Spelling suggestions: "subject:"modelo dde using"" "subject:"modelo dde tsing""
51 |
Análise estatística do problema da partição numérica. / Statistical analysis of the number partitioning problem.Fernando Fagundes Ferreira 08 March 2001 (has links)
Nesta tese apresentamos a abordagem da Mecânica Estatística para o clássico problema de otimização denominado problema da partição numérica (PPN), que é definido como: Dada uma seqüência de N números reais positivos {a1, a2, a3,....aN}, o problema consiste em particioná-los em dois conjuntos complementares, A e Ac, tais que o valor absoluto da diferença da soma dos ais nos dois conjuntos seja minimizada. No caso em que os aj\'s são variáveis aleatórias estatisticamente independentes distribuídas uniformemente no intervalo unitário, este problema NP-completo equivale ao problema de encontrar o estado fundamental de um modelo de Ising antiferromagnético aleatório de alcance infinito. Conseqüentemente, a análise probabilística do PPN pode ser realizada com as ferramentas da Mecânica Estatística de sistemas desordenados. Neste trabalho empregamos a aproximação recozida (annealed) para derivar uma expressão analítica para o limitante inferior do valor médio da diferença para partições tanto com vínculo de cardinalidade quanto sem vínculo para grandes valores de N. Além disso, calculamos analiticamente a fração de estados metaestáveis, isto é, estados que possuem a menor energia mediante todos os vizinhos (estados que diferem pela troca de um único spin). Concluímos a análise da abordagem direta, cujas instâncias . / In this thesis we present a statistical mechanics approach to a classical optimization problem called the number partitioning problem (NPP), which is stated as follows. Given a sequence of N positive real numbers , the number partitioning problem consists of partitioning them into two sets A and its complementary set Ac such that the absolute value of the difference of the sums of aj over the two sets is minimized. In each case in which the aj\'s are statistically independent random variables uniformly distributed in the unit interval, this NP-complete problem is equivalent to the problem of finding the ground state of an infinite range, random antiferromagnetic Ising model. Hence the probabilistic analysis of the NPP can be carried out within the framework of the standard statistical mechanics of disordered systems. In this vein we employ the annealed approximation to derive analytical lower bounds to the average value of the difference for the best-constrained and unconstrained partitions in the large N limit. Furthermore, we calculate analytically the fraction of metastable states, i.e. states that are stable against all single spin flips. We conclude the analysis of the so-called direct approach, in which the instances {ai} are fixed and the partitions are variable, with the analytical study of the linear programming relaxation of this NP-complete integer programming. In the second part of this thesis we propose and explore an inverse approach to the NPP, in which the optimal partitions are fixed and the instances are variable. Specifically, using the replica framework we study analytically the instance space of the number partitioning problem. We show that, regardless of the distribution of the instance entries, there is an upper bound αcN to the number of perfect random partitions (i.e. partitions for which that difference is zero). In particular, in the case where the two sets have the same cardinality (balanced partitions) we find αc =1/2. Moreover, in the case of unbalanced partitions, we show that perfect random partitions exist only if the difference between the cardinalities of the two sets scales like m N-1/2}.
