Spelling suggestions: "subject:"modelbased design"" "subject:"modelbased 1design""
11 |
Model-based design of haptic devicesAftab, Ahmad January 2012 (has links)
Efficient engineering design and development of high precision and reliable surgical simulators, like haptic devices for surgical training benefits from model-based and simulation driven design. The complexity of the design space, multi-domains, multicriteria requirements and multi-physics character of the behavior of such a product ask for a model based systematic approach for creating and validating compact and computationally efficient simulation models to be used for the design process.The research presented in this thesis describes a model-based design approach towards the design of haptic devices for simulation of surgical procedures, in case of hard tissues such as bone or teeth milling. The proposed approach is applied to a new haptic device based on TAU configuration.The main contributions of this thesis are: Development and verification of kinematic and dynamic models of the TAU haptic device. Multi-objective optimization (MOO) approach for optimum design of the TAU haptic device by optimizing kinematic performance indices, like workspace volume, kinematic isotropy and torque requirement of actuators. A methodology for creating an analytical and compact model of the quasi-static stiffness of haptic devices, which considers the stiffness of; actuation system;flexible links and passive joints. / QC 20120611
|
12 |
Incremental Design Migration Support in Industrial Control Systems DevelopmentBalasubramanian, Harish 04 December 2014 (has links)
Industrial control systems (ICS) play an extremely important role in the world around us. They have helped in reducing human effort and contributed to automation of processes in oil refining, power generation, food and beverage and production lines. With advancement in technology, embedded platforms have emerged as ideal platforms for implementation of such ICSes. Traditional approaches in ICS design involve switching from a model or modeling environment directly to a real-world implementation. Errors have the potential to go unnoticed in the modeling environment and have a tendency to affect real control systems.
Current models for error identification are complex and affect the design process of ICS appreciably. This thesis adds an additional layer to ICS design: an Interface Abstraction Process (IAP). IAP helps in incremental migration from a modeling environment to a real physical environment by supporting intermediate design versions. Implementation of the IAP is simple and independent of control system complexity. Early error identification is possible since intermediate versions are supported. Existing control system designs can be modified minimally to facilitate the addition of an extra layer. The overhead of adding the IAP is measured and analysed.
With early validation, actual behavior of the ICS in the real physical setting matches the expected behavior in the modeling environment. This approach to ICS design adds a significant amount of latency to existing ICSes without affecting the design process significantly. Since the IAP helps in early design validation, it can be removed before deployment in the real-world. / Master of Science
|
13 |
Design Space Exploration for Structural Aircraft Components : A method for using topology optimization in concept developmentSchön, Sofia January 2019 (has links)
When building aircrafts, structural components must be designed for high strength, low cost, and easy assembly.To meet these conditions structural components are often based upon previous designs, even if a new component is developed.Refining previous designs can be a good way of preserving knowledge but can also limit the exploration of new design concepts. Currently the design process for structural aircraft components at SAAB is managed by design engineers. The design engineer is responsible for ensuring the design meets requirements from several different disciplines such as structural analysis, manufacturing, tool design, and assembly.Therefore, the design engineer needs to have good communication with all disciplines and an effective flow of information. The previous design is refined, it is then reviewed and approved by adjacent disciplines.Reviewing designs is an iterative process, and when several disciplines are involved it quickly becomes time consuming.Any time the design is altered it has to be reviewed once more by all disciplines to ensure the change is acceptable.So there is a need for further customizing the design concept to decrease the number of iterations when reviewing. Design Space Exploration DSE is a well known method to explore design alternatives before implementation and is used to find new concepts.This thesis investigates if DSE can be used to facilitate the design process of structural aircraft components and if it can support the flow of information between different disciplines.To find a suitable discipline to connect with design a prestudy is conducted, investigating what information affect structural design and how it is managed.The information flow is concluded in a schematic diagram where structural analysis is chosen as additional discipline. By using topology optimization in a DSE, design and structural analysis are connected.The design space can be explored with regards to structural constraints.The thesis highlights the possibilities of using DSE with topology optimization for developing structural components and proposes a method for including it in the design process.
