicamada, levando à formação de um poro toroidal. Estudos com peptídeos correspondentes à região N-terminal de St II e equinatoxina II (Eqt II) mostraram que estes fragmentos adquirem conformação em α-hélice na presença de membranas modelo, possuindo a capacidade de formar poros em membranas biológicas e modelo, mimetizando o comportamento desta região nas proteínas. St I e St II, que possuem 93% de identidade, apresentam atividades hemolíticas distintas, sendo St II mais ativa. Estudos mostraram que fragmentos da região N-terminal de St I e St II possuem atividades hemolíticas diferentes, e que os primeiros dez resíduos de St II tem papel importante na lise, e na agregação. Para compreender a nível molecular a interação entre o N-terminal das toxinas com membranas e sua dependência da composição lipídica, foram realizados estudos de dicroísmo circular (CD) e ressonância paramagnética eletrônica (EPR) da interação de quatro fragmentos da região N-terminal de St I (St I1-31 e S t I12-31) e St II (St II1-30 e St II11-30) com membranas modelo - bicamadas e micelas. A interação peptídeo-membrana mostrou-ser dependente: da sequência, e da composição lipídica. Espectros de CD mostraram que a ligação dos peptídeos promove aquisição de estrutura helicoidal; em solução os peptídeos possuem essencialmente estrutura ao acaso. O efeito da ligação dos peptídeos sobre a organização molecular dos lipídios foi monitorado por EPR. Os espectros de EPR mostraram que a ligação a bicamadas e micelas leva ao aumento da organização molecular dos lipídios, St II1-30 alterando o empacotamento molecular em maior extensão. A incorporação de lipídios negativamente carregados e de lipídios formadores de microdomínios ordenados aumentou a afinidade dos peptídeos pelas membranas modelo, especialmente em proporções molares onde ocorre a formação desses microdomínios. Os resultados também indicaram que apenas St II1-30 promoveu alterações significativas no espectro de um marcador de spin fosfolipídico marcado em C16 da cadeia acila incorporado em vesículas multilamelares (MLV), sugerindo que apenas este peptídeo penetra na bicamada, enquanto que os demais permanecem preferencialmente na interface. Os peptídeos interagiram de forma diferente com micelas e bicamadas, provavelmente devido a diferenças no empacotamento molecular nos dois sistemas. A interação diferencial dos peptídeos com bicamadas e micelas poderia refletir as interações com a membrana em diferentes etapas da formação do poro toroidal. Considerando a curvatura positiva na parede de um poro toroidal, a interação com micelas poderia estar mimetizando a topografia desse ambiente. / Sticholysins I and II (S tI and St II), belong to the actinoporins family and are produced by the anemone Stichodactila heliantus. The toxins form pores in biological and model membranes, their putative receptor being sphingomyelin (SM). Binding of actinoporins to membranes occurs via anchoring of an aromatic amino acid-rich region to the lipid-water interface. Evidences point to the importance of the N-terminal region for pore formation. The mechanism proposed for pore formation consists of toxin binding to the membrane-water interface, oligomerization, and dissociation of the N-terminus from the body of the protein. Next, the amphipathic α-helix in this region interacts with the bilayer, forming a toroidal pore. Studies of peptides from St II and equinatoxin II (Eqt II) N-terminus showed that they acquire α-helical conformation upon binding to model membranes and form pores in biological and model membranes, thereby mimicking the conformational and functional behavior of this region in the proteins. St I and St II (93% identity) display different hemolytic activity, St II being more active. Studies showed that fragments of St I and St II N-terminus also display different hemolytic activity, and that the first ten residues of St II play are important for lysis and peptide aggregation. In order to understand at the molecular level the N-terminus-membrane interaction, as well as its dependence on lipid composition, circular dichroism (CD) and electron paramagnetic resonance (EPR) studies of the interaction between four fragments of St I (St I1-31 and S t I12-31) and St II (St II1-30 and St II11-30) with model membranes bilayers and micelles - were performed. The interaction was found to depend on peptide sequence, and lipid composition. CD spectra showed that peptide binding promotes acquisition of helical structure. The effect of binding on lipid molecular organization was monitored by EPR. EPR spectra showed that peptide binding to bilayers and micelles leads to an increase of membrane molecular organization, St II1-30 being more effective. Incorporation of negatively charged lipids and of lipids that ordered microdomains increased peptide affinity for model membranes, especially when they were present at molar proportions known to originate such microdomains. It was found that only St II1-30 promoted significant alterations in the spectra of a phospholipid spin-labeled at C16 incorporated in multilamellar vesicles, (MLV), suggesting that while this peptide penetrates in the bilayer, the others remain preferentially at the interface. The peptides interaction with micelles was both qualitatively and quantitatively different than that with bilayers, electrostatic interactions playing a lesser role in this case. One important reason for the observed differences is probably due to differences in molecular packing in both types of aggregates. The differential interaction with bilayers and micelles could reflect the interaction with membranes indifferent steps of toroidal pore formation. Taking into account the positive curvature of a toroidal pore, the interaction with micelles could represent a model for peptide and lipid organization in the toroidal pore
22

Propriedades estruturais de membranas modelo em interação com o composto anti-Leishmania miltefosina / Structural properties of model membranes in interaction with the leishmanicidal compound miltefosine