|
52 |
Produção de entropia em um modelo estocástico irreversível / Entropy production in a stochastic irreversible modelLeonardo Crochik 23 June 2005 (has links)
Estudamos nessa dissertação um modelo para um gás em contato com dois banhos de partículas a potenciais químicos distintos. Isso foi feito através de um modelo de gás na rede (modelo de Ising) em que esta é dividida em duas sub-redes R1 e R2 e a evolução temporal se dá através da competição de duas dinâmicas markovianas: uma (dinâmica A) realiza o fluxo de partículas de uma sub-rede a outra, simulando o contato com um banho térmico à temperatura T , enquanto a outra (dinâmica B) tira ou põe partículas nas sub-redes, simulando o contato com banhos de partículas a potenciais químicos mu1 e mu2 e temperatura T . Estudamos, através de aproximações de campo médio dinâmico e de simulações de Monte Carlo, o diagrama de fases e as propriedades críticas do modelo, obtendo comportamento crítico similar ao do modelo de Ising de equilíbrio, exceto em uma pequena região do diagrama de fases em que detectam-se fases reentrantes. Calculamos também a produção de entropia do modelo. O estudo do comportamento crítico dessa grandeza deu origem a um novo expoente crítico zeta relacionado à divergência da derivada da produção de entropia com relação à temperatura. Obtivemos zeta=0 (divergência logaritimica). Verificamos, por fim, utilizando nesse caso aproximações de campo médio, o limite de validade de dois teoremas da termodinâmica de não equilíbrio: o teorema da mínima produção de entropia e o critério universal de evolução. Com relação ao primeiro teorema, determinamos em que limites podemos considerar a dinâmica do modelo como uma dinâmica que descreve um sistema próximo a uma situação de equilíbrio termodinâmico. Com relação ao critério universal de evolução, encontramos situações para as quais o teorema aparentemente não é satisfeito. Acreditamos que esse fato se deva a um elemento de instabilidade trazido indevidamente pela aproximação (de campo médio) utilizada. A investigação dessa questão foi postergada para um próximo trabalho. / We studied a model of a gas in contact with two baths of particles. We used a model of a gas in a lattice (Ising model) in which the net is divided in two: the sub-net R1 and the sub-net R2. The system evolves in time according to the competition between two dynamics: one (dynamic A) that realizes the flow of particles from one sub-net to the other, simulating the contact with a heat bath at temperature T while the other one (dynamic B ) removes or put particles in the sub-nets, simulating the contact with particle baths at chemical potentials mu1 and mu2 and temperature T. We studied, using mean-field approximations and Monte Carlo simulations, the phase diagram and the critical properties of the model, getting similar critical behavior to the Ising model in equilibrium, except in a small region of the phase diagram in which there are reentrant phases. We also calculated the entropy production of the model. The study of its critical behavior results in the definition of a new critical exponent zeta related to the divergence of the derivative of the entropy production with respect to the temperature. We obtained zeta =0 (logarithmic divergence). We verified, finally, using in this case mean-field approximations, the limit of validity of two theorems from nonequilibrium thermodynamics: the minimum entropy production theorem and the universal evolution criteria. Regarding the first theorem, we determined in what limits we can consider the model\' s dynamics as ``close\'\' to equilibrium. Regarding the universal evolution criteria, we found situations in which the theorem is apparently violated. We believe that this violation must be consequence of an improper instability element brought by the approximation (of mean-field) used. The investigation of this question was delayed to a next work.
|
53 |
Histerese e irreversibilidade em vidro de spin ising próximo ao limiar de percolação: FexZn1-xF2BRITO, Janete Batista de January 2003 (has links)
Made available in DSpace on 2014-06-12T18:08:02Z (GMT). No. of bitstreams: 2
arquivo8004_1.pdf: 4568730 bytes, checksum: 59b8a548fa5fc647bcee9fe6d1b3e888 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2003 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Na presente dissertação realizamos estudos através de simulação computacional, utilizando o método Monte Carlo (MC) do antiferromagneto (AF) diluído FexZn1−xF2, próximo da região de percolação (x = 0.24) e na presença de um campo magnético externo H. O sistema AF FexZn1−xF2 mostra-se para x = 0.25 com características típicas de um Vidro de Spins (VS s) genuíno, com uma temperatura crítica bem definida. Por meio de um modelo microscópico adequado para a descrição de AF diluídos, em que as razões entre as constantes de trocas medidas no sistema são consideradas, mostramos através da utilização da simulação MC que, para baixas temperaturas, o sistema Fe0.25Zn0.75F2 possui uma forte dependência com a história da medida ou do procedimento numérico utilizado. Os valores obtidos através das medidas da magnetização, quando resfriamos a campo magnético nulo e posteriormente aquecemos com campo magnético não-nulo (ciclo ZFC), são diferentes dos valores quando a medida é feita com resfriamento e aquecimento com campo magnético não nulo ou finito (ciclo FC). Em particular, estudamos a dependência temporal das magnetizações remanentes associadas aos dois ciclos, FC e ZFC, após a retirada do campo magnético. Essa forte dependência com a história evidenciou-se, também, nos resultados que obtivemos para as curvas de histerese e para a linha de Almeida- Thouless, com os resultados sendo comparados com os obtidos experimentalmente e por outros métodos teóricos