|
14 |
Improvements in Organizational developmentAarenstrup, Roger January 2009 (has links)
<p><strong>Aim:</strong> The aim of this study was to investigate the relation between innovation and system complexity, and suggest improvements for an organization to handle innovation and complexity better.</p><p><strong>Method:</strong> The analysis was based on theoretical models about organizational structure, development models and knowledge management. The models were selected to highlight theoretical extremes rather than practical usefulness to avoid practical obstacles in the theoretic evaluations. The work progressed as a strategy development flow based on a model including four phases; analysis, objectives and recommendations, options and Implementation.</p><p><strong>Result & Conclusions: </strong>To significantly improve how complexity and innovation are managed it isn’t sufficient to focus on improvements in one part, such as processes. Organizational goals, external environment, organizational structure, development model, knowledge management and internal culture have to be considered and balanced to achieve significant improvements. For the organization studied it was clear that there was a difference in the official description of the organization and how it worked in practice.</p><p><strong>Suggestions for future research: </strong>Metrics are important to measure value and improvement. Balanced metrics describing how well an organization is adapted to its goals and environment is an area for future work. The effect of Model-Based design on organizational structure is another interesting topic for further research. </p><p><strong>Contribution of the thesis: </strong>The recommendations and objectives developed in this study can be used to improve an organization with respect to both internal and external environment.</p>
|
15 |
Model-Based Validation of Fuel Cell Hybrid Vehicle Control SystemsWilhelm, Erik 31 July 2007 (has links)
Hydrogen fuel cell technology has emerged as an efficient and clean alternative to internal combustion engines for powering vehicles, and hydrogen powertrains will aid in addressing key environmental issues such as urban air quality and global warming. This work demonstrates the effectiveness of a „hardware-in-loop‟ (HIL) simulation system for validating the safety and effectiveness of control algorithms for a hydrogen fuel cell hybrid passenger vehicle. A significant amount of the work completed in conjunction with the thesis topic was the design and construction of the fuel cell vehicle for competition. Producing a „rolling test bench‟ that generates data to be used to create HIL simulation models required nearly two years of work before an acceptable level of reliability was reached to produce usable data. Some detail will be given in this thesis regarding the infrastructure modifications required to safely build a hydrogen fuel cell vehicle, as well as the design challenges faced in the integration of a fuel cell power module, two electric drive motors, a nickel metal hydride battery, and required power electronics into a small sport utility vehicle originally designed for an internal combustion powertrain. The virtual control validation performed involved designing dynamic models of the systems of interest and performing real-time simulation to ensure that the appropriate controller response is observed. For this thesis, emphasis was placed on several key vehicle control topics. Communication robustness was evaluated to ensure that the complicated vehicle communication network could effectively handle traffic from the six powertrain sub-controllers. Safety algorithms were tested for appropriate response to fault conditions. Control systems were developed and tuned offline reducing the amount of time required for in-vehicle development and testing. Software-in-the-loop simulation was used to check initial code integrity and to validate the hardware-in-the-loop vehicle models. The methodology presented in this work was found to be sufficient for a thorough safety and rationality evaluation of control strategies for hybrid fuel cell vehicles.
|
16 |
Hybrid Fuel Cell Vehicle Powertrain Development Considering Power Source DegradationStevens, Matthew 21 January 2009 (has links)
Vehicle design and control is an attractive area of research in that it embodies a convergence of societal need, technical limitation, and emerging capability. Environmental, political, and monetary concerns are driving the automotive industry towards sustainable transportation, manifested as increasing powertrain electrification in a gradual transition to fossil-free energy vectors. From an electrochemical degradation and control systems perspective, this transition introduces significant technical uncertainty. Initial indications are that the initial battery designs will have twice the required capacity due to degradation concerns. As the battery is a major contributor to the cost of these vehicles the over-sizing represents a significant threat to the ability of OEMs to produce cost-competitive vehicles. This potential barrier is further amplified when the combustion engine is removed and battery-electric or fuel-cell hybrid vehicles are considered.