Marina Berardi Barioni 22 September 2014 (has links)
A leishmaniose é uma doença tropical negligenciada causada por diferentes espécies do gênero Leishmania que atinge grande parte da população mais pobre do mundo e sua manifestação visceral, que é fatal se não tratada, tem se alastrado atingindo grandes cidades, aumentando o número de pessoas com risco de infecção. Dentre os medicamentos em uso, está o análogo lipídico sintético hexadecilfosfocolina (miltefosina), administrado oralmente, que age nas membranas celulares do parasita e pode induzir apoptose, mas com modo de ação não totalmente esclarecido. O primeiro local de interação desse fármaco é a membrana celular do parasita, sendo importante o conhecimento da sua forma de interação. Neste trabalho examinamos propriedades de diversos modelos de membrana com diferentes composições, levando em consideração o conhecimento existente sobre a composição da membrana plasmática da Leishmania. Assim, as membranas modelo foram vesículas unilamelares grandes e gigantes (LUVs e GUVs), de fosfolipídios puros, de misturas binárias com fosfolipídios e colesterol e ainda misturas ternárias com ceramida, um esterol presente nas membranas de Leishmania. A interação com a miltefosina foi estudada em diferentes intervalos de concentração do fármaco. Como técnicas principais utilizamos a espectroscopia de fluorescência, estática e resolvida no tempo, a espectroscopia de correlação de fluorescência, microscopia de fluorescência e confocal e imagens por tempo de vida de fluorescência. Observou-se que a interação entre o fármaco e as membranas lipídicas ocorre de diferentes formas, dependendo i) da razão molar entre o fármaco e os lipídios; ii) da concentração real do fármaco, se abaixo ou acima da concentração micelar crítica (CMC); iii) da composição do modelo de membrana e da fase lipídica da bicamada. Em concentrações abaixo da CMC, a miltefosina tem efeito de fluidificação das bicamadas, principalmente quando elas se encontram em na fase gel, mas esse efeito é pouco pronunciado na presença de colesterol, pois esse composto protege a bicamada do efeito do fármaco. Em vesículas de misturas ternárias de fosfolipídio, colesterol e ceramida em alta concentração, não há separação de fases, e a presença de 10 mol% de miltefosina promove a formação de domínios de ceramida; nas vesículas em que a ceramida está em concentração molar mais baixa, formando domínios, a separação de fases fica menos evidente com o acréscimo de miltefosina. Em razões de concentração miltefosina/lipídio elevadas, mas ainda abaixo da CMC, observa-se diminuição no tamanho das vesículas, por formação de agregados de fármaco/lipídio com porções da bicamada. Em concentrações acima da CMC, ocorrem efeitos drásticos com solubilização de partes cada vez maiores da bicamada da membrana, e esses efeitos ocorrem em tempos menores quanto maior a concentração de miltefosina. Portanto, de maneira geral, o colesterol protege a bicamada do efeito da miltefosina, mas o fármaco tem efeito pronunciado em modelos de membrana de misturas ternárias contendo ceramida. Os efeitos variam com a concentração da miltefosina, com aumento da fluidez da bicamada em baixas razões fármaco/lipídios, solubilização de pequenas porções da bicamada e diminuição do tamanho das vesículas em razões maiores, mas ainda abaixo da CMC, e acima da CMC, formação de agregados do fármaco com porções dos lipídios da bicamada e fragmentação da membrana. / Leishmaniasis is a complex of diseases part of the neglected tropical diseases caused by several species of the genus Leishmania. It reaches a large part of the poorest people in the world and its visceral form, which is fatal if left untreated, has been spread around big cities, increasing the number of people at risk of infection. Among the used drugs for the treatment, there is the synthetic lipid analogue hexadecylphosphocholine (miltefosine), orally administrated, which acts in the cell membranes and can induce apoptosis like death, but its mechanism of action is not totally clear. The first interactions site of this drug is the cell membrane, and it is important to know its mechanism of interaction. In this work we explore properties of several membrane models with different compositions, taking into account the existent knowledge about the composition of the Leishmania plasma membrane. Therefore, the model membranes were giant and large unilamellar vesicles (GUVs and LUVs), formed from pure phospholipids, binary mixtures of phospholipids and cholesterol and ternary mixtures with ceramide, a sterol present in the Leishmania membranes. The interaction with miltefosine was studied in different intervals of drug concentration. The main techniques used were the steady-state and time-resolved fluorescence spectroscopy, fluorescence correlation spectroscopy, confocal and fluorescence microscopy and fluorescence lifetime imaging. The interaction depends on i) the molar ratio of drug and lipids; ii) the real concentration of the drug, if it is below or above the critical micelle concentration (CMC); iii) the composition of the model membrane and the lipid phase of the bilayer. In concentration below the CMC, miltefosine has an effect of bilayer fluidization, mainly when it is in a more ordered phase, but this effect is less pronounced in cholesterol presence, because this compound protects the bilayers from the drug effect. In vesicles from ternary mixtures of phospholipid, cholesterol and ceramide in high concentration, there is no phase separation, and the presence of 10 mol% of miltefosine promotes ceramide domains formation; in vesicles in which ceramide is in low concentration, forming domains, the phase separation is less evident with miltefosine addition. In high concentration ratio miltefosine/lipids, but below CMC, it is observed a decrease in vesicles size with drug/lipids aggregates formation from portion of the bilayer. In concentrations above the CMC, drastic effects occur, with solubilization of bigger portions of the membrane bilayer, and the effects occur in lower times for higher drug concentration. Therefore, generally, cholesterol protects bilayer from the effect of miltefosine, but the drug has a pronounced effect in model membranes of ternary mixtures containing ceramide. The effects vary with miltefosine concentration, increasing the bilayer fluidity in lower drug/lipid ratio, solubilization of small portions of the bilayer and decrease of vesicles size in higher ratios, but still below CMC, and above CMC, formation of aggregates of the drug with portions of bilayer lipids, and membrane fragmentation.
23