|
54 |
Estudo de sistemas magnéticos desordenados via modelos clássicos de spins por meio de técnicas analíticasFreitas, Augusto dos Santos 25 September 2014 (has links)
In this work, we study the magnetic properties of classical spin models, namely spin-2 Ising
model with site dilution and mixed-bond spin 1/2 Ising model by means of the Effective Field
Theory (EFT), with applications to describe of the magnetic properties of Fe-Al, Fe-Mn and
Fe-Mn-Al alloys. In here, we obtain the van der Waerden identity for a generic spin value S,
for example, to be used in the description of spin-2 Ising model and expressions were used to
phenomenological description of the dependence of exchange interaction on the concentration
of aluminum and manganese atoms. Behavior of magnetization versus temperature, critical
temperature as a function of the concentration of aluminum atoms and exchange interaction as
a function of the concentration of aluminum atoms to the Fe-Al alloys were studied. Furthermore,
this model allows for a more accurate determination of the critical values qc and Tc for
q = 0. For the Fe-Mn alloys were described the M(T), zero field susceptibility as a function of
temperature, critical temperature versus manganese concentration and average hyperfine field
as a function of the manganese concentration. For the Fe-Mn-Al alloys, the magnetization as
a function of temperature, magnetization as a function of the manganese concentration, critical
temperature versus iron concentration and average hyperfine field as a function of the aluminum
concentration were studied. It is shown that the EFT technique is not only a robust technique for
the description of the thermodynamic properties of classical spin models and can also be widely
applied to obtain phase diagrams of real magnetic systems, with the advantage of reduced computational
cost compared to the other techniques. All phase diagrams described in this work
were obtained through the numerical solution of the equations arising from the approximations
made by the EFT approach. Finally, prospects of use of the other models are described, as well
as other analytical techniques to the description of frustrated magnetic systems. / Neste trabalho, são estudadas as propriedades magnéticas de modelos clássicos de spins, a saber os modelos de Ising de spin 2 com diluição por sítios e de spin 1/2 com interações mistas, por meio da Técnica do Operador Diferencial (DOT), com aplicações à descrição das propriedades magnéticas de ligas Fe-Al, Fe-Mn e Fe-Mn-Al. Para tanto, foi descrito um método simples para obtenção da identidade de van der Waerden para um valor genérico de spin $S$, por exemplo, para ser utilizada na descrição do modelo de Ising de spin 2, e foram utilizadas expressões fenomenológicas para a descrição da dependência da interação de troca relativamente à concentração de átomos de alumínio e manganês para o estudo das propriedades das ligas consideradas. Os resultados obtidos indicam que os modelos clássicos utilizados, aliados à Técnica do Operador Diferencial, são alternativas viáveis para a descrição física de sistemas
magnéticos reais. Diagramas de magnetização {it versus} temperatura, temperatura crítica como função da concentração de átomos de alumínio e interação de troca como função da concentração de átomos de alumínio, para as ligas Fe-Al, foram estudados. No caso do diagrama de magnetização como função da temperatura, os resultados para o modelo de spin 2 com diluição por sítios são qualitativamente idênticos aos do modelo de Ising de spin 1/2, com a diferença de que os valores obtidos para a magnetização por sítio no estado fundamental diferem daqueles obtidos para o modelo de Ising de dois estados. Além disso, tal modelo permite uma determinação mais precisa dos valores da concentração crítica de átomos de alumínio, $q_c$, acima da qual a magnetização espontânea vai a zero em $T>0$, e da temperatura crítica $T_c$ para $q=0$. Para as ligas Fe-Mn, foram descritos os diagramas magnetização {it versus} temperatura,
susceptibilidade a campo nulo como função da temperatura, temperatura crítica {it versus} concentração de átomos de manganês e campo hiperfino médio como função da concentração de átomos de manganês. A comparação entre os resultados teóricos e experimentais demonstra boa concordância com o modelo utilizado. No caso das ligas Fe-Mn-Al, foram estudados os diagramas de magnetização como função da temperatura, magnetização {it versus} concentração de átomos de alumínio, magnetização como função da concentração de átomos de manganês, temperatura crítica {it versus} concentração de átomos de ferro e campo hiperfino médio como função da concentração de átomos de alumínio. A concordância teoria-experimento é excelente e demonstra a viabilidade dos modelos utilizados para a descrição das propriedades magnéticas de tais ligas. Neste trabalho, mostra-se que a Técnica do Operador Diferencial não é somente
uma técnica robusta para a descrição das propriedades termodinâmicas de modelos clássicos de spins como também pode ser amplamente aplicada para obtenção de diagramas de fase de sistemas magnéticos reais, com grande vantagem de custo computacional em comparação com outras técnicas. Tal técnica também pode ser, como discutido neste trabalho, interpretada como caso particular de outra mais geral: o Método Variacional. Todos os diagramas de fase aqui descritos foram obtidos por meio da resolução numérica das equações oriundas das aproximações feitas por meio da Técnica do Operador Diferencial. A utilização do Método Variacional em sua aproximação de campo médio, aplicada ao modelo XY clássico em duas dimensões, no estudo de sistemas magnéticos frustrados, tais como as jarositas, surge como perspectiva de trabalhos futuros.