This thesis researches the application of model-based design for optimal design of fuel cell hybrid powertrains considering power source degradation. The intent is to develop and evaluate tools that can determine the optimal sizing and control of the powertrain; reducing the amount of over-sizing by numerically optimization rather than a sub-optimal heuristic design.
A baseline hybrid fuel cell vehicle model is developed and validated to a hybrid fuel cell SUV designed and built at the University of Waterloo. Lithium-ion battery degradation models are developed and validated to data captured off a hybrid powertrain test stand built as part of this research. A fuel cell degradation model is developed and integrated into the vehicle model.
Lifetime performance is modeled for four hybrid control strategies, demonstrating a significant impact of the hybrid control strategy on powertrain degradation. A plug-in variation of the architecture is developed. The capacity degradation of the battery is found to be more significant than the power degradation. Blended and All-electric charge-depleting hybrid control strategies are integrated and lifetime performance is simulated. The blended charge-depleting control strategy demonstrated significantly less degradation than the all-electric strategy. An oversized battery is integrated into the vehicle model and the benefit of oversizing on reducing the battery degradation rate is demonstrated.
|
17 |
Model-Based Validation of Fuel Cell Hybrid Vehicle Control SystemsWilhelm, Erik 31 July 2007 (has links)
Hydrogen fuel cell technology has emerged as an efficient and clean alternative to internal combustion engines for powering vehicles, and hydrogen powertrains will aid in addressing key environmental issues such as urban air quality and global warming. This work demonstrates the effectiveness of a „hardware-in-loop‟ (HIL) simulation system for validating the safety and effectiveness of control algorithms for a hydrogen fuel cell hybrid passenger vehicle. A significant amount of the work completed in conjunction with the thesis topic was the design and construction of the fuel cell vehicle for competition. Producing a „rolling test bench‟ that generates data to be used to create HIL simulation models required nearly two years of work before an acceptable level of reliability was reached to produce usable data. Some detail will be given in this thesis regarding the infrastructure modifications required to safely build a hydrogen fuel cell vehicle, as well as the design challenges faced in the integration of a fuel cell power module, two electric drive motors, a nickel metal hydride battery, and required power electronics into a small sport utility vehicle originally designed for an internal combustion powertrain. The virtual control validation performed involved designing dynamic models of the systems of interest and performing real-time simulation to ensure that the appropriate controller response is observed. For this thesis, emphasis was placed on several key vehicle control topics. Communication robustness was evaluated to ensure that the complicated vehicle communication network could effectively handle traffic from the six powertrain sub-controllers. Safety algorithms were tested for appropriate response to fault conditions. Control systems were developed and tuned offline reducing the amount of time required for in-vehicle development and testing. Software-in-the-loop simulation was used to check initial code integrity and to validate the hardware-in-the-loop vehicle models. The methodology presented in this work was found to be sufficient for a thorough safety and rationality evaluation of control strategies for hybrid fuel cell vehicles.
|
18 |
Hybrid Fuel Cell Vehicle Powertrain Development Considering Power Source DegradationStevens, Matthew 21 January 2009 (has links)
Vehicle design and control is an attractive area of research in that it embodies a convergence of societal need, technical limitation, and emerging capability. Environmental, political, and monetary concerns are driving the automotive industry towards sustainable transportation, manifested as increasing powertrain electrification in a gradual transition to fossil-free energy vectors. From an electrochemical degradation and control systems perspective, this transition introduces significant technical uncertainty. Initial indications are that the initial battery designs will have twice the required capacity due to degradation concerns. As the battery is a major contributor to the cost of these vehicles the over-sizing represents a significant threat to the ability of OEMs to produce cost-competitive vehicles. This potential barrier is further amplified when the combustion engine is removed and battery-electric or fuel-cell hybrid vehicles are considered.
This thesis researches the application of model-based design for optimal design of fuel cell hybrid powertrains considering power source degradation. The intent is to develop and evaluate tools that can determine the optimal sizing and control of the powertrain; reducing the amount of over-sizing by numerically optimization rather than a sub-optimal heuristic design.
A baseline hybrid fuel cell vehicle model is developed and validated to a hybrid fuel cell SUV designed and built at the University of Waterloo. Lithium-ion battery degradation models are developed and validated to data captured off a hybrid powertrain test stand built as part of this research. A fuel cell degradation model is developed and integrated into the vehicle model.