Effects of Various Molecules on the Structure and Dynamics of Lipid Membranes / Molecules in membranes: Where they are, what they do

Toppozini, Laura 11 1900 (has links)
In my time at the Laboratory of Membrane and Protein Dynamics at McMaster University, it has been our goal to investigate the fundamental properties of model membranes and how some common membrane molecules, namely water, ethanol, and cholesterol, interact with the bilayer. Our studies employ highly-oriented, solid-supported membranes in order to extract unambiguous structural information perpendicular to and in the plane of the membranes, with the exception of the hydrated powder samples used in probing the effects on ethanol. Both X-ray and neutron scattering were employed to investigate the structural properties of the membranes and neutron scattering was used to infer the dynamical properties. A variety of neutron scattering techniques were used to determine the properties of hydrated lipid bilayers, as described in the first two publications listed. Instruments including a neutron backscattering spectrometer, reflectometer, and time-of-flight spectrometer were used to observe bilayer structure, lipid/water coupling, and water diffusion. We found that hydrated, solid-supported single-bilayers showed no strong coupling between hydration water and lipid tails and the out-of-plane structure of stacked fluid bilayers as well as the anisotropic and anomalous behaviour of hydration water compared to bulk water. Both X-ray and neutron scattering experiments were done to determine the effect of a 2mol% concentration of ethanol on a hydrated lipid powder. X-ray scattering was used to determine the structural changes due to the addition of ethanol and the location of ethanol within the bilayer. This was accomplished by determining areas of increased electron density in the head group and among the acyl tails. The presence of ethanol also attributed to a decrease in lateral lipid diffusion constant in the gel phase, while no significant change was found in fluid bilayers. In the final study outlined in this thesis, the result of a 32.5% concentration of cholesterol in a hydrated, fluid phospholipid membrane is discussed. Coarse-grained molecular simulations and measurements of the lateral structure of the membrane via neutron spectrometry were able to determine the heterogeneous nature of the liquid-ordered phase and the structure of each of the domains in the membrane. The following thesis will introduce model membranes, their relevant components and the scattering of X-rays and neutrons from such matter. Next, experimental techniques, sample constituents, sample preparations, and instruments used in experiments will be described. Then, each study will be introduced and discussed which will showcase the progress made in the field of model membranes. Lastly, an overview of the studies will lead in to future directions for each model system in terms of suggested experiments and general path. / Thesis / Doctor of Philosophy (PhD)
24

Vers un nouveau mode d’action de peptides antimicrobiens structurés en feuillets ß : formation de domaines membranaires par la cateslytine

Jean-François, Frantz 28 October 2008 (has links)
Le peptide antimicrobien Cateslytine (bCGA RSMRLSFRARGYGFR ) inhibe la libération des catécholamines des cellules chromaffines. Des études biologiques ont montré que ce peptide est capable d’inhiber aussi la croissance de nombreux microorganismes notamment des bactéries, des levures ainsi que le parasite Plasmodium falciparum responsable de la malaria. Cependant, le mode d’action moléculaire demeurait inconnu. Afin de mieux comprendre le ciblage et la sélectivité de ce peptide sur les membranes de mammifères ou de microorganismes, nous avons donc envisagé la reconstitution du système biologique composé initialement de peptides en contact avec des cellules, en le substituant par des modèles de membrane, de composition mimant celle des différents microorganismes. Des études structurales ont été menées en utilisant la technique d’ATR-FTIR polarisé, le dichroïsme circulaire et la RMN à haute résolution. La dynamique membranaire a été étudiée en utilisant la RMN des solides du phosphore et du deutérium. Des expériences de patch-clamp ont été effectuées afin de mesurer des flux d’ions au travers de la membrane. Enfin, de la simulation par ordinateur a permis de comprendre cette interaction au niveau moléculaire. Trois résultats principaux sont ressortis de cette approche pluridisciplinaire : i) Des flux ioniques au travers de la membrane attestent de la présence de cannaux. ii) La formation de domaines membranaires rigides constitués de lipides chargés négativement est démontrée. iii) Une structuration des peptides en feuillets ß antiparallèles est observée sur des membranes chargées négativement mimant les microorganismes. L’ensemble de ces résultats conduit à la proposition d’un mode d’action dans lequel la déstabilisation membranaire est induite par les domaines rigides stabilisés par les agrégats de peptides structurés en feuillets ß. / The antimicrobial peptide Cateslytin (bCGA RSMRLSFRARGYGFR ) is a five positively charged arginin rich peptide known to inhibit the release of catecholamine in chromaffin granules. Although biological data showed that it is able to inhibit the growth of several microorganisms such as bacteria, yeast and Plasmodium falciparum parasite involved in malaria, the mechanism of action has not been yet studied. In order to better understand both targeting and selectivity of this peptide towards microorganisms, model membranes of variable compositions have been chosen to respectively mimic microorganisms or mammalian membranes. Structural studies have been performed using polarised ATR-FTIR, circular dichroïsm and high resolution NMR Membrane dynamics has been followed using deuterium labelled lipids and solid state NMR Patch clamp experiments were also performed on lipid vesicles to measure channe conductivity. All-atom molecular dynamics on hydrated peptide-lipid membrane systems was also used to assess the interaction from the atomic level. Main results from this interdisciplinary approach are three-fold. i) Electric current passages through membranes demonstrate permeation akin to pore formation. ii) Peptide-induced formation of rigid domains mainly made of negatively charged lipids is found. iii) Peptide antiparallel ß-sheets are observed preferentially with negatively charged lipids mimicking microorganism membranes. The general picture leads to the proposal that membrane destabilization/permeation is promoted by rigid domains stabilised by peptide ß-sheets.
25