|
55 |
Produção de entropia em um modelo estocástico irreversível / Entropy production in a stochastic irreversible modelCrochik, Leonardo 23 June 2005 (has links)
Estudamos nessa dissertação um modelo para um gás em contato com dois banhos de partículas a potenciais químicos distintos. Isso foi feito através de um modelo de gás na rede (modelo de Ising) em que esta é dividida em duas sub-redes R1 e R2 e a evolução temporal se dá através da competição de duas dinâmicas markovianas: uma (dinâmica A) realiza o fluxo de partículas de uma sub-rede a outra, simulando o contato com um banho térmico à temperatura T , enquanto a outra (dinâmica B) tira ou põe partículas nas sub-redes, simulando o contato com banhos de partículas a potenciais químicos mu1 e mu2 e temperatura T . Estudamos, através de aproximações de campo médio dinâmico e de simulações de Monte Carlo, o diagrama de fases e as propriedades críticas do modelo, obtendo comportamento crítico similar ao do modelo de Ising de equilíbrio, exceto em uma pequena região do diagrama de fases em que detectam-se fases reentrantes. Calculamos também a produção de entropia do modelo. O estudo do comportamento crítico dessa grandeza deu origem a um novo expoente crítico zeta relacionado à divergência da derivada da produção de entropia com relação à temperatura. Obtivemos zeta=0 (divergência logaritimica). Verificamos, por fim, utilizando nesse caso aproximações de campo médio, o limite de validade de dois teoremas da termodinâmica de não equilíbrio: o teorema da mínima produção de entropia e o critério universal de evolução. Com relação ao primeiro teorema, determinamos em que limites podemos considerar a dinâmica do modelo como uma dinâmica que descreve um sistema próximo a uma situação de equilíbrio termodinâmico. Com relação ao critério universal de evolução, encontramos situações para as quais o teorema aparentemente não é satisfeito. Acreditamos que esse fato se deva a um elemento de instabilidade trazido indevidamente pela aproximação (de campo médio) utilizada. A investigação dessa questão foi postergada para um próximo trabalho. / We studied a model of a gas in contact with two baths of particles. We used a model of a gas in a lattice (Ising model) in which the net is divided in two: the sub-net R1 and the sub-net R2. The system evolves in time according to the competition between two dynamics: one (dynamic A) that realizes the flow of particles from one sub-net to the other, simulating the contact with a heat bath at temperature T while the other one (dynamic B ) removes or put particles in the sub-nets, simulating the contact with particle baths at chemical potentials mu1 and mu2 and temperature T. We studied, using mean-field approximations and Monte Carlo simulations, the phase diagram and the critical properties of the model, getting similar critical behavior to the Ising model in equilibrium, except in a small region of the phase diagram in which there are reentrant phases. We also calculated the entropy production of the model. The study of its critical behavior results in the definition of a new critical exponent zeta related to the divergence of the derivative of the entropy production with respect to the temperature. We obtained zeta =0 (logarithmic divergence). We verified, finally, using in this case mean-field approximations, the limit of validity of two theorems from nonequilibrium thermodynamics: the minimum entropy production theorem and the universal evolution criteria. Regarding the first theorem, we determined in what limits we can consider the model\' s dynamics as ``close\'\' to equilibrium. Regarding the universal evolution criteria, we found situations in which the theorem is apparently violated. We believe that this violation must be consequence of an improper instability element brought by the approximation (of mean-field) used. The investigation of this question was delayed to a next work.