Lifetime performance is modeled for four hybrid control strategies, demonstrating a significant impact of the hybrid control strategy on powertrain degradation. A plug-in variation of the architecture is developed. The capacity degradation of the battery is found to be more significant than the power degradation. Blended and All-electric charge-depleting hybrid control strategies are integrated and lifetime performance is simulated. The blended charge-depleting control strategy demonstrated significantly less degradation than the all-electric strategy. An oversized battery is integrated into the vehicle model and the benefit of oversizing on reducing the battery degradation rate is demonstrated.
|
19 |
Improvements in Organizational developmentAarenstrup, Roger January 2009 (has links)
Aim: The aim of this study was to investigate the relation between innovation and system complexity, and suggest improvements for an organization to handle innovation and complexity better. Method: The analysis was based on theoretical models about organizational structure, development models and knowledge management. The models were selected to highlight theoretical extremes rather than practical usefulness to avoid practical obstacles in the theoretic evaluations. The work progressed as a strategy development flow based on a model including four phases; analysis, objectives and recommendations, options and Implementation. Result & Conclusions: To significantly improve how complexity and innovation are managed it isn’t sufficient to focus on improvements in one part, such as processes. Organizational goals, external environment, organizational structure, development model, knowledge management and internal culture have to be considered and balanced to achieve significant improvements. For the organization studied it was clear that there was a difference in the official description of the organization and how it worked in practice. Suggestions for future research: Metrics are important to measure value and improvement. Balanced metrics describing how well an organization is adapted to its goals and environment is an area for future work. The effect of Model-Based design on organizational structure is another interesting topic for further research. Contribution of the thesis: The recommendations and objectives developed in this study can be used to improve an organization with respect to both internal and external environment.
|
20 |
Fuzzy Logic Based Driving Pattern Recognition for Hybrid Electric Vehicle Energy ManagementJanuary 2015 (has links)
abstract: For years the automotive industry has been shifting towards hybridization and electrification of conventional powertrains due to increase in fossil fuel cost and environmental impact due heavy emission of Green House Gases (GHG) and various pollutants into atmosphere by combustion engine powered vehicles. Hybrid Electric Vehicles (HEV) have proved to achieve superior fuel economy and reduced emissions. Supervisory control strategies determining the power split among various onboard power sources are evolving with time, providing better fuel economies.
With increasing complexity of control systems driving HEV’s, mathematical modeling and simulation tools have become extremely advanced and have derived whole industry into adopting Model Based Design (MBD) and Hardware-in-the-loop (HIL) techniques to validate the performance of HEV systems in real world.
This report will present a systematic mythology where MBD techniques are used to develop hybrid powertrain, supervisory control strategies and control systems. To validate the effectiveness of various energy management strategies for HEV energy management in a real world scenario, Conventional rule-based power split strategies are compared against advanced Equivalent Consumption Minimization Strategy (ECMS), in software and HIL environment.
Since effective utilization of the fuel reduction potential of a HEV powertrain requires a careful design of the energy management control methodology, an advanced ECMS strategy involving implementation with Fuzzy Logic to reduce computational overload has been proposed. Conventional real-time implementation of ECMS based strategy is difficult due to the involvement of heavy computation. Methods like Fuzzy Logic based estimation can be used to reduce this computational overload.
Real-time energy management is obtained by adding a Fuzzy Logic based on-the-fly algorithm for the estimation of driving profile and adaptive equivalent consumption minimization strategy (A-ECMS) framework. The control strategy is implemented to function without any prior knowledge of the future driving conditions. The idea is to periodically refresh the energy management strategy according to the estimated driving pattern, so that the Battery State of Charge (SOC) is maintained within the boundaries and the equivalent fuel consumption is minimized. The performance of the presented Fuzzy Logic based adaptive control strategy utilizing driving pattern recognition is benchmarked using a Dynamic Programming based global optimization approach. / Dissertation/Thesis / Masters Thesis Engineering 2015
|
Page generated in 0.0653 seconds