Atividade da própolis verde contra o fitopatógeno Pythium aphanidermatum e análise da interação do composto majoritário Artepillin C com sistemas biomiméticos de membranas / Activity of green propolis against the phytopathogen Pythium aphanidermatum and analysis of the interaction of the majority compound Artepillin C with membrane biomimetic systems

Pazin, Wallance Moreira 21 March 2016 (has links)
O aumento da resistência microbiana devido a fatores como uso excessivo e ineficiente de antibióticos convencionais acarreta a necessidade da busca por novos compostos bioativos que atuem por mecanismos de ação diferentes aos fármacos já conhecidos. Na agricultura, o uso intensivo de pesticidas para o combate de microrganismos que comprometem principalmente a parte alimentícia também traz diversos problemas relacionados à resistência antimicrobiana e a riscos ambientais, oriundos do acúmulo dessas substâncias no solo. Dentro deste aspecto, o pseudofungo Pythium aphanidermatum, da classe dos oomicetos, destaca-se por ser uma espécie agressiva e altamente resistente a fungicidas comuns, apodrecendo raízes e frutos de cultivos de tomate, beterraba, pepino, pimentão, etc. A própolis verde, constituída em sua grande parte por material resinoso coletado e processado pela abelha da espécie Apis mellifera tem sido utilizada na medicina tradicional devido ao seu amplo espectro de ações preventivas e tratamentos de doenças, possuindo propriedades anti-inflamatórias, antimicrobianas, anticancerígenas e antioxidantes, tornando-se um produto de grande interesse na busca de novos compostos bioativos. Dentro destes aspectos apresentados, neste trabalho investigamos a ação da própolis verde contra o fitopatógeno P. aphanidermatum e identificamos através da técnica de cromatografia e bioensaios que a Artepillin C (3,5-diprenil-4-ácido-hidroxicinâmico), majoritária na própolis verde, foi o principal composto nesta ação. Os efeitos terapêuticos desta molécula tem sido foco de muitos estudos, porém ainda não há evidência em sua interação com agregados anfifílicos que mimetizam membranas celulares. O caráter anfifílico do composto, elevado pela presença dos grupos prenilados ligados ao ácido cinâmico, favoreceram a sua inserção nas membranas modelo, principalmente em seu estado agregado. Estas conclusões puderam ser inferidas devido às alterações nas propriedades das bicamadas lipídicas na presença da Artepillin C, podendo causar, especificamente para o caso de fitopatógenos como o P. aphanidermatum, perdas funcionais das proteínas de membranas, liberação de eletrólitos intracelulares e desintegração citoplasmática dos micélios e esporos. Ainda, as diferentes composições lipídicas nas vesículas influenciam no modo de interação do composto e consequentes alterações em suas estruturas, principalmente na presença do colesterol, que auxilia na manutenção da permeabilidade da bicamada lipídica, que pode contribuir para a integridade do conteúdo citoplasmático da célula. / The increase in the microbial resistance due to the excessive and inefficient use of conventional antibiotics brings the necessity to search new bioactive compounds which play their mechanism of action differently from the known drugs. In the agriculture, the intensive use of pesticide for the combat of microorganisms which undermine mainly the food portion also brings several issues related to the antimicrobial resistance and environment risks, originated from the high amount of these substances on the soil. In this aspect, the fungus-like Pythium aphanidermatum microorganism, from class Oomycete, stands out for being an aggressive species and highly resistant to common fungicides, rotting roots and fruits of tomato, beet, cucumber, pepper, etc. Green propolis, constituted by resinous material collected and processed by bees of the species Apis mellifera, has been used in the traditional medicine due its wide spectrum of preventive actions and diseases treatments, promoting anti-inflammatory, antimicrobial, anticancer and antioxidant properties, becoming a product of interest for investigation in the research of new bioactive compounds. Under all the aspects showed so far, in this work we investigated the action of the green propolis against the phytopathogen P. aphanidermatum and identified through chromatography and bioassays that Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid), majority in the green propolis, was the main compound in this action. The therapeutic effects of this molecule have been the focus of several studies, but, so far there is no evidence for its interaction with amphiphilic aggregates that mimic cell membranes. The amphiphilic character of the compound, enhanced by the presence of two prenylated groups bounded to the cinnamic acid, favors the insertion of the compound in the model membranes mainly in its aggregation state. These conclusions could be inferred due the alterations in the properties of the lipid bilayer in the presence of Artepillin C, that may cause, specifically in the case of phytopathogens like P. aphanidermatum, functional losses of membrane proteins, releasing of intracellular electrolytes and cytoplasmatic disintegration of mycelium and spores. Moreover, the difference of the lipid composition in the vesicles influence in the action of the compound and consequent alteration in their structures, mainly in the presence of cholesterol, that provides the maintenance of permeability of the lipid bilayer, contributing to the integrity of the cytoplasmic material of the cell.
26

Interação entre peptídeos de fusão da dengue e membranas modelo: uma visão experimental e computacional / Interaction between dengue fusion peptides and model membranes: an experimental and computational overview.