|
56 |
Modelo de Ising ferromagnético com campo externo periódico / Ferromagnetic Ising model with periodical external fieldsGonzalez Navarrete, Manuel Alejandro 07 May 2015 (has links)
Estudamos o diagrama de fases para uma classe de modelos de Ising ferromagnéticos em $ \\mathbb^2 $, com campo magnético externo periódico. O campo externo assume dois valores: $ h $ e $ -h $, onde $ h> 0 $. Os sítios associados a valores positivos e negativos do campo externo, formam uma configuração em forma de tabuleiro de xadrez (nós chamamos de {\\it cell-board configuration}), com células retangulares de tamanho $ L_1 \\times L_2 $ sítios, de tal forma que o valor total do campo externo é zero. Como principal resultado, mostramos a presença de uma transição de fase de primeira ordem. A transição de fase existe para $ h <\\frac + \\frac $, onde $ J $ é uma constante de interação. A prova é construida usando o método de {\\it reflection positivity (RP)}. Aplicamos uma desigualdade que é normalmente referida como a estimativa de {\\it chessboard}. Além disso, incluímos uma região de unicidade da medida de Gibbs em $h>4J$, isto usando um critério baseado nas ideias de percolação em desacordo. / We study the low-temperature phase diagram for a ferromagnetic Ising model on $\\mathbb^2$, with a periodical external magnetic field. The external field takes two values: $h$ and $-h$, where $h>0$. The sites associated with positive and negative values of external field form a cell-board configuration with rectangular cells of sides $L_1\\times L_2$ sites, such that the total value of the external field is zero. As a main result, we show the presence of a first-order phase transition. The phase transition holds if $h<\\frac+ \\frac$, where $J$ is an interaction constant. We use the reflection positivity (RP) method. We apply a key inequality which is usually referred to as the chessboard estimate. Furthermore, we prove uniqueness for Gibbs measure in $h>4J$, using a uniqueness condition obtained in terms of disagreement percolation.
|
57 |
Aspectos de Teoria de Campos e Mecânica Estatística / Aspects of Field Theory and Statistical MechanicsGomes, Pedro Rogério Sergi 15 February 2013 (has links)
A teoria quântica de campos pode ser vista como um conjunto de métodos e idéias que além de sua importância no estudo das partículas elementares, tem sido amplamente usada em outras áreas. Em especial, ela constitui uma ferramenta indispensável no estudo moderno de transições de fases e fenômenos críticos. A origem dessa constante relação entre a teoria de campos e a matéria condensada deve-se ao fato que, apesar de suas diferenças superficiais, ambas tratam de problemas envolvendo um grande número de graus de liberdade. Assim, não é surpreendente que as mesmas técnicas possam ser úteis nos dois campos. Este trabalho trata de problemas nessas duas áreas e está essencialmente divido em duas partes. A primeira parte é dedicada ao estudo de teorias de campos com uma anisotropia entre o espaço e o tempo, o que implica uma quebra da simetria de Lorentz. Uma das motivações para considerar esse tipo de teoria vem justamente do estudo de transições de fase em sistemas da matéria condensada. Análises do grupo de renormalização com ênfase na possibilidade de restauração da simetria de Lorentz e também uma discussão sobre identidades de Ward são realizadas. Na segunda parte, a atenção é voltada para a mecânica estatística mas com uma abordagem típica da teoria de campos, em especial, voltada para o estudo de transições de fase clássicas e quânticas a partir da versão quantizada do modelo esférico e de sua extensão supersimétrica. / Quantum field theory can be seen as a set of methods and ideas that, besides its importance in the study of the elementary particles, has been widely used in other areas. In particular, it constitutes an indispensable framework in the modern approach to phase transitions and critical phenomena. The origin of this constant relationship between field theory and condensed matter is due to the fact that despite their superficial differences, both deal with problems involving a large number of degrees of freedom. Thus, it is not surprising that the same techniques may be useful in both fields. This work addresses problems in these two areas and it is essentially divided in two parts. The first part is devoted to the study of field theories with an anisotropy between space and time, which implies a breaking of the Lorentz symmetry. One of the moti- vations for considering this kind of theory is precisely the study of phase transitions in condensed matter systems. Renormalization group analysis with emphasis on the possi- bility of restoration of the Lorentz symmetry and also a discussion about Ward identities are performed. In the second part, the attention is centered on statistical mechanics but with an approach typical of field theory, in particular, focused to the study of classical and quantum phase transitions from the quantized version of the spherical model and its supersymmetric extension.