Olivier, Danilo da Silva 30 May 2016 (has links)
A dengue é uma doença viral infecciosa predominante de regiões tropicais e subtropicais que atinge cerca de 400 milhões de pessoas anualmente. Possui quatro sorotipos diferentes do vírus (DEN.I-IV), de modo que a reinfecção por um novo sorotipo pode causar um quadro mais grave da doença: a dengue hemorrágica e a síndrome do choque da dengue. Durante o processo de infecção o vírus passa por duas etapas importantes: a primeira é a entrada dentro da célula hospedeira; a segunda etapa, é a fusão da bicamada lipídica viral com a membrana do endossomo. Ambas as etapas são mediadas pela Glicoproteína E, e é nessa proteína que se encontra o peptídeo putativo de fusão. O peptídeo possui elevado grau de homologia entre todos os membros de Flaviviridae. Neste trabalho, avaliamos a interação entre o peptídeo de fusão da dengue II, modificado, e membranas modelo através da combinação de técnicas experimentais (Fluorescência, SAXS, DSC e Cryo-TEM) e simulações por Dinâmica Molecular. Avaliamos a capacidade do peptídeo DEN.II 88-123 em induzir a fusão de vesículas de DMPC, DMPC:DMPG (4:1), bem como de alterar as propriedades das bicamadas lipídicas. Buscamos ainda compreender como sua estrutura secundária é afetada pela interação com as bicamadas lipídicas e qual o posicionamento dele em relação à membrana. Conseguimos mostrar que o peptídeo é capaz de alterar a cooperatividade lipídica das membranas conforme a composição lipídica e isso pode ser relacionado a capacidade de induzir fusão entre vesículas. Entretanto, os resultados de dinâmica molecular revelaram que o peptídeo não foi capaz de induzir mudanças em parâmetros estruturais tais como: área por lipídio, espessura e parâmetro de ordem da bicamada. Durante a interação o peptídeo ficou preferencialmente na superfície da bicamada, com inserção do resíduo hidrofóbico triptofano entre as cadeias alifáticas. O peptídeo não apresentou uma conformação estrutural preferencial, embora tenha apresentado pequenas proporções de formação de folha- e -hélice. Em conjunto, esses resultados podem auxiliar na compreensão do modo de ação dos peptídeos de fusão. / Dengue fever is viral infectious disease widespread in tropical and subtropical areas that infects nearly 400 million people annually. There are four different virus serotypes (DEN.I-IV) so that a reinfection by a different serotype may lead to a more severe case of the disease: dengue hemorrhagic fever and the dengue shock syndrome. During the infection cycle, the virus has two important steps: the first one is the entry in the host cell; the second one, is the fusion between the viral lipid bilayer and the endosomal membrane. Both steps are mediated by the E Glycoprotein, that is the host of the putative fusion peptide. The fusion peptide has a high degree of homology among the members of the Flaviviridae. In this work, we evaluated the interaction between modified dengue fusion peptide and model membranes through the combination of experiments (fluorescence, SAXS, DSC and Cryo-TEM), and Molecular Dynamics simulations. We evaluated the capacity of the DEN.II 88-123 peptide to promote fusion between vesicles composed by DMPC, DMPC:DMPG (4:1), as well as the ability to perturb the lipid bilayer properties. Moreover, we seek to understand how the secondary structure is affected by interaction with the model membranes and the peptide position in the membrane. We showed that the peptide is able to change the membrane lipid cooperativity depending on the lipid composition and it may be related to the capacity of fusion induction between vesicles. However, the results revealed that the peptide does not induce changes in the structural parameters such as area per lipid, thickness and bilayer order parameter. The peptide binds to the surface of the lipid bilayer with the insertion of the tryptophan residue into the region of aliphatic chains. The peptide did not have a preferential secondary structure, although it presented a low percentage of -sheet and -helice conformation. Together, these results may help to understand the mode of action of fusion peptides.
27

Lipid membrane interaction with self-assembling cell-penetrating peptides / Interactions des membranes lipidiques avec des peptides pénétrateurs de cellules auto-assemblants

Walter, Vivien 12 September 2017 (has links)
Les peptides pénétrateurs de cellule (CPP) sont des oligopeptides cationiques faisant parti des vecteurs les plus étudiés dans le cadre du développement du transport ciblé de médicament à l’intérieur de l’organisme. Les applications principales sont par exemple le traitement des cancers ou la thérapie génique. Néanmoins, certaines caractéristiques des CPPs rendent leur utilisation médicale compliquée, tels que leur manque de spécificité à l’égard des cellules cibles ou la perte de leurs propriétés pénétrantes lorsqu’un cargo moléculaire leur est greffé. L’une des solutions envisagées pour résoudre ces problèmes est le greffage sur des polypeptides di-blocs auto-assemblés basés sur de l’élastine (ELPBC), des systèmes développés par l’équipe d’Ashutosh Chilkoti à l’Université de Duke (USA). Des travaux précédents ont montré que ces macromolécules, que l’on appelle CPP-ELPBC, retrouvaient les propriétés pénétrantes du CPP même en présence d’un cargo et permettaient également d’induire une spécificité à l’encontre des cellules cancéreuses. En revanche, le mécanisme de pénétration de ces systèmes restait inconnu.Dans cette thèse, je me suis concentré sur l’étude du mécanisme de pénétration des CPP et des CPP-ELPBC au travers de membranes lipidiques modèles, et en particulier sur l’adsorption de ces molécules à la surface de vésicules unilamellaires géantes (GUV). Le développement d’une nouvelle méthode de quantification de la fluorescence en microscopie confocale m’a permis de réaliser des mesures simples de comptage de peptides à la surface des vésicules, ce qui m’a permis par la suite de procéder à des mesures thermodynamiques de l’adsorption des peptides. / Cell-penetrating peptides (CPP) are cationic oligopeptides currently investigated as potential vectors for targeted drug delivery design, for applications in cancer treatment and/or gene therapy. Nevertheless, some drawbacks make the CPP complex for medical applications, such as their lack of specificity toward target cells or the loss of their penetrating properties once they have been grafted with a molecular cargo. One of the solutions studied to overcome these issues is the binding of the CPP unit on a self-assembling elastin-like diblock polypeptide (ELPBC), a macromolecular system designed by the team of Ashutosh Chilkoti from Duke University (USA). While it has already been proven that these molecules, named CPP-ELPBC, recover the penetrating properties of the CPP despite the presence of a cargo and also induce a selectivity toward tumorous cells, the exact mechanism of translocation is still under debate.In this PhD thesis, I focused on the investigation of the translocation mechanism of the CPP and CPP-ELPBC using model lipid membranes, and specifically the adsorption of these molecules at the surface of giant unilamellar vesicles (GUV). The development of a new quantification method of fluorescence in confocal microscopy allowed me to directly count the peptides adsorbed on the surface of the GUVs, which I used to perform thermodynamic measurements on the peptide adsorption.
28

Influence de la localisation d’antioxydants sur la peroxydation des lipides membranaires : étude du mode d’action de dérivés PBN et de composés phénoliques / Influence of the location of antioxidants on membrane lipid peroxidation : study of the mechanisms of action of PBN derivatives and phenolic compounds

Socrier, Larissa 29 November 2017 (has links)
Les espèces réactives de l’oxygène (EROs) sont essentielles à la survie des cellules car elles interviennent dans divers processus physiologiques comme la défense immunitaire ou encore la régulation de voies de signalisation cellulaires. Cependant, un excès d’EROs peut créer un déséquilibre de la balance EROs/antioxydants appelé « stress oxydant ». Le stress oxydant étant impliqué dans l’étiologie de plus de 200 pathologies, l’action des antioxydants est cruciale pour limiter les effets délétères des EROs. Les antioxydants utilisés par les cellules peuvent être de nature chimique. Parmi ceux-ci, l’α-phenyl-N-tert-butyl nitrone (PBN) est particulièrement efficace en milieu biologique pour piéger les radicaux. Cependant, comme cette molécule présente le désavantage majeur de mal cibler les membranes, des nitrones amphiphiles dérivées de la PBN ont été synthétisées. Le premier chapitre décrit l’étude des interactions de nitrones dérivées du cholestérol avec les lipides membranaires. Ces travaux ont souligné l’influence du groupement polaire sur la nature des interactions avec les lipides membranaires. Aussi, l’étude des propriétés antioxydantes a permis de mettre en évidence l’importance de la localisation membranaire et l’influence de l’orientation du groupement PBN sur l’activité protectrice des dérivés. Le second chapitre décrit les résultats des expériences menées avec une deuxième série de dérivés amphiphiles, présentant la particularité d’avoir une chaîne perfluorée comme groupement hydrophobe. Bien que la localisation membranaire de ces dérivés soit nécessaire pour obtenir un effet protecteur significatif, la nature de l’antioxydant semble être ici le paramètre le plus important. Enfin, la combinaison d’antioxydants de nature différente sur une même molécule semble être une stratégie prometteuse pour améliorer l’efficacité antioxydante et créer un effet de synergie. En outre, pour se défendre, les cellules utilisent aussi des antioxydants issus de l’alimentation, en particulier des fruits et légumes. Parmi ces derniers, les composés phénoliques sont reconnus pour leurs effets bénéfiques sur la santé. Les flavonoïdes, les acides phénoliques, les stilbènes et les lignanes constituent les 4 classes principales de composés phénoliques. Les lignanes sont particulièrement présents dans les graines de lin (Linum usitatissimum). Le lin est la plante qui contient le plus de secoisolaricirésinol diglucoside. Afin de mieux comprendre leur fonctionnement et leurs interactions avec les lipides membranaires, plusieurs molécules appartenant à cette classe de composés ainsi que des acides hydroxycinnamiques ont été purifiées à partir du lin. Le troisième chapitre décrit les résultats des expériences menées avec les composés phénoliques extraits du lin. De manière générale, les composés testés se sont avérés efficaces pour protéger les lipides membranaires de l’oxydation. L’étude de leurs interactions avec les lipides membranaires a permis de montrer que le mode d’action des lignanes, qui pénètrent les membranes, est plus efficace que celui des acides hydroxycinnamiques. / Reactive oxygen species (ROS) are essential in living cells as they intervene in several physiological processes like the immune system and signaling pathways. However, an excess of the production of ROS can alter the equilibrium with antioxidants. This imbalance is called oxidative stress. As oxidative stress has been reported to be implicated in more than 200 diseases, the action of antioxidants to limit the deleterious effects of ROS is crucial. The antioxidants used by the cells can be chemical. Among them, α-phenyl-N-tert-butyl nitrone (PBN) is widely used in biological systems to neutralize ROS. Because this molecule possesses a poor ability to target membranes, our collaborators synthesized amphiphilic nitrones bearing a PBN moiety. The first chapter describes the interactions of cholesterol derived PBN derivatives with the membrane. Results underlined the influence of the polar moiety on the nature of their interactions with membrane lipids. In addition, the evaluation of the antioxidant properties revealed the importance of the membrane localization of the nitrone moiety on the protective activity of the derivatives. The second chapter deals with a second set of amphiphilic nitrones that have the particularity of bearing a perfluorinated chain that constitutes the hydrophobic moiety. We noticed the membrane localization is important for the antioxidant efficiency; however the nature of the antioxidant moiety remains the most important parameter in this case. Finally, the strategy of grafting two different antioxidants on the same carrier seems to be promising to enhance the protective effect and create a synergistic antioxidant effect. However, cells also use natural antioxidants to defend themselves. These antioxidants come from food, especially from vegetables and fruits. Among them, phenolic compounds are known for their beneficial effects on health. Flavonoïds, phenolic acids, stilbenes and lignans constitute the 4 main classes of phenolic compounds. Lignans are particularly present in flaxseed (Linum usitatissimum). Flaxseed is the plant that possesses the highest quantity of secoisolariciresinol diglucoside. In order to understand their mechanisms of action and their interactions with membranes, lignans as well as hydroxycinnamic acids were purified from flaxseed. The third chapter describes the results obtained on model membranes. Generally speaking, both classes of compounds are efficient against lipid oxidation. Studying their interactions with membrane lipids allowed us to show that the mechanism of lignans, that penetrate membranes, is more efficient than the mechanism of hydroxycinnamic acids.
29