|
58 |
Zeros de Fisher e aspectos críticos do modelo de Ising dipolar / Fisher\'s zeros and critical aspects of the dipolar Ising modelFonseca, Jacyana Saraiva Marthes 06 June 2011 (has links)
Estudamos o comportamento crítico do modelo de Ising com interação dipolar, em redes bidimensionais regulares. Este modelo apresenta um cenário fenomenologicamente rico devido ao efeito de frustração causado pela competição entre as interações de troca do Ising puro e a interação dipolar. A criticalidade do modelo foi estudada a partir das relações de escala de tamanho finito para os zeros da função de partição no plano complexo da temperatura. Esta abordagem nunca foi utilizada no estudo do modelo em questão. Nosso estudo se baseia em simulações de Monte Carlo usando o algoritmo multicanônico. O objetivo deste trabalho é obter a temperatura crítica em função do acoplamento (razão entre as intensidades dos acoplamentos ferromagnético e dipolar) e construir uma parte do diagrama de fase do modelo. Diferentes partes do diagrama de fase ainda não apresentam indicações conclusivas a respeito da ordem das linhas de transição. Em particular, há evidências na literatura de um ponto tricrítico para no intervalo [0.90,1.00], mas sua localização precisa não é conhecida. Nossas simulações indicam que o ponto tricrítico não se localiza no intervalo acima. Nossos resultados mostraram que, para [0.89,1.10], a fase do tipo faixas com h=1 passa para a fase tetragonal através de uma transição de segunda ordem. A análise de FSS para os zeros da função de partição na variável temperatura, apresenta, para =1.20, uma transição de fase de segunda ordem e para =1.30, uma transição de fase de primeira ordem. Dessa forma, o ponto tricrítico ocorre somente entre =1.20 e 1.30. Realizamos um estudo complementar baseado na abordagem microcanônica e observamos duas transições de fase de segunda ordem para =1.20 e duas transições de fase de primeira ordem para =1.30, que indica a presença da fase nemática intermediária. / We study the critical behavior of the dipolar Ising model on two-dimensional regular lattices. This model presents a phenomenologically rich scenario due to the effect of frustration caused by the competition between the pure Ising interaction and the dipolar one. To study the criticality of this model we apply finite size scaling relations for the partition function zeros in the complex temperature plane. The partition function zeros analysis has never been used before to study such model with long-range interactions. Our study relies on Monte Carlo simulations using the multicanonical algorithm. Our goal is to obtain the critical temperature as a function of the coupling (the ratio between the ferromagnetic and dipolar couplings) to construct a part of the phase diagram. Different parts of the phase diagram do not present a conclusive results about the order of the phase transition lines.In particular, there is evidence of a tricritical point for [0.90,1.00], but its precise location is unknown. Our simulations indicate that the tricritical point is not located in the above range. Our FSS analysis show that for =1.20 the striped-tetragonal transition is a second-order phase transition and for =1.30 it is a first-order one. Thus, the tricritical point must occur between =1.2 and =1.3. We have used a microcanonical approach to study the criticality of this model too. This approach indicates two second-order phase transitions for =1.20 and two first-order phase transitions for =1.30. Therefore, it presents evidences for the presence of an intermediate nematic phase.
|
59 |
Algoritmos de Monte Carlo generalizados e criticalidade no modelo de Ising dipolar e em proteínas descritas por um modelo mínimo / Generalized Monte Carlo algorithms and criticality in the dipolar Ising model and in proteins described by a minimal modelRizzi, Leandro Gutierrez 25 February 2013 (has links)
Sistemas complexos que apresentam interações competitivas são ubíquos na natureza. Obter descrições adequadas das propriedades termodinâmicas desses sistemas é um desafio para o entendimento de uma série de processos químicos e físicos. Soluções analíticas em termos da Mecânica Estatística são extremamente difíceis de serem obtidas para esses sistemas. Isso faz com que o uso de simulações numéricas seja, na maioria dos casos, a única abordagem possível. Nesta Tese avaliamos o desempenho de duas classes de algoritmos de Monte Carlo generalizados empregados na determinação da natureza das transições de fase em dois sistemas complexos: o modelo de Ising dipolar bidimensional (2D) e um modelo mínimo para descrever proteínas. Na primeira classe, a qual representa os algoritmos seriais, incluimos os algoritmos multicanônico (MUCA) e de amostragem entrópica (ES), também conhecidos como algoritmos de amostragem uniforme. Na segunda classe, que diz respeito aos algoritmos paralelizáveis, incluimos o algoritmo canônico de Metropolis associado ao método de troca entre réplicas (REM). Para ambas as classes introduzimos contribuições metodológicas visando o aumento da eficiência na obtenção das propriedades canônicas e microcanônicas dos modelos. No caso dos algoritmos de amostragem uniforme, caracterizamos protocolos baseados na contagem de viagens de ida e volta que otimizam a determinação dos pesos de amostragem, e dessa maneira, aumentam a eficiência na obtenção da densidades de estados. Com relação ao uso de simulações canônicas implementadas com o REM, introduzimos o método ST-WHAM-MUCA como uma nova maneira de calcular a entropia microcanônica, associando o inverso da temperatura estatística obtida via ST-WHAM às equações de recorrência do algoritmo MUCA. A partir de simulações canônicas para os dois modelos estudados, mostramos que a termoestatística microcanônica obtida via ST-WHAM é equivalente àquela obtida pelo algoritmo MUCA, mesmo para a região onde ocorrem transições de fase de primeira ordem e uma não concavidade é observada na entropia microcanônica. Além dos estudos sobre a metodologia empregada na implementação dos algoritmos, realizamos contribuições para o entendimento da criticalidade nos modelos. Em particular, determinamos os aspectos críticos no modelo de Ising dipolar 2D para dois cenários distintos. Para o Cenário I, onde apenas uma transição entre as fases de faixas e tetragonal é observada, empregamos o algoritmo MUCA aliado à metodologia de obtenção dos zeros complexos da função de partição canônica. Nesse caso, foi possível determinar a natureza contínua da transição de fase faixas tetragonal, excluindo um possível ponto trícritico, como sugerido na literatura para a região h=1 do diagrama de fases. Para o Cenário II, o qual descreve uma região que apresenta duas transições de fase em decorrência do aparecimento de uma fase nemática entre as fases de faixas e tetragonal, mostramos que o algoritmo MUCA apresenta problemas mesmo para redes pequenas. Utilizando o algoritmo de Metropolis associado ao REM, realizamos simulações para uma rede de tamanho L=72. A partir da análise via ST-WHAM dessas simulações, obtivemos estimativas para o inverso da temperatura microcanônica, as quais sugerem que ambas transições de fase, faixas-nemática e nemática-tetragonal, sejam de primeira ordem, excluindo a possibilidade de uma transição de Kosterlitz-Thouless (KT). Também realizamos simulações utilizando o algoritmo de Metropolis associado ao REM para estudar a criticalidade em proteínas descritas por um modelo mínimo. Nesse estudo caracterizamos a termoestatística microcanônica das transições de enovelamento de quatro cadeias polipeptídicas com conhecida propensidade à formação de agregados. Nossos resultados sugerem que a ausência de barreiras na energia livre favorece a presença de conformações parcialmente desenoveladas, o que facilitaria a agregação das proteínas. Por fim, introduzimos o raio de giração hidrofóbico como parâmetro de ordem para a transição de enovelamento. Além de fornecer resultados condizentes com a descrição microcanônica, essa quantidade pode ser utilizada mesmo que não existam informações sobre o estado nativo. / Complex systems which present competitive interactions are ubiquitous in nature. Obtaining adequate descriptions of the thermodynamic properties of these systems is a major challenge to understand many chemical and physical processes. Analytical solutions in terms of Statistiscal Mechanics are extremely hard to obtain for these systems. Thus, in most cases numerical simulations become the only possible approach. In this Thesis we evaluate the performance of two categories of generalized Monte Carlo algorithms employed to determine the nature of phase transitions in two complex systems: the two-dimensional (2D) dipolar Ising model and a minimal model to describe proteins. In the first category, which represents serial algorithms, we include the multicanonical (MUCA) and entropic sampling (ES) algorithms, which are known as flat histogram algorithms. In the second category, which concerns parallelizable algorithms, we include the Metropolis algorithm