Interação entre peptídeos de fusão da dengue e membranas modelo: uma visão experimental e computacional / Interaction between dengue fusion peptides and model membranes: an experimental and computational overview.

Danilo da Silva Olivier 30 May 2016 (has links)
A dengue é uma doença viral infecciosa predominante de regiões tropicais e subtropicais que atinge cerca de 400 milhões de pessoas anualmente. Possui quatro sorotipos diferentes do vírus (DEN.I-IV), de modo que a reinfecção por um novo sorotipo pode causar um quadro mais grave da doença: a dengue hemorrágica e a síndrome do choque da dengue. Durante o processo de infecção o vírus passa por duas etapas importantes: a primeira é a entrada dentro da célula hospedeira; a segunda etapa, é a fusão da bicamada lipídica viral com a membrana do endossomo. Ambas as etapas são mediadas pela Glicoproteína E, e é nessa proteína que se encontra o peptídeo putativo de fusão. O peptídeo possui elevado grau de homologia entre todos os membros de Flaviviridae. Neste trabalho, avaliamos a interação entre o peptídeo de fusão da dengue II, modificado, e membranas modelo através da combinação de técnicas experimentais (Fluorescência, SAXS, DSC e Cryo-TEM) e simulações por Dinâmica Molecular. Avaliamos a capacidade do peptídeo DEN.II 88-123 em induzir a fusão de vesículas de DMPC, DMPC:DMPG (4:1), bem como de alterar as propriedades das bicamadas lipídicas. Buscamos ainda compreender como sua estrutura secundária é afetada pela interação com as bicamadas lipídicas e qual o posicionamento dele em relação à membrana. Conseguimos mostrar que o peptídeo é capaz de alterar a cooperatividade lipídica das membranas conforme a composição lipídica e isso pode ser relacionado a capacidade de induzir fusão entre vesículas. Entretanto, os resultados de dinâmica molecular revelaram que o peptídeo não foi capaz de induzir mudanças em parâmetros estruturais tais como: área por lipídio, espessura e parâmetro de ordem da bicamada. Durante a interação o peptídeo ficou preferencialmente na superfície da bicamada, com inserção do resíduo hidrofóbico triptofano entre as cadeias alifáticas. O peptídeo não apresentou uma conformação estrutural preferencial, embora tenha apresentado pequenas proporções de formação de folha- e -hélice. Em conjunto, esses resultados podem auxiliar na compreensão do modo de ação dos peptídeos de fusão. / Dengue fever is viral infectious disease widespread in tropical and subtropical areas that infects nearly 400 million people annually. There are four different virus serotypes (DEN.I-IV) so that a reinfection by a different serotype may lead to a more severe case of the disease: dengue hemorrhagic fever and the dengue shock syndrome. During the infection cycle, the virus has two important steps: the first one is the entry in the host cell; the second one, is the fusion between the viral lipid bilayer and the endosomal membrane. Both steps are mediated by the E Glycoprotein, that is the host of the putative fusion peptide. The fusion peptide has a high degree of homology among the members of the Flaviviridae. In this work, we evaluated the interaction between modified dengue fusion peptide and model membranes through the combination of experiments (fluorescence, SAXS, DSC and Cryo-TEM), and Molecular Dynamics simulations. We evaluated the capacity of the DEN.II 88-123 peptide to promote fusion between vesicles composed by DMPC, DMPC:DMPG (4:1), as well as the ability to perturb the lipid bilayer properties. Moreover, we seek to understand how the secondary structure is affected by interaction with the model membranes and the peptide position in the membrane. We showed that the peptide is able to change the membrane lipid cooperativity depending on the lipid composition and it may be related to the capacity of fusion induction between vesicles. However, the results revealed that the peptide does not induce changes in the structural parameters such as area per lipid, thickness and bilayer order parameter. The peptide binds to the surface of the lipid bilayer with the insertion of the tryptophan residue into the region of aliphatic chains. The peptide did not have a preferential secondary structure, although it presented a low percentage of -sheet and -helice conformation. Together, these results may help to understand the mode of action of fusion peptides.
30

Atividade da própolis verde contra o fitopatógeno Pythium aphanidermatum e análise da interação do composto majoritário Artepillin C com sistemas biomiméticos de membranas / Activity of green propolis against the phytopathogen Pythium aphanidermatum and analysis of the interaction of the majority compound Artepillin C with membrane biomimetic systems

Wallance Moreira Pazin 21 March 2016 (has links)
O aumento da resistência microbiana devido a fatores como uso excessivo e ineficiente de antibióticos convencionais acarreta a necessidade da busca por novos compostos bioativos que atuem por mecanismos de ação diferentes aos fármacos já conhecidos. Na agricultura, o uso intensivo de pesticidas para o combate de microrganismos que comprometem principalmente a parte alimentícia também traz diversos problemas relacionados à resistência antimicrobiana e a riscos ambientais, oriundos do acúmulo dessas substâncias no solo. Dentro deste aspecto, o pseudofungo Pythium aphanidermatum, da classe dos oomicetos, destaca-se por ser uma espécie agressiva e altamente resistente a fungicidas comuns, apodrecendo raízes e frutos de cultivos de tomate, beterraba, pepino, pimentão, etc. A própolis verde, constituída em sua grande parte por material resinoso coletado e processado pela abelha da espécie Apis mellifera tem sido utilizada na medicina tradicional devido ao seu amplo espectro de ações preventivas e tratamentos de doenças, possuindo propriedades anti-inflamatórias, antimicrobianas, anticancerígenas e antioxidantes, tornando-se um produto de grande interesse na busca de novos compostos bioativos. Dentro destes aspectos apresentados, neste trabalho investigamos a ação da própolis verde contra o fitopatógeno P. aphanidermatum e identificamos através da técnica de cromatografia e bioensaios que a Artepillin C (3,5-diprenil-4-ácido-hidroxicinâmico), majoritária na própolis verde, foi o principal composto nesta ação. Os efeitos terapêuticos desta molécula tem sido foco de muitos estudos, porém ainda não há evidência em sua interação com agregados anfifílicos que mimetizam membranas celulares. O caráter anfifílico do composto, elevado pela presença dos grupos prenilados ligados ao ácido cinâmico, favoreceram a sua inserção nas membranas modelo, principalmente em seu estado agregado. Estas conclusões puderam ser inferidas devido às alterações nas propriedades das bicamadas lipídicas na presença da Artepillin C, podendo causar, especificamente para o caso de fitopatógenos como o P. aphanidermatum, perdas funcionais das proteínas de membranas, liberação de eletrólitos intracelulares e desintegração citoplasmática dos micélios e esporos. Ainda, as diferentes composições lipídicas nas vesículas influenciam no modo de interação do composto e consequentes alterações em suas estruturas, principalmente na presença do colesterol, que auxilia na manutenção da permeabilidade da bicamada lipídica, que pode contribuir para a integridade do conteúdo citoplasmático da célula. / The increase in the microbial resistance due to the excessive and inefficient use of conventional antibiotics brings the necessity to search new bioactive compounds which play their mechanism of action differently from the known drugs. In the agriculture, the intensive use of pesticide for the combat of microorganisms which undermine mainly the food portion also brings several issues related to the antimicrobial resistance and environment risks, originated from the high amount of these substances on the soil. In this aspect, the fungus-like Pythium aphanidermatum microorganism, from class Oomycete, stands out for being an aggressive species and highly resistant to common fungicides, rotting roots and fruits of tomato, beet, cucumber, pepper, etc. Green propolis, constituted by resinous material collected and processed by bees of the species Apis mellifera, has been used in the traditional medicine due its wide spectrum of preventive actions and diseases treatments, promoting anti-inflammatory, antimicrobial, anticancer and antioxidant properties, becoming a product of interest for investigation in the research of new bioactive compounds. Under all the aspects showed so far, in this work we investigated the action of the green propolis against the phytopathogen P. aphanidermatum and identified through chromatography and bioassays that Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid), majority in the green propolis, was the main compound in this action. The therapeutic effects of this molecule have been the focus of several studies, but, so far there is no evidence for its interaction with amphiphilic aggregates that mimic cell membranes. The amphiphilic character of the compound, enhanced by the presence of two prenylated groups bounded to the cinnamic acid, favors the insertion of the compound in the model membranes mainly in its aggregation state. These conclusions could be inferred due the alterations in the properties of the lipid bilayer in the presence of Artepillin C, that may cause, specifically in the case of phytopathogens like P. aphanidermatum, functional losses of membrane proteins, releasing of intracellular electrolytes and cytoplasmatic disintegration of mycelium and spores. Moreover, the difference of the lipid composition in the vesicles influence in the action of the compound and consequent alteration in their structures, mainly in the presence of cholesterol, that provides the maintenance of permeability of the lipid bilayer, contributing to the integrity of the cytoplasmic material of the cell.

Page generated in 0.0493 seconds