associated with replica exchange method (REM). For both categories we introduce methodological contributions aiming the increase of efficiency in obtaining the canonical and microcanonical properties of the models. In case of flat histogram algorithms, we characterized protocols based on round trip counting to optimize the determination of the sampling weights, and therefore increasing the efficiency in obtaining the density of states. Regarding the use of canonical simulations implemented with REM, we introduce ST-WHAM-MUCA as a new method to evaluate the microcanonical entropy, associating the inverse of the statistical temperature obtained from ST-WHAM with the recursions equations of MUCA algorithm. From canonical simulations for both models, we show that the microcanonical thermostatistics obtained via ST-WHAM is equivalent to that obtained by MUCA algorithm, even for a region where a first order phase transition takes place and a non concavity is observed in the microcanonical entropy. In addition to the studies about the methodology employed in implementation of the algorithms, we present the contributions we make to understand the criticality in the models. In particular, we determined the critical aspects of the 2D dipolar Ising model for two different scenarios. For Scenario I, where only one transition is between the stripe and tetragonal phases is observed, we use MUCA algorithm associated with the analysis of the complex zeros from the canonical partition function. In this case, it was possible to determine the continuous character of the stripe-tetragonal phase transition, excluding the existente of a tricritical point, as suggested in the literature for the h=1 region in the phase diagram. For Scenario II, which describe a region that presents two phase transitions due to the appearance of a nematic phase between the stripe and tetragonal phases, we show that the MUCA algorithm present problems even for small lattices. Using the canonical Metropolis algorithm with REM, we run simulations for a lattice with size L=72. From ST-WHAM analysis of these simulations, we obtained estimates for the microcanonical inverse temperature, which suggests that both phase transitions, stripe-nematic and nematic tetragonal, are first order, excluding the possibility of a Kosterlitz-Thouless (KT) transition. We also performed simulations using the canonical Metropolis algorithm associated with the REM to study the criticality in proteins described by a minimal model. In this study we characterized the microcanonical thermostatistics of the folding transitions of four polypeptide chains with known propensity to form aggregates. Our results suggest that the absence of a free-energy barrier favors the presence of partial unfolded conformations, which could facilitate the aggregation of the proteins. Finally, we introduce the hydrophobic radius of gyration as an order parameter for the folding transition. In addition to provide consistent results with the microcanonical description, this quantity can be used even if there is no information about the native state.
|
60 |
Um Estudo do Método de Monte Carlo de Campo Médio / A study of the method of Monte-Carlo mean fieldHenriques, Eduardo Fontes 18 December 1992 (has links)
Utilizamos o método de Monte-Carlo de campo médio, proposto por Netz e Berker, para estudar o comportamento termodinâmico dos modelos de Ising e de Blume-Capel numa rede quadrada. Esse método mistura conceitos de amostragem aleatória (Monte Carlo) com equações de campo médio usual. Seus autores afirmam que o método pode permitir representações de diagramas de fase com amostragens muito menores do que as usadas nas simulações de Monte Carlo convencionais e com a eliminação de certas consequências indesejáveis da aplicação das equações de consistência de campo médio. Entretanto, não observamos, pelo menos nos modelos que foram estudados, uma tendência clara de redução de amostragens (número de passos de Monte Carlo) em relação a simulações computacionais pelos métodos conhecidos. Além disso, os nossos cálculos apontam na direção de uma grande semelhança com os resultados usuais de uma aproximação de Bethe-Peierls. Esses problemas devem ser somados ao fato de não haver uma boa explicação para o mecanismo do método de Netz e Berker, dada a dificuldade de estudar a dinâmica em que ele se baseia. / We have used the method of Monte Carlo Mean Field, recently proposed by Netz and Berker, to study the thermodynamic behavior of the Ising and Blume-Capel models on square lattices. This method merges concepts of stochastic sampling (Monte Carlo) with the usual mean-field equations. Their authors claim that the method permits representations of phase diagrams with much less samplings than those used in conventional Monte Carlo simulations, eliminating also certain undesirable consequences of the application of the mean - field consistency equations. However, we haven\'t observed, at least in the models we have studied, a clear tendency of a reduction of the samplings (number of Monte Carlo steps) compared with computational simulations by other known methods. Also, our calculations point to great resemblances with usual results given by Bethe-Peierls approximations. To these problems, we must add the fact that there is no good explanation for the machinery of Netz and Berker\'s method, given the difficulty of studying the stochastic dynamics on wich is based.
|
Page generated in 0.0693 